Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (397)

Search Parameters:
Keywords = VPDs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5619 KB  
Article
Seasonal Dynamics, Environmental Drivers, and Hysteresis of Sap Flow in Forests of China’s Subtropical Transitional Zone
by Houbing Chen, Guoping Tang, Nan Jiang, Zhongkai Ren, Xupeng Fang and Yaoliang Chen
Forests 2025, 16(9), 1480; https://doi.org/10.3390/f16091480 - 18 Sep 2025
Viewed by 210
Abstract
The subtropical transitional zone of China exhibits highly complex climatic conditions and diverse forest ecosystems, making it a critical region for understanding vegetation–water interactions. This study employed the Thermal Dissipation Probe (TDP) method to monitor sap flow in three typical forest types—evergreen broad-leaved [...] Read more.
The subtropical transitional zone of China exhibits highly complex climatic conditions and diverse forest ecosystems, making it a critical region for understanding vegetation–water interactions. This study employed the Thermal Dissipation Probe (TDP) method to monitor sap flow in three typical forest types—evergreen broad-leaved forest, bamboo forest (Dendrocalamus latiflorus), and Chinese fir (Cunninghamia lanceolata)—in a subtropical transitional watershed in southern China. The aims were to quantify seasonal and annual variations in sap flow, to examine the effects of environmental drivers, and to analyze the hysteretic responses between sap flow and the drivers. The main findings were as follows: (1) bamboo forests exhibited significantly higher sap flow density than evergreen broad-leaved and fir forests at both annual and seasonal scales, though the overall transpiration of bamboo forests was lower than the others due to its limited sapwood area; (2) sap flow was positively correlated with potential evapotranspiration, solar radiation (Ra), vapor pressure deficit (VPD), air temperature, and soil temperature, while it was negatively correlated with relative humidity, atmospheric pressure, soil moisture, and precipitation; (3) Ra and VPD were identified as the dominant drivers of sap flow variations, with nonlinear increases that leveled off once thresholds were reached; (4) clear hysteresis patterns were observed, with sap flow peaks consistently lagging behind Ra but occurring earlier than VPD. These results advance our understanding of forest water-use strategies in the subtropical transitional zone and provide a scientific basis for improving water resource management and ecosystem sustainability in this region. Full article
(This article belongs to the Special Issue Forestry Activities and Water Resources)
Show Figures

Figure 1

15 pages, 8733 KB  
Article
The Effect of Transparent/Black Film and Straw Mulching on Canopy Conductance in Maize
by Shanshan Qin, Yanqun Zhang, Xiyun Jiao, Yan Mo, Shihong Gong, Zhe Gu and Baozhong Zhang
Plants 2025, 14(18), 2877; https://doi.org/10.3390/plants14182877 - 16 Sep 2025
Viewed by 278
Abstract
Canopy conductance (Gc) is an important biological constant for quantifying the water vapor flux at the canopy-atmosphere interface, reflecting the coupling strength between crop transpiration and microclimate. To elucidate how mulching modulates Gc dynamics under varying environments, we measured [...] Read more.
Canopy conductance (Gc) is an important biological constant for quantifying the water vapor flux at the canopy-atmosphere interface, reflecting the coupling strength between crop transpiration and microclimate. To elucidate how mulching modulates Gc dynamics under varying environments, we measured the transpiration of maize based on thermal equilibrium method from 2020 and 2021, synchronously recording solar radiation (Rs), temperature (T), relative humidity (RH), and vapor pressure deficit (VPD) under no-mulching (NM), transparent film (TFM), black film (BM), and straw mulching (SM) treatments in the North China Plain. The results showed that in the near-surface microenvironment, at early stages (seedling-jointing), compared to the NM treatment, TFM and BM treatments unexpectedly reduced temperature by 0.1–1.1% while increasing humidity by 0.2–4.0%, lowering VPD by 0.7–15.5%, contradicting presumed warming effects. During tasseling-filling stages, both plastic films elevated temperature by 3.5–5.2%, decreased humidity by 5.2–6.9%, and sharply increased VPD by 23.4–27.6%, inducing heat-VPD coupling stress. Throughout the entire growth period, SM treatment resulted in an initial increase followed by a decrease in temperature, but the decrease in humidity and increase in VPD occurred earlier and smoothly compared to film mulching treatment in the near-surface microenvironment. All treatments increased average temperature but decreased average humidity in the near-ground microenvironment throughout growth stages, ultimately leading to an increase in average VPD. In addition, all treatments increased Gc at noon by 10.3–81.2%. Under different solar radiation conditions, TFM, BM, and SM treatments increased the reference conductance (GcR) but did not always increase Gc sensitivity to VPD (m). We propose a specific mulching strategy: Using black or transparent plastic film mulching in arid/cold regions and straw mulching in high-temperature and drought-prone/rain-fed agricultural areas can reconcile the trade-off between microclimate optimization and physiological adaptation, advancing precision water management in arid-prone croplands. Full article
Show Figures

Figure 1

30 pages, 9423 KB  
Article
A Multi-Scale Comprehensive Evaluation for Nine Evapotranspiration Products Across Mainland China Under Extreme Climatic Conditions
by Long Qian, Lifeng Wu, Ning Dong, Tianjin Dai, Xingjiao Yu, Xuqian Bai, Qiliang Yang, Xiaogang Liu, Junying Chen and Zhitao Zhang
Agriculture 2025, 15(18), 1945; https://doi.org/10.3390/agriculture15181945 - 14 Sep 2025
Viewed by 473
Abstract
Accurate quantification of evapotranspiration (ET) is crucial for agricultural water management and climate change adaptation, especially in global warming and extreme climate events. Despite the availability of various ET products, their applicability across different scales and climatic conditions has not been comprehensively verified. [...] Read more.
Accurate quantification of evapotranspiration (ET) is crucial for agricultural water management and climate change adaptation, especially in global warming and extreme climate events. Despite the availability of various ET products, their applicability across different scales and climatic conditions has not been comprehensively verified. This study evaluates nine ET products at grid, basin, and site scales in China from 2003 to 2014 under varying climatic conditions, including extreme temperatures, vapor pressure deficit (VPD), and drought. The main results are as follows: (1) At the grid scale, all products except the MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500m SIN Grid (MOD16A2) product showed high consistency, with the Global Land Evaporation Amsterdam Model V4.2a (GLEAM) product exhibiting the highest comparability. The three-cornered hat (TCH) method revealed that GLEAM and the Synthesized Global Actual Evapotranspiration Dataset (Syn) had low uncertainties in multiple basins, while the Reliability Ensemble Averaging (REA) product and Penman–Monteith–Leuning Evapotranspiration V2 (PMLv2) product had the smallest uncertainties in the Songhua River and Hai River Basins. (2) At the basin scale, ET products were closely aligned with water-balance-based ET (WB-ET), with GLEAM achieving the smallest root mean square error (RMSE) (22.94 mm/month). (3) At the site scale, accuracy decreased significantly under extreme climatic conditions, with the coefficient of determination (R2) dropping from about 0.60 to below 0.30 and the mean absolute error (MAE) increasing by 110.30% (extreme high temperatures) and 101.40% (extreme high VPD). Drought conditions caused slight instability in ET estimations, with MAE increasing by approximately 12.00–40.00%. (4) Finally, using a small number of daily ET products as inputs for machine learning models, such as random forest (RF), greatly improved ET estimation, with R2 reaching 0.91 overall and 0.81 under extreme conditions. GLEAM was the most important product for RF in ET estimation. This study provides essential guidance for selecting and improving ET products to enhance agricultural water-use efficiency and sustainable irrigation. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

22 pages, 2565 KB  
Article
Interlinked Temperature and Light Effects on Lettuce Photosynthesis and Transpiration: Insights from a Dynamic Whole-Plant Gas Exchange System
by Simon Lauwers, Jonas R. Coussement and Kathy Steppe
Agronomy 2025, 15(9), 2180; https://doi.org/10.3390/agronomy15092180 - 13 Sep 2025
Viewed by 489
Abstract
Environmental control in closed environment agricultural systems (CEA) is challenging due to the high energy demand and the dynamic interactions between plants and their heterogeneous phylloclimate. Optimization of crop production in CEA systems therefore requires a thorough understanding of whole-plant functioning and the [...] Read more.
Environmental control in closed environment agricultural systems (CEA) is challenging due to the high energy demand and the dynamic interactions between plants and their heterogeneous phylloclimate. Optimization of crop production in CEA systems therefore requires a thorough understanding of whole-plant functioning and the interconnected plant-climate interactions. Such optimization is limited by an incomplete knowledge of how leaf-level measurements of gas exchange relate to whole-plant processes and how to scale-up point measurements of the heterogeneous environment to inform plant-level decisions. To address both, a dynamic whole-plant gas exchange system was developed to quantify the effect of temperature, relative humidity and light intensity on whole-plant photosynthetic and transpiration rates in lettuce (Lactuca sativa L.). Results showed that light intensity was the primary driver for whole-plant photosynthesis, with temperature optima increasing from 5 °C at a photosynthetic photon flux density (PPFD) of 150 µmol·m−2·s−1 to 13 °C at 400 µmolm−2·s−1. These optima for lettuce plants were 10 to 20 °C lower than those observed at leaf level due to a shifted balance between respiration and photosynthesis within the complex habitus of lettuce. The results showed a decoupling of transpiration and photosynthesis under high relative humidity, with vapour pressure deficit (VPD) values of 0.5 kPa or lower, which physically limited transpiration. The newly developed dynamic gas exchange system has proven to be a helpful tool for examining the relative importance and combined effects of environmental factors on whole-plant photosynthesis and transpiration. Potential future applications of this system include research on phylloclimate, implementation in production facilities, and validation of crop models. Full article
(This article belongs to the Special Issue Light Environment Regulation of Crop Growth)
Show Figures

Figure 1

22 pages, 1107 KB  
Article
Simulation of Transpiration and Drainage in Soil-Based Tomato Production with Potential Hydroponic Application
by Ronnie J. Dunn and Hannah Kinmonth-Schultz
Agronomy 2025, 15(9), 2134; https://doi.org/10.3390/agronomy15092134 - 5 Sep 2025
Viewed by 450
Abstract
Hydroponic systems can drain nutrient-rich waste into the environment. Increasing irrigation efficiency would decrease effluent and improve cost efficiency for growers. However, current methods accessible to small- and mid-sized growers to determine moisture content in growth media are often imprecise. Simplified transpiration models [...] Read more.
Hydroponic systems can drain nutrient-rich waste into the environment. Increasing irrigation efficiency would decrease effluent and improve cost efficiency for growers. However, current methods accessible to small- and mid-sized growers to determine moisture content in growth media are often imprecise. Simplified transpiration models could inform irrigation needs. This study aimed to improve transpiration estimates using vapor pressure deficit (VPD) and solar radiation. We compared our model to an existing transpiration model. Three years of transpiration and environmental data from tomato production were used to calibrate (year 2) and validate (years 1 and 3) the model. Randomly chosen subsets from all years of data were also used. The new model (TVPD) predicted the observed values more closely than the previous model (PG) in year 1 (TVPD: RMSE = 0.1570 mm, r2 = 0.95; PG: RMSE = 0.5594 to 0.6875 mm, r2 = 0.27 to 0.78) but not in year 3 (TVPD: RMSE = 0.5430 mm, r2 = 0.44; PG: RMSE = 0.1873 to 0.2065 mm, r2 = 0.95). TVPD calibrated using random subsets of the combined data improved consistency and predictive capacity (RMSE = 0.2387 to 0.2419 mm, r2 = 0.87 to 0.91). TVPD is a simpler alternative to complex models and to those focusing on solar radiation alone. TVPD is less reliable under low solar radiation (year 3); however, reliability could be improved by calibration across a broader environmental range. TVPD also allows for exploration of the relative influences of low VPD and high solar radiation on evapotranspiration found in greenhouse settings. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

19 pages, 283 KB  
Review
Immunization Strategies in Pediatric Patients Receiving Hematopoietic Cell Transplantation (HCT) and Chimeric Antigen Receptor T-Cell (CAR-T) Therapy: Challenges and Insights from a Narrative Review
by Daniele Zama, Laura Pedretti, Gaia Capoferri, Roberta Forestiero, Marcello Lanari and Susanna Esposito
Vaccines 2025, 13(9), 932; https://doi.org/10.3390/vaccines13090932 - 1 Sep 2025
Viewed by 751
Abstract
Background: Hematopoietic cell transplantation (HCT) and chimeric antigen receptor T-cell (CAR-T) therapy have markedly improved survival in pediatric patients with hematological malignancies. However, these treatments cause profound immunosuppression, leading to significant susceptibility to vaccine-preventable diseases (VPDs), including invasive pneumococcal disease and measles. Timely [...] Read more.
Background: Hematopoietic cell transplantation (HCT) and chimeric antigen receptor T-cell (CAR-T) therapy have markedly improved survival in pediatric patients with hematological malignancies. However, these treatments cause profound immunosuppression, leading to significant susceptibility to vaccine-preventable diseases (VPDs), including invasive pneumococcal disease and measles. Timely and tailored immunization strategies are crucial to mitigate infectious risks in this vulnerable population. Methods: We conducted a narrative review of the English-language literature from 2000 to 2024, including clinical guidelines, surveys, and original studies, to evaluate immune reconstitution and vaccination practices in pediatric patients undergoing HCT and CAR-T therapy. Literature searches in PubMed, Scopus, and Web of Science used disease-specific, therapy-specific, and pathogen-specific terms. Data synthesis focused on vaccine schedules, immune recovery markers, and adherence challenges. Results: Profound immune deficits post-HCT and CAR-T therapy compromise both innate and adaptive immunity, often necessitating revaccination. Key factors influencing vaccine responses include time since therapy, graft source, immunosuppressive treatments, and chronic graft-versus-host disease. Although inactivated vaccines are generally safe from three to six months post-HCT, live vaccines remain contraindicated until documented immune recovery. CAR-T therapy introduces unique challenges due to prolonged B-cell aplasia and hypogammaglobulinemia, leading to delayed or reduced vaccine responses. Despite established guidelines, real-world adherence to vaccination schedules remains suboptimal, driven by institutional, logistic, and patient-related barriers. Conclusions: Effective vaccination strategies are essential for reducing infectious morbidity in pediatric HCT and CAR-T recipients. Personalized vaccine schedules, immune monitoring, and multidisciplinary coordination are critical to bridging gaps between guidelines and practice, ultimately improving long-term outcomes for immunocompromised children. Full article
(This article belongs to the Special Issue Childhood Immunization and Public Health)
17 pages, 2412 KB  
Article
Evaluation of an Hourly Empirical Method Against ASCE PM (2005), for Hyper-Arid to Subhumid Climatic Conditions of the State of California
by Constantinos Demetrios Chatzithomas
Meteorology 2025, 4(3), 22; https://doi.org/10.3390/meteorology4030022 - 26 Aug 2025
Viewed by 368
Abstract
Accurate estimations of reference evapotranspiration (ETo) are critical for hydrologic studies, efficient crop irrigation, water resources management and sustainable development. The evaluation of an empirical method was carried out to estimate hourly ETo, utilizing short-wave radiation and relative humidity as a surrogate of [...] Read more.
Accurate estimations of reference evapotranspiration (ETo) are critical for hydrologic studies, efficient crop irrigation, water resources management and sustainable development. The evaluation of an empirical method was carried out to estimate hourly ETo, utilizing short-wave radiation and relative humidity as a surrogate of vapor pressure deficit (VPD), calibrated under semi-arid conditions and validated for different climatic regimes (hyper-arid, arid, subhumid) using American Society of Civil Engineers Penman–Monteith (ASCE PM) (2005) values as a standard, for the state of California. For hyper-arid climatic conditions, the empirical method resulted in underestimation and had coefficient of determination (R2) values of 0.88–0.95 and root mean square error (RMSE) values of 0.062–0.115 mm h−1. Hyper-arid climatic conditions correspond to lower R2 and different relations between the vapor pressure deficit (VPD) and the relative humidity function (1/lnRH) that the empirical method utilizes. For the other climatic regimes (arid, semi-arid, subhumid), the empirical method performed satisfactorily. The RMSE was calculated for groups of empirical estimates corresponding to various wind velocity values, and it was satisfactory for >99% of wind speed values (u2). The RMSE was also calculated for grouped values of the estimates of the empirical method corresponding to observed VPDs and was satisfactory for >97% of all observed values of VPD, except for hyper-arid stations (59% of u2 and 60% of all observed values of VPD). Full article
(This article belongs to the Special Issue Early Career Scientists' (ECS) Contributions to Meteorology (2025))
Show Figures

Figure 1

18 pages, 4607 KB  
Article
Xylem Hydraulic Characteristics and Soil Water Content Drive Drought Sensitivity Differences in Afforestation Species
by Ruimin He, Zhenguo Xing, Mingzhe Lei, Guanjie Li, Xiaoqing Liu, Jie Fang, Da Lei and Xin Zou
Water 2025, 17(16), 2445; https://doi.org/10.3390/w17162445 - 19 Aug 2025
Viewed by 614
Abstract
Drought is a critical factor influencing the distribution of forest species in both present and future global terrestrial ecosystems. Therefore, to investigate the sensitivity of typical afforestation tree species on the Loess Plateau to drought and its influencing factors, we conducted field experiments [...] Read more.
Drought is a critical factor influencing the distribution of forest species in both present and future global terrestrial ecosystems. Therefore, to investigate the sensitivity of typical afforestation tree species on the Loess Plateau to drought and its influencing factors, we conducted field experiments to measure the sap flow, soil moisture content, fine root density, leaf water potential, and xylem hydraulic characteristics of three deciduous trees: apple (Malus domestica), black locust (Robinia pseudoacacia), and jujube (Ziziphus jujube). We found that the canopy conductance (Gc) of black locust and apple trees was highly sensitive to VPD variations. Their transpiration (T) was also sensitive to soil moisture variation, especially for black locust. In contrast, the Gc and T sensitivity of jujube trees was low. The differences in their drought sensitivities can primarily be attributed to variations in xylem hydraulic conductivity and embolism vulnerability. Our results demonstrate that both mature black locust and apple trees on the Loess Plateau have strong drought sensitivity, especially black locust. Therefore, alterations in precipitation patterns driven by climate change may significantly influence the community distribution of black locusts trees on the Loess Plateau. Full article
Show Figures

Figure 1

15 pages, 4511 KB  
Article
Tree-Ring-Based Analysis of Populus euphratica Radial Growth Response to Extreme Drought Across Lower Tarim River Sections, Xinjiang, China
by Xiaodong Xie, Weilong Chen, Xiaoting Pan, Tongxin Wang, Jing Che, Yexin Lv and Mao Ye
Forests 2025, 16(8), 1311; https://doi.org/10.3390/f16081311 - 12 Aug 2025
Viewed by 537
Abstract
The lower reaches of the Tarim River in Xinjiang, China are home to desert riparian vegetation dominated by Populus euphratica, which play an important role in windbreak and sand fixation, as well as maintaining the ecological balance of arid regions. Based on [...] Read more.
The lower reaches of the Tarim River in Xinjiang, China are home to desert riparian vegetation dominated by Populus euphratica, which play an important role in windbreak and sand fixation, as well as maintaining the ecological balance of arid regions. Based on dendrochronology, this study analyzed the response of Populus euphratica radial growth to hydrothermal factors in the lower Tarim River region, assessed its resistance and resilience to extreme drought events, developed a multivariate regression model for resilience–hydrothermal factor relationships, and revealed the differential response of its ecological resilience to these factors. The results showed that the maximum, minimum, and mean temperatures and saturated water VPD (vapor pressure deficit) during the spring and growing season were the most significant and positively correlated with Populus euphratica growth. The radial growth of Populus euphratica was negatively correlated with maximum and mean summer temperatures. By region, Yingsu (YS) and Kaerdayi (KE) were more sensitive to seasonal climatic factors. The effect of groundwater on the radial growth of Populus euphratica was the strongest factor, with a highly significant negative correlation (p < 0.01), showing that the radial growth of Populus euphratica slowed with increasing depth of groundwater. The VPD, spring drought severity, and growing season groundwater variability all had a significant effect on Populus euphratica resistance, whereas Populus euphratica resilience was mainly significantly associated with growing season drought severity and summer groundwater variability. Radial growth was positively correlated with spring temperatures and the VPD and negatively correlated with summer temperatures (p < 0.01). Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

22 pages, 14608 KB  
Article
Temporal and Spatial Evolution of Gross Primary Productivity of Vegetation and Its Driving Factors on the Qinghai-Tibet Plateau Based on Geographical Detectors
by Liang Zhang, Cunlin Xin and Meiping Sun
Atmosphere 2025, 16(8), 940; https://doi.org/10.3390/atmos16080940 - 5 Aug 2025
Viewed by 522
Abstract
To investigate the spatiotemporal evolution characteristics and primary driving factors of Gross Primary Productivity (GPP) on the Qinghai-Tibet Plateau, we employed an enhanced MODIS-PSN model. Utilizing the fifth-generation global climate reanalysis dataset (ECMWF ERA5), we generated GPP remote sensing products by integrating six [...] Read more.
To investigate the spatiotemporal evolution characteristics and primary driving factors of Gross Primary Productivity (GPP) on the Qinghai-Tibet Plateau, we employed an enhanced MODIS-PSN model. Utilizing the fifth-generation global climate reanalysis dataset (ECMWF ERA5), we generated GPP remote sensing products by integrating six natural factors. Through correlation analysis and geographical detector modeling, we quantitatively analyzed the spatiotemporal dynamics and key drivers of vegetation GPP across the Qinghai-Tibet Plateau from 2001 to 2022. The results demonstrate that GPP changes across the Qinghai-Tibet Plateau display pronounced spatial heterogeneity. The humid northeastern and southeastern regions exhibit significantly positive change rates, primarily distributed across wetland and forest ecosystems, with a maximum mean annual change rate of 12.40 gC/m2/year. In contrast, the central and southern regions display a decreasing trend, with the minimum change rate reaching −1.61 gC/m2/year, predominantly concentrated in alpine grasslands and desert areas. Vegetation GPP on the Qinghai-Tibet Plateau shows significant correlations with temperature, vapor pressure deficit (VPD), evapotranspiration (ET), leaf area index (LAI), precipitation, and radiation. Among the factors analyzed, LAI demonstrates the strongest explanatory power for spatial variations in vegetation GPP across the Qinghai-Tibet Plateau. The dominant factors influencing vegetation GPP on the Qinghai-Tibet Plateau are LAI, ET, and precipitation. The pairwise interactions between these factors exhibit linear enhancement effects, demonstrating synergistic multifactor interactions. This study systematically analyzed the response mechanisms and variations of vegetation GPP to multiple driving factors across the Qinghai-Tibet Plateau from a spatial heterogeneity perspective. The findings provide both a critical theoretical framework and practical insights for better understanding ecosystem response dynamics and drought conditions on the plateau. Full article
Show Figures

Figure 1

21 pages, 3566 KB  
Article
Dendrometer-Based Analysis of Intra-Annual Growth and Water Status in Two Pine Species in a Mediterranean Forest Stand Under a Semi-Arid Climate
by Mehmet S. Özçelik
Forests 2025, 16(8), 1229; https://doi.org/10.3390/f16081229 - 26 Jul 2025
Viewed by 730
Abstract
Stem radius growth (GRO), tree water deficit (TWD), and maximum daily shrinkage (MDS) were monitored throughout 2023 in a semi-arid Mediterranean forest stand in Burdur, Türkiye, where Pinus nigra subsp. pallasiana (Lamb.) Holmboe and Pinus brutia Ten. naturally co-occur. These indicators, derived from [...] Read more.
Stem radius growth (GRO), tree water deficit (TWD), and maximum daily shrinkage (MDS) were monitored throughout 2023 in a semi-arid Mediterranean forest stand in Burdur, Türkiye, where Pinus nigra subsp. pallasiana (Lamb.) Holmboe and Pinus brutia Ten. naturally co-occur. These indicators, derived from electronic band dendrometers, were analyzed in relation to key climatic variables. Results indicated that P. brutia had a longer growth period, while P. nigra exhibited a higher average daily increment under the environmental conditions of 2023 at the study site. Annual stem growth was nearly equal for both species. Based on dendrometer observations, P. brutia exhibited lower normalized TWD and higher normalized MDS values under varying vapor pressure deficit (VPD) and soil water potential (SWP) conditions. A linear mixed-effects model further confirmed that P. brutia consistently maintained lower TWD than P. nigra across a wide climatic range, suggesting a comparatively lower degree of drought-induced water stress. GRO was most influenced by air temperature and VPD, and negatively by SWP. TWD was strongly affected by both VPD and SWP, while MDS was primarily linked to minimum air temperature and VPD. Moreover, MDS in P. brutia appeared more sensitive to climate variability compared to P. nigra. Although drought limited stem growth in both species during the study year, the lower TWD and higher MDS observed in P. brutia may indicate distinct physiological strategies for coping with drought. These findings offer preliminary insights into interspecific differences in water regulation under the particular climatic conditions observed during the study year in this semi-arid Mediterranean ecosystem. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

13 pages, 392 KB  
Article
The Range of Projected Change in Vapour Pressure Deficit Through 2100: A Seasonal and Regional Analysis of the CMIP6 Ensemble
by Jiulong Xu, Mingyang Yao, Yunjie Chen, Liuyue Jiang, Binghong Xing and Hamish Clarke
Climate 2025, 13(7), 143; https://doi.org/10.3390/cli13070143 - 9 Jul 2025
Viewed by 1269
Abstract
Vapour pressure deficit (VPD) is frequently used to assess the impact of climate change on wildfires, vegetation, and other phenomena dependent on atmospheric moisture. A common aim of projection studies is to sample the full range of changes projected by climate models. Although [...] Read more.
Vapour pressure deficit (VPD) is frequently used to assess the impact of climate change on wildfires, vegetation, and other phenomena dependent on atmospheric moisture. A common aim of projection studies is to sample the full range of changes projected by climate models. Although characterization of model spread in projected temperature and rainfall is common, similar analyses are lacking for VPD. Here, we analyze the range of change in projected VPD from a 15-member CMIP6 model ensemble using the SSP-370 scenario. Projected changes are calculated for 2015–2100 relative to the historical period 1850–2014, and the resulting changes are analyzed on a seasonal and regional basis, the latter using continents based on IPCC reference regions. We find substantial regional differences including higher increases in VPD in areas towards the equatorial regions, indicating increased vulnerability to climate change in these areas. Seasonal assessments reveal that regions in the Northern Hemisphere experience peak VPD changes in summer (JJA), correlating with higher temperatures and lower relative humidity, while Southern Hemisphere areas like South America see notable increases in all seasons. We find that the mean projected change in seasonal VPD ranges from 0.02–0.23 kPa in Europe, 0.04–0.19 kPa in Asia, 0.02–0.16 kPa in North America, 0.15–0.33 kPa in South America, 0.10–0.18 kPa in Oceania, and 0.21–0.31 kPa in Africa. Our analysis suggests that for most regions, no two models span the range of projected change in VPD for all seasons. The overall projected change space for VPD identified here can be used to interpret existing studies and support model selection for future climate change impact assessments that seek to span this range. Full article
(This article belongs to the Section Weather, Events and Impacts)
Show Figures

Figure 1

18 pages, 6269 KB  
Article
Vapor Pressure Deficit Thresholds and Their Impacts on Gross Primary Productivity in Xinjiang Arid Grassland Ecosystems
by Yinan Bai, Changqing Jing, Ying Liu and Yuhui Wang
Sustainability 2025, 17(14), 6261; https://doi.org/10.3390/su17146261 - 8 Jul 2025
Viewed by 468
Abstract
Understanding vegetation responses to atmospheric drought is critical for arid ecosystem management under climate change. However, the threshold of the response mechanism of grassland in arid regions to atmospheric drought remains unclear. This study investigates how vapor pressure deficit (VPD) regulates grassland gross [...] Read more.
Understanding vegetation responses to atmospheric drought is critical for arid ecosystem management under climate change. However, the threshold of the response mechanism of grassland in arid regions to atmospheric drought remains unclear. This study investigates how vapor pressure deficit (VPD) regulates grassland gross primary productivity (GPP) in Xinjiang, China, using MODIS and other multi-source remote sensing data (2000–2020). The results show intensified atmospheric drought in central Tianshan Mountains and southern Junggar Basin, with VPD exhibiting a widespread increasing trend (significant increase: 15.75%, extremely significant increase: 4.68%). Intensified atmospheric drought occurred in the central Tianshan Mountains and southern Junggar Basin. Integrated analyses demonstrate that VPD has a dominant negative impact on GPP (path coefficient = −0.58, p < 0.05), primarily driven by atmospheric drought stress. A ridge regression-derived threshold was identified at 0.61 kPa, marking the point where VPD transitions from stimulating to suppressing productivity. Spatially, 58.75% of the total area showed a significant increase in GPP. These findings advance the mechanistic understanding of atmospheric drought impacts on arid ecosystems and inform adaptive grassland management strategies. Full article
Show Figures

Figure 1

17 pages, 9455 KB  
Article
The Phenophases of Mixed-Forest Species Are Regulated by Photo-Hydro-Thermal Conditions: An Approach Using UAV-Derived and In Situ Data
by Marín Pompa-García, Eduardo Daniel Vivar-Vivar, Andrea Cecilia Acosta-Hernández and Sergio Rossi
Forests 2025, 16(7), 1118; https://doi.org/10.3390/f16071118 - 6 Jul 2025
Viewed by 676
Abstract
Severe drought events have raised concerns regarding their effects on the phenological cycles of forest species. This study evaluates the correspondence between in situ phenophases and those detected by an unmanned aerial vehicle (UAV) in tree species coexisting within a mixed forest, with [...] Read more.
Severe drought events have raised concerns regarding their effects on the phenological cycles of forest species. This study evaluates the correspondence between in situ phenophases and those detected by an unmanned aerial vehicle (UAV) in tree species coexisting within a mixed forest, with particular attention to their relationship with climatic variables. Based on 12 consecutive monthly field observations, we compared phenological developments with UAV-derived normalized difference vegetation index (NDVI) values, which were then correlated with environmental variables. The analysis revealed a convergence of inflection points and seasonal phenological shifts, likely driven by climatic factors, although distinct patterns emerged between coniferous and broadleaf species. Photoperiod (PP), vapor pressure deficit (VPD), maximum temperature (TMAX), and, to a lesser extent, precipitation (P) were the primary environmental variables influencing NDVI results, used here as a proxy for phenology. Photothermal conditions revealed seasonal asynchrony in NDVI responses between coniferous and broadleaf species, exerting a positive influence on conifers during summer, while having a negative impact on broadleaf species in spring. Validation of in situ observations with UAV-derived data demonstrated a biological correlation between canopy dynamics and NDVI values, supporting its use as a proxy for detecting phenophases at the level of individual trees. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Graphical abstract

16 pages, 5320 KB  
Article
Response Mechanism of Carbon Fluxes in Restored and Natural Mangrove Ecosystems Under the Effects of Storm Surges
by Huimin Zou, Jianhua Zhu, Zhen Tian, Zhulin Chen, Zhiyong Xue and Weiwei Li
Forests 2025, 16(7), 1115; https://doi.org/10.3390/f16071115 - 5 Jul 2025
Viewed by 367
Abstract
As climate change intensifies the frequency and magnitude of extreme weather events, such as storm surges, understanding how extreme weather events alter mangrove carbon dynamics is critical for predicting the resilience of blue carbon ecosystems under climate change. Mangrove forests are generally recognized [...] Read more.
As climate change intensifies the frequency and magnitude of extreme weather events, such as storm surges, understanding how extreme weather events alter mangrove carbon dynamics is critical for predicting the resilience of blue carbon ecosystems under climate change. Mangrove forests are generally recognized for their resilience to natural disturbances, a characteristic largely attributed to the evolutionary development of species-specific functional traits. However, limited research has explored the impacts of storm surges on carbon flux dynamics in both natural and restored mangrove ecosystems. In this study, we analyzed short-term responses of storm surges on carbon dioxide flux and methane flux in natural and restored mangroves. The results revealed that following the storm surge, CO2 uptake decreased by 51% in natural mangrove forests and increased by 20% in restored mangroves, while CH4 emissions increased by 14% in natural mangroves and decreased by 22% in restored mangroves. GPP is mainly driven by PPFD and negatively affected by VPD and RH, while Reco and CH4 flux respond to a combination of temperature, humidity, and hydrological factors. NEE is primarily controlled by GPP and Reco, with environmental variables acting indirectly. These findings highlight the complex, site-specific pathways through which extreme events regulate carbon fluxes, underscoring the importance of incorporating ecological feedbacks into coastal carbon assessments under climate change. Full article
(This article belongs to the Special Issue Advances in Forest Carbon, Water Use and Growth Under Climate Change)
Show Figures

Figure 1

Back to TopTop