Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Vehicular Cloud and Fog Computing (VFC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 4650 KiB  
Review
Enhancing Cybersecurity and Privacy Protection for Cloud Computing-Assisted Vehicular Network of Autonomous Electric Vehicles: Applications of Machine Learning
by Tiansheng Yang, Ruikai Sun, Rajkumar Singh Rathore and Imran Baig
World Electr. Veh. J. 2025, 16(1), 14; https://doi.org/10.3390/wevj16010014 - 28 Dec 2024
Cited by 1 | Viewed by 1610
Abstract
Due to developments in vehicle engineering and communication technologies, vehicular networks have become an attractive and feasible solution for the future of electric, autonomous, and connected vehicles. Electric autonomous vehicles will require more data, computing resources, and communication capabilities to support them. The [...] Read more.
Due to developments in vehicle engineering and communication technologies, vehicular networks have become an attractive and feasible solution for the future of electric, autonomous, and connected vehicles. Electric autonomous vehicles will require more data, computing resources, and communication capabilities to support them. The combination of vehicles, the Internet, and cloud computing together to form vehicular cloud computing (VCC), vehicular edge computing (VEC), and vehicular fog computing (VFC) can facilitate the development of electric autonomous vehicles. However, more connected and engaged nodes also increase the system’s vulnerability to cybersecurity and privacy breaches. Various security and privacy challenges in vehicular cloud computing and its variants (VEC, VFC) can be efficiently tackled using machine learning (ML). In this paper, we adopt a semi-systematic literature review to select 85 articles related to the application of ML for cybersecurity and privacy protection based on VCC. They were categorized into four research themes: intrusion detection system, anomaly vehicle detection, task offloading security and privacy, and privacy protection. A list of suitable ML algorithms and their strengths and weaknesses is summarized according to the characteristics of each research topic. The performance of different ML algorithms in the literature is also collated and compared. Finally, the paper discusses the challenges and future research directions of ML algorithms when applied to vehicular cloud computing. Full article
Show Figures

Figure 1

38 pages, 2118 KiB  
Article
SONG: A Multi-Objective Evolutionary Algorithm for Delay and Energy Aware Facility Location in Vehicular Fog Networks
by Md. Muzakkir Hussain, Ahmad Taher Azar, Rafeeq Ahmed, Syed Umar Amin, Basit Qureshi, V. Dinesh Reddy, Irfan Alam and Zafar Iqbal Khan
Sensors 2023, 23(2), 667; https://doi.org/10.3390/s23020667 - 6 Jan 2023
Cited by 28 | Viewed by 4120
Abstract
With the emergence of delay- and energy-critical vehicular applications, forwarding sense-actuate data from vehicles to the cloud became practically infeasible. Therefore, a new computational model called Vehicular Fog Computing (VFC) was proposed. It offloads the computation workload from passenger devices (PDs) to transportation [...] Read more.
With the emergence of delay- and energy-critical vehicular applications, forwarding sense-actuate data from vehicles to the cloud became practically infeasible. Therefore, a new computational model called Vehicular Fog Computing (VFC) was proposed. It offloads the computation workload from passenger devices (PDs) to transportation infrastructures such as roadside units (RSUs) and base stations (BSs), called static fog nodes. It can also exploit the underutilized computation resources of nearby vehicles that can act as vehicular fog nodes (VFNs) and provide delay- and energy-aware computing services. However, the capacity planning and dimensioning of VFC, which come under a class of facility location problems (FLPs), is a challenging issue. The complexity arises from the spatio-temporal dynamics of vehicular traffic, varying resource demand from PD applications, and the mobility of VFNs. This paper proposes a multi-objective optimization model to investigate the facility location in VFC networks. The solutions to this model generate optimal VFC topologies pertaining to an optimized trade-off (Pareto front) between the service delay and energy consumption. Thus, to solve this model, we propose a hybrid Evolutionary Multi-Objective (EMO) algorithm called Swarm Optimized Non-dominated sorting Genetic algorithm (SONG). It combines the convergence and search efficiency of two popular EMO algorithms: the Non-dominated Sorting Genetic Algorithm (NSGA-II) and Speed-constrained Particle Swarm Optimization (SMPSO). First, we solve an example problem using the SONG algorithm to illustrate the delay–energy solution frontiers and plotted the corresponding layout topology. Subsequently, we evaluate the evolutionary performance of the SONG algorithm on real-world vehicular traces against three quality indicators: Hyper-Volume (HV), Inverted Generational Distance (IGD) and CPU delay gap. The empirical results show that SONG exhibits improved solution quality over the NSGA-II and SMPSO algorithms and hence can be utilized as a potential tool by the service providers for the planning and design of VFC networks. Full article
(This article belongs to the Special Issue Advanced Sensing Technology in Intelligent Transportation Systems)
Show Figures

Figure 1

36 pages, 2416 KiB  
Article
Real-Time Detection of DoS Attacks in IEEE 802.11p Using Fog Computing for a Secure Intelligent Vehicular Network
by Samuel Kofi Erskine and Khaled M. Elleithy
Electronics 2019, 8(7), 776; https://doi.org/10.3390/electronics8070776 - 11 Jul 2019
Cited by 20 | Viewed by 4957
Abstract
The vehicular ad hoc network (VANET) is a method through which Intelligent Transportation Systems (ITS) have become important for the benefit of daily life. Real-time detection of all forms of attacks, including hybrid DoS attacks in IEEE 802.11p, has become an urgent issue [...] Read more.
The vehicular ad hoc network (VANET) is a method through which Intelligent Transportation Systems (ITS) have become important for the benefit of daily life. Real-time detection of all forms of attacks, including hybrid DoS attacks in IEEE 802.11p, has become an urgent issue for VANET. This is due to sporadic real-time exchange of safety and road emergency message delivery in VANET. Sporadic communication in VANET has the tendency to generate an enormous amount of messages. This leads to overutilization of the road side unit (RSU) or the central processing unit (CPU) for computation. Therefore, efficient storage and intelligent VANET infrastructure architecture (VIA), which includes trustworthiness, are required. Vehicular Cloud and Fog Computing (VFC) play an important role in efficient storage, computation, and communication needs for VANET. This research utilizes VFC integration with hybrid optimization algorithms (OAs), which also possess swarm intelligence, including Cuckoo/CSA Artificial Bee Colony (ABC) and Firefly/Genetic Algorithm (GA), to provide real-time detection of DoS attacks in IEEE 802.11p, using VFC for a secure intelligent vehicular network. Vehicles move ar a certain speed and the data is transmitted at 30 Mbps. Firefly Feed forward back propagation neural network (FFBPNN) is used as a classifier to distinguish between the attacked vehicles and the genuine vehicles. The proposed scheme is compared with Cuckoo/CSA ABC and Firefly GA by considering jitter, throughput, and prediction accuracy. Full article
(This article belongs to the Section Networks)
Show Figures

Figure 1

Back to TopTop