Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (137)

Search Parameters:
Keywords = WSA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 482 KB  
Article
The Influence of Managers’ Safety Perceptions and Practices on Construction Workers’ Safety Behaviors in Saudi Arabian Projects: The Mediating Roles of Workers’ Safety Awareness, Competency, and Safety Actions
by Talal Mousa Alshammari, Musab Rabi, Mazen J. Al-Kheetan and Abdulrazzaq Jawish Alkherret
Safety 2025, 11(3), 77; https://doi.org/10.3390/safety11030077 - 5 Aug 2025
Viewed by 528
Abstract
Improving construction site safety remains a critical challenge in Saudi Arabia’s rapidly growing construction sector, where high accident rates and diverse labor forces demand evidence-based managerial interventions. This study investigated the influence of Managers’ Safety Perceptions and Practices (MSP) on Workers’ Safety Behaviors [...] Read more.
Improving construction site safety remains a critical challenge in Saudi Arabia’s rapidly growing construction sector, where high accident rates and diverse labor forces demand evidence-based managerial interventions. This study investigated the influence of Managers’ Safety Perceptions and Practices (MSP) on Workers’ Safety Behaviors (WSB) in the Saudi construction industry, emphasizing the mediating roles of Workers’ Safety Awareness (WSA), Safety Competency (WSC), and Safety Actions (SA). The conceptual framework integrates these three mediators to explain how managerial attitudes and practices translate into frontline safety outcomes. A quantitative, cross-sectional design was adopted using a structured questionnaire distributed among construction workers, supervisors, and project managers. A total of 352 from 384 valid responses were collected, and the data were analyzed using Partial Least Squares Structural Equation Modeling (PLS-SEM) via SmartPLS 4. The findings revealed that MSP does not directly influence WSB but has significant indirect effects through WSA, WSC, and SA. Among these, WSC emerged as the most powerful mediator, followed by WSA and SA, indicating that competency is the most critical driver of safe worker behavior. These results provide robust empirical support for a multidimensional mediation model, highlighting the need for managers to enhance safety behaviors not merely through supervision but through fostering awareness and competency, providing technical training, and implementing proactive safety measures. Theoretically, this study contributes a novel and integrative framework to the occupational safety literature, particularly within underexplored Middle Eastern construction contexts. Practically, it offers actionable insights for safety managers, industry practitioners, and policymakers seeking to improve construction safety performance in alignment with Saudi Vision 2030. Full article
(This article belongs to the Special Issue Safety Performance Assessment and Management in Construction)
Show Figures

Figure 1

17 pages, 4345 KB  
Article
Preparation of Superhydrophobic P-TiO2-SiO2/HDTMS Self-Cleaning Coatings with UV-Aging Resistance by Acid Precipitation Method
by Le Zhang, Ying Liu, Xuefeng Bai, Hao Ding, Xuan Wang, Daimei Chen and Yihe Zhang
Nanomaterials 2025, 15(14), 1127; https://doi.org/10.3390/nano15141127 - 20 Jul 2025
Viewed by 464
Abstract
The superhydrophobic coatings for outdoor use need to be exposed to sunlight for a long time; therefore, their UV-aging resistances are crucial in practical applications. In this study, the primary product of titanium dioxide (P-TiO2) was used as the raw material. [...] Read more.
The superhydrophobic coatings for outdoor use need to be exposed to sunlight for a long time; therefore, their UV-aging resistances are crucial in practical applications. In this study, the primary product of titanium dioxide (P-TiO2) was used as the raw material. Nano-silica (SiO2) was coated onto the surface of P-TiO2 by the acid precipitation method to prepare P-TiO2-SiO2 composite particles. Then, they were modified and sprayed simply to obtain a superhydrophobic P-TiO2-SiO2/HDTMS coating. The results indicated that amorphous nano-SiO2 was coated on the P-TiO2 surface, forming a micro–nano binary structure, which was the essential structure to form superhydrophobic coatings. Additionally, the UV-aging property of P-TiO2 was significantly enhanced after being coated with SiO2. After continuous UV irradiation for 30 days, the color difference (ΔE*) and yellowing index (Δb*) values of the coating prepared with P-TiO2-SiO2 increased from 0 to 0.75 and 0.23, respectively. In contrast, the ΔE* and Δb* of the coating prepared with P-TiO2 increased from 0 to 1.68 and 0.74, respectively. It was clear that the yellowing degree of the P-TiO2-SiO2 coating was lower than that of P-TiO2, and its UV-aging resistance was significantly improved. After modification with HDTMS, the P-TiO2-SiO2 coating formed a superhydrophobic P-TiO2-SiO2/HDTMS coating. The water contact angle (WCA) and water slide angle (WSA) on the surface of the coating were 154.9° and 1.3°, respectively. Furthermore, the coating demonstrated excellent UV-aging resistance. After continuous UV irradiation for 45 days, the WCA on the coating surface remained above 150°. Under the same conditions, the WCAs of the P-TiO2/HDTMS coating decreased from more than 150° to 15.3°. This indicated that the retention of surface hydrophobicity of the P-TiO2-SiO2/HDTMS coating was longer than that of P-TiO2/HDTMS, and the P-TiO2-SiO2/HDTMS coating’s UV-aging resistance was greater. The superhydrophobic P-TiO2-SiO2/HDTMS self-cleaning coating reported in this study exhibited outstanding UV-aging resistance, and it had the potential for long-term outdoor use. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

14 pages, 2770 KB  
Article
Soil Structure Characteristics in Three Mountainous Regions in Bulgaria Under Different Land Uses
by Milena Kercheva, Tsvetina Paparkova, Emil Dimitrov, Katerina Doneva, Kostadinka Nedyalkova, Jonita Perfanova, Rosica Sechkova, Emiliya Velizarova and Maria Glushkova
Forests 2025, 16(7), 1065; https://doi.org/10.3390/f16071065 - 26 Jun 2025
Viewed by 352
Abstract
Soil structure has an important role in storing and transporting substances, providing natural habitats for soil microorganisms, and allowing chemical reactions in the soil. A complex investigation on factors affecting soil structure characteristics under herbaceous (H), deciduous (D), mixed (M), and coniferous (SP—Scots [...] Read more.
Soil structure has an important role in storing and transporting substances, providing natural habitats for soil microorganisms, and allowing chemical reactions in the soil. A complex investigation on factors affecting soil structure characteristics under herbaceous (H), deciduous (D), mixed (M), and coniferous (SP—Scots Pine and NS—Norway Spruce) vegetation was conducted at three experimental stations—Gabra, Govedartsi, and Igralishte, located correspondingly in the Lozenska, Rila, and Maleshevska Mountains in South-West Bulgaria. The data set obtained includes soil structure indicators and physical, physicochemical, chemical, mineralogical, and microbiological parameters of the A and AC horizons of 11 soil profiles. Under different vegetation conditions, soil structure indicators respond differently depending on climatic conditions and basic soil properties. Regarding the plant available water capacity (PAWC), air capacity (AC), and water-stable aggregates (WSAs), the surface soil layers have an optimal structure in Gabra (H, D), Govedartsi (H, SP, NS), and Igralishte (H). The values for the relative field capacity (RFC < 0.6) showed that the studied soils were water-limited. The WSAs correlated with SOC in Gabra, while in Govedartsi and Igralishte, the WSAs correlated with the β-glucosidase known to hydrolyze organic carbon compounds in soil. The information obtained is important for soil quality monitoring under climatic and anthropogenic changes. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

40 pages, 4919 KB  
Article
NGSTGAN: N-Gram Swin Transformer and Multi-Attention U-Net Discriminator for Efficient Multi-Spectral Remote Sensing Image Super-Resolution
by Chao Zhan, Chunyang Wang, Bibo Lu, Wei Yang, Xian Zhang and Gaige Wang
Remote Sens. 2025, 17(12), 2079; https://doi.org/10.3390/rs17122079 - 17 Jun 2025
Cited by 1 | Viewed by 788
Abstract
The reconstruction of high-resolution (HR) remote sensing images (RSIs) from low-resolution (LR) counterparts is a critical task in remote sensing image super-resolution (RSISR). Recent advancements in convolutional neural networks (CNNs) and Transformers have significantly improved RSISR performance due to their capabilities in local [...] Read more.
The reconstruction of high-resolution (HR) remote sensing images (RSIs) from low-resolution (LR) counterparts is a critical task in remote sensing image super-resolution (RSISR). Recent advancements in convolutional neural networks (CNNs) and Transformers have significantly improved RSISR performance due to their capabilities in local feature extraction and global modeling. However, several limitations remain, including the underutilization of multi-scale features in RSIs, the limited receptive field of Swin Transformer’s window self-attention (WSA), and the computational complexity of existing methods. To address these issues, this paper introduces the NGSTGAN model, which employs an N-Gram Swin Transformer as the generator and a multi-attention U-Net as the discriminator. The discriminator enhances attention to multi-scale key features through the addition of channel, spatial, and pixel attention (CSPA) modules, while the generator utilizes an improved shallow feature extraction (ISFE) module to extract multi-scale and multi-directional features, enhancing the capture of complex textures and details. The N-Gram concept is introduced to expand the receptive field of Swin Transformer, and sliding window self-attention (S-WSA) is employed to facilitate interaction between neighboring windows. Additionally, channel-reducing group convolution (CRGC) is used to reduce the number of parameters and computational complexity. A cross-sensor multispectral dataset combining Landsat-8 (L8) and Sentinel-2 (S2) is constructed for the resolution enhancement of L8’s blue (B), green (G), red (R), and near-infrared (NIR) bands from 30 m to 10 m. Experiments show that NGSTGAN outperforms the state-of-the-art (SOTA) method, achieving improvements of 0.5180 dB in the peak signal-to-noise ratio (PSNR) and 0.0153 in the structural similarity index measure (SSIM) over the second best method, offering a more effective solution to the task. Full article
Show Figures

Figure 1

21 pages, 4967 KB  
Article
Evaluation of MODIS and VIIRS BRDF Parameter Differences and Their Impacts on the Derived Indices
by Chenxia Wang, Ziti Jiao, Yaowei Feng, Jing Guo, Zhilong Li, Ge Gao, Zheyou Tan, Fangwen Yang, Sizhe Chen and Xin Dong
Remote Sens. 2025, 17(11), 1803; https://doi.org/10.3390/rs17111803 - 22 May 2025
Cited by 1 | Viewed by 638
Abstract
Multi-angle remote sensing observations play an important role in the remote sensing of solar radiation absorbed by land surfaces. Currently, the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) teams have successively applied the Ross–Li kernel-driven bidirectional reflectance distribution [...] Read more.
Multi-angle remote sensing observations play an important role in the remote sensing of solar radiation absorbed by land surfaces. Currently, the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) teams have successively applied the Ross–Li kernel-driven bidirectional reflectance distribution function (BRDF) model to integrate multi-angle observations to produce long time series BRDF model parameter products (MCD43 and VNP43), which can be used for the inversion of various surface parameters and the angle correction of remote sensing data. Even though the MODIS and VIIRS BRDF products originate from sensors and algorithms with similar designs, the consistency between BRDF parameters for different sensors is still unknown, and this likely affects the consistency and accuracy of various downstream parameter inversions. In this study, we applied BRDF model parameter time-series data from the overlapping period of the MODIS and VIIRS services to systematically analyze the temporal and spatial differences between the BRDF parameters and derived indices of the two sensors from the site scale to the region scale in the red band and NIR band, respectively. Then, we analyzed the sensitivity of the BRDF parameters to variations in Normalized Difference Hotspot–Darkspot (NDHD) and examined the spatiotemporal distribution of zero-valued pixels in the BRDF parameter products generated by the constraint method in the Ross–Li model from both sensors, assessing their potential impact on NDHD derivation. The results confirm that among the three BRDF parameters, the isotropic scattering parameters of MODIS and VIIRS are more consistent, whereas the volumetric and geometric-optical scattering parameters are more sensitive and variable; this performance is more pronounced in the red band. The indices derived from the MODIS and VIIRS BRDF parameters were compared, revealing increasing discrepancies between the albedo and typical directional reflectance and the NDHD. The isotropic scattering parameter and the volumetric scattering parameter show responses that are very sensitive to increases in the equal interval of the NDHD, indicating that the differences between the MODIS and VIIRS products may strongly influence the consistency of NDHD estimation. In addition, both MODIS and VIIRS have a large proportion of zero-valued pixels (volumetric and geometric-optical parameter layers), whereas the spatiotemporal distribution of zero-valued pixels in VIIRS is more widespread. While the zero-valued pixels have a minor influence on reflectance and albedo estimation, such pixels should be considered with attention to the estimation accuracy of the vegetation angular index, which relies heavily on anisotropic characteristics, e.g., the NDHD. This study reveals the need in optimizing the Clumping Index (CI)-NDHD algorithm to produce VIIRS CI product and highlights the importance of considering BRDF product quality flags for users in their specific applications. The method used in this study also helps improve the theoretical framework for cross-sensor product consistency assessment and clarify the uncertainty in high-precision ecological monitoring and various remote sensing applications. Full article
(This article belongs to the Special Issue Remote Sensing of Solar Radiation Absorbed by Land Surfaces)
Show Figures

Figure 1

15 pages, 1652 KB  
Article
Long-Term Effect of Tillage Practices on Soil Physical Properties and Winter Wheat Yield in North-East Romania
by Segla Serginho Cakpo, Tudor George Aostăcioaei, Gabriel-Dumitru Mihu, Cosmin-Costel Molocea, Cosmin Ghelbere, Ana Ursu and Denis Constantin Țopa
Agriculture 2025, 15(9), 989; https://doi.org/10.3390/agriculture15090989 - 2 May 2025
Cited by 2 | Viewed by 1040
Abstract
Soil quality, characterized by its physical, chemical, and biological properties, is closely linked to soil management. Reducing soil disturbance can limit soil degradation; however, tillage is still considered essential, particularly on poorly drained soils. This study aimed to identify the optimal tillage practices [...] Read more.
Soil quality, characterized by its physical, chemical, and biological properties, is closely linked to soil management. Reducing soil disturbance can limit soil degradation; however, tillage is still considered essential, particularly on poorly drained soils. This study aimed to identify the optimal tillage practices for winter wheat crops following long-term no tillage practice and crop rotation (2020–2023). Additionally, it highlights the considerable advantages of particular tillage practices in emphasizing their role in enhancing soil health and sustainable agriculture. The experiment followed a randomized complete block design with three replications and two tillage practices: no tillage (NT) and conventional tillage (CT). The research was carried out on a cambic chernozem soil type. The results revealed that physical properties such as bulk density (BD) can increase or decrease under NT, while soil water content (SWC) increased under the same system. The status of water-stable aggregates (WSAs) also improved in NT (88.41%) due to the incorporation of cover crop or plant residues in the 0–10 cm depth. Notably, the highest SWC value at harvest was obtained in the 0–10 cm soil depth, under NT, reaching 24.47%. Grain yields over four years of research were also influenced by tillage systems, resulting in mean yields of 6070 kg/ha for CT and 4285.25 kg/ha for the NT system. The Pearson correlation coefficient was calculated for the soil physical properties considered in pairs. Between BD and water-stable aggregates (WSAs), there was a moderate positive correlation (r = 0.458**) and statistical significance, but no linear correlation between BD and SWC (r = 0.089), and between WSAs and SWC (r = 0.026). Generally, using NT, which reduces soil disturbance and maintains residues on the surface, could contribute to land sustainability and climate mitigation in north-east Romania. Full article
Show Figures

Figure 1

18 pages, 5301 KB  
Article
Exploring Soil Hydro-Physical Improvements Under No-Tillage: A Sustainable Approach for Soil Health
by Gabriel-Dumitru Mihu, Tudor George Aostăcioaei, Cosmin Ghelbere, Anca-Elena Calistru, Denis Constantin Țopa and Gerard Jităreanu
Agriculture 2025, 15(9), 981; https://doi.org/10.3390/agriculture15090981 - 30 Apr 2025
Cited by 2 | Viewed by 499
Abstract
No-tillage (NT) is a key practice in conservation agriculture that minimizes soil disturbance, thereby enhancing soil structure, porosity, and overall quality. However, its long-term effects on soil pore networks and hydro-physical functions remain underexplored. This study evaluated the impacts of NT and conventional [...] Read more.
No-tillage (NT) is a key practice in conservation agriculture that minimizes soil disturbance, thereby enhancing soil structure, porosity, and overall quality. However, its long-term effects on soil pore networks and hydro-physical functions remain underexplored. This study evaluated the impacts of NT and conventional tillage (CT) on soil hydro-physical properties using undisturbed soil columns, X-ray computed tomography, and standard physical measurements. A field experiment was conducted under an eight-year continuous cropping system, with a four-year rotation [winter wheat (Triticum aestivum L.)—maize (Zea mays L.)—sunflower (Helianthus annuus L.)—peas (Pisum sativum L.)], comparing NT and CT treatments with three replications. Soil parameters including bulk density (BD), moisture content, total porosity (SP), water-stable aggregates (WSA), and saturated hydraulic conductivity (Ksat) were measured. Results showed that NT increased BD (1.45 g/cm3) compared to CT (1.19 g/cm3), likely due to reduced soil disturbance. Moisture content under NT was up to 78% higher than CT. Saturated hydraulic conductivity was also higher in NT, with 17% and 43% increases observed at harvest in 2022 and 2023, respectively, except in the 0–30 cm layer immediately after sowing. Micro-CT analysis revealed a 34–115% increase in macropores (>1025 μm) under NT at 10–40 cm depth. These findings demonstrate that long-term NT improves key soil hydro-physical properties, supporting its integration into sustainable farming systems to balance productivity and environmental stewardship. Full article
Show Figures

Figure 1

14 pages, 242 KB  
Article
A Whole-School Approach for the Promotion of Physical Activity: An Evaluation of Stakeholders’ and Educators’ Perceptions About Education in Six European Countries
by Despoina Ourda, Lida Skoufa, Antonella Brighi, Diane Crone, Lowri Edwards, Alessandro Failo, Sophia Fourlari, Mikko Huhtiniemi, Timo Jaakkola, George Raptis, Paul Sellars, Elena Papacosta and Vassilis Barkoukis
Educ. Sci. 2025, 15(5), 560; https://doi.org/10.3390/educsci15050560 - 30 Apr 2025
Cited by 1 | Viewed by 751
Abstract
Research has shown that a whole-school approach (WSA) is needed to increase student physical activity. There is a lack of empirical data on teachers’ opinions and needs regarding the implementation of a WSA approach to encourage physical activity. Our study aims to address [...] Read more.
Research has shown that a whole-school approach (WSA) is needed to increase student physical activity. There is a lack of empirical data on teachers’ opinions and needs regarding the implementation of a WSA approach to encourage physical activity. Our study aims to address this gap by identifying teachers’ and academics’ beliefs about the usefulness, content, and delivery mode of a WSA in fostering physical activity. To address the research aim, an exploratory mixed methods design was employed. Initially, a qualitative study with academics and stakeholders was conducted, followed by a quantitative investigation with teachers and school employees. In the first study, seven participants working in education took part in one-to-one interviews concerning their views on the usefulness, content, and delivery of whole-school education. The participants stressed the importance of the WSA and urged that educational authorities should consider the needs of children and the school community, promote teacher collaboration, pursue longevity, and engage with stakeholders and institutions throughout the process. In the second study, 160 school teachers and staff answered a survey about the content and delivery mode of an educational material for the promotion of WSA to fostering physical activity. The analyses indicated that participants preferred a three to six hours course, a hybrid mode of delivery, inclusion of best practices, and knowledge on how to implement a WSA. The study’s findings reveal several implications and recommendations for educators creating comprehensive school-based physical activity programs. Full article
(This article belongs to the Section Teacher Education)
20 pages, 409 KB  
Article
Understanding Barriers to Health Behaviours in 13–17-Year-Olds: A Whole Systems Approach in the Context of Obesity
by Helen Lambert, Barbara Engel, Kathryn Hart, Jane Ogden and Katy Penfold
Nutrients 2025, 17(8), 1312; https://doi.org/10.3390/nu17081312 - 10 Apr 2025
Viewed by 1178
Abstract
Background/Objectives: This study examined factors influencing health behaviours among 13–17-year-olds in Surrey, focusing on rising obesity rates and socioeconomic disparities using a whole systems approach to capture both the stakeholders’ voice and the young people’s voices. Methods: The research involved two components: a [...] Read more.
Background/Objectives: This study examined factors influencing health behaviours among 13–17-year-olds in Surrey, focusing on rising obesity rates and socioeconomic disparities using a whole systems approach to capture both the stakeholders’ voice and the young people’s voices. Methods: The research involved two components: a survey of youth service providers (e.g., teachers, youth workers; n = 35) and focus groups with adolescents (n = 27). Results: The survey revealed challenges faced by stakeholders, including insufficient training, environmental factors (e.g., schools, social media, food systems), and limited support from parents and healthcare professionals. The focus groups identified two key themes: (1) domains of care, for example diet and how availability and cost of food affects food choices, and (2) barriers and solutions, addressing financial, structural, and emotional obstacles to and facilitators of a healthy lifestyle. Transcending these themes was the key role of health inequalities linked to income, geography, and gender. Conclusions: This study underscores the complexity of adolescent health behaviours and calls for a multi-level, coordinated approach to address inequalities and foster supportive environments for healthier choices. Full article
Show Figures

Figure 1

17 pages, 655 KB  
Article
Soil Organic Matter Quality and Glomalin-Related Soil Protein Content in Cambisol
by Jiří Balík, Pavel Suran, Jindřich Černý, Ondřej Sedlář, Martin Kulhánek and Simona Procházková
Agronomy 2025, 15(3), 745; https://doi.org/10.3390/agronomy15030745 - 19 Mar 2025
Cited by 1 | Viewed by 1096
Abstract
The influence of different mineral and organic fertiliser applications on the soil organic matter (SOM) content and quality was monitored in long-term field trials. We used long-term field experiments (27 years) with a crop rotation of potatoes, winter wheat, and spring barley on [...] Read more.
The influence of different mineral and organic fertiliser applications on the soil organic matter (SOM) content and quality was monitored in long-term field trials. We used long-term field experiments (27 years) with a crop rotation of potatoes, winter wheat, and spring barley on cambisol soil. The treatments were as follows: an unfertilised control (Cont), sewage sludge in normal and triple doses (SS1 and SS3, respectively), farmyard manure (F1) in a conventional dose, a half dose of farmyard manure with a half dose of mineral nitrogen (F1/2 + N1/2), straw with mineral nitrogen fertiliser (N + St), and mineral nitrogen without any organic fertiliser (N). This study focused on the ability of the total and easily extractable glomalin-related soil protein (T-GRSP and EE-GRSP, respectively) and the water stability of aggregates (WSA) as indicators of long-term SOM quality changes. The results were compared with the content of humic substance fractions and the carbon in humic substances (CHS), humic acids (CHA), and fulvic acids (CFA). The lowest SOM content and quality were observed in the control treatment. The highest overall SOM quality, including the degree of polymerisation (HA) and the GRSP content, was found in the F1 treatment. The organic matter in sewage sludge contributed less to the formation of stable SOM than straw. A significant correlation was found between both the EE-GRSP and the T-GRSP and the content of the CSOM, CHS, CHA, and HA, but not with the CFA. The influence of fertiliser on the GRSP content was demonstrated. However, no relationship was observed between the WSA and SOM quality, the EE-GRSP, or the T-GRSP content. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

14 pages, 1555 KB  
Article
Effect of Agricultural Management Intensity on the Organic Carbon Fractions and Biological Properties of a Volcanic-Ash-Derived Soil
by Camila Aravena, Susana R. Valle, Rodrigo Vergara, Mauricio González Chang, Oscar Martínez, John Clunes, Belén Caurapán and Joel Asenjo
Sustainability 2025, 17(6), 2704; https://doi.org/10.3390/su17062704 - 18 Mar 2025
Cited by 2 | Viewed by 789
Abstract
Intensive agricultural management affects the physical, chemical, and biological properties of soil, potentially contributing to a decrease in soil carbon storage. In this study, the effects of soil management intensity on soil organic carbon (SOC) content and its labile fractions, i.e., water-soluble organic [...] Read more.
Intensive agricultural management affects the physical, chemical, and biological properties of soil, potentially contributing to a decrease in soil carbon storage. In this study, the effects of soil management intensity on soil organic carbon (SOC) content and its labile fractions, i.e., water-soluble organic carbon (OC-sol) and permanganate oxidizable carbon (POXC), were evaluated in a volcanic-ash-derived soil (Andisol) with a very high soil organic matter (SOM) content (>20%). These indicators were associated with water-stable aggregates (WSAs) and biological indicators, namely, earthworm density, cellulase activity, and autoclaved-citrate-extractable (ACE) proteins, related to the decomposition of SOM and its physical protection. The conditions evaluated were secondary native forest (SF), naturalized grassland (NG), no-till (NT), and conventional tillage (CT), considering the last item to be representative of a higher agriculture management intensity. Soil samples were collected by horizon. The SF and NG soil showed higher contents of SOC, OC-sol, and POXC. When comparing the evaluated annual cropping systems, NT showed higher values than CT (p < 0.05) in the first horizon (Hz1), while similar values were found at deeper horizons. The highest cellulase activity, ACE protein levels, and earthworm densities were found in NG and SF. NT also showed significantly higher levels of the aforementioned factors than CT (p < 0.05). A positive and significant relationship was found between the SOC content and WSA (R2 = 0.76; p < 0.05) in the whole profile and between POXC and WSA for Hz1 (R2 = 0.67; p < 0.05). Soil C storage was affected by the intensity of agricultural management, mainly because of the effect of tillage on structural stability, considering that biological activity synthesizes compounds such as enzymes and proteins that react and adhere to the mineral fraction affecting aggregate stability. The C content stored in the soil is consequently a key indicator with which to regulate SOM and protect SOC. Full article
(This article belongs to the Section Soil Conservation and Sustainability)
Show Figures

Figure 1

19 pages, 4431 KB  
Article
HCT-Det: A High-Accuracy End-to-End Model for Steel Defect Detection Based on Hierarchical CNN–Transformer Features
by Xiyin Chen, Xiaohu Zhang, Yonghua Shi and Junjie Pang
Sensors 2025, 25(5), 1333; https://doi.org/10.3390/s25051333 - 21 Feb 2025
Cited by 2 | Viewed by 746
Abstract
Surface defect detection is essential for ensuring the quality and safety of steel products. While Transformer-based methods have achieved state-of-the-art performance, they face several limitations, including high computational costs due to the quadratic complexity of the attention mechanism, inadequate detection accuracy for small-scale [...] Read more.
Surface defect detection is essential for ensuring the quality and safety of steel products. While Transformer-based methods have achieved state-of-the-art performance, they face several limitations, including high computational costs due to the quadratic complexity of the attention mechanism, inadequate detection accuracy for small-scale defects due to substantial downsampling, inconsistencies between classification scores and localization confidence, and feature resolution loss caused by simple upsampling and downsampling strategies. To address these challenges, we propose the HCT-Det model, which incorporates a window-based self-attention residual (WSA-R) block structure. This structure combines window-based self-attention (WSA) blocks to reduce computational overhead and parallel residual convolutional (Res) blocks to enhance local feature continuity. The model’s backbone generates three cross-scale features as encoder inputs, which undergo Intra-Scale Feature Interaction (ISFI) and Cross-Scale Feature Interaction (CSFI) to improve detection accuracy for targets of various sizes. A Soft IoU-Aware mechanism ensures alignment between classification scores and intersection-over-union (IoU) metrics during training. Additionally, Hybrid Downsampling (HDownsample) and Hybrid Upsampling (HUpsample) modules minimize feature degradation. Our experiments demonstrate that HCT-Det achieved a mean average precision (mAP@0.5) of 0.795 on the NEU-DET dataset and 0.733 on the GC10-DET dataset, outperforming other state-of-the-art approaches. These results highlight the model’s effectiveness in improving computational efficiency and detection accuracy for steel surface defect detection. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

22 pages, 1750 KB  
Article
Influence of Walnut Shell Ash and Limestone Filler in Hot Mix Asphalt
by Yasir N. Kadhim, Abdulrasool Th. Abdulrasool, Anmar Dulaimi, Hugo Alexandre Silva Pinto and Luís Filipe Almeida Bernardo
J. Compos. Sci. 2025, 9(1), 22; https://doi.org/10.3390/jcs9010022 - 6 Jan 2025
Cited by 1 | Viewed by 1578
Abstract
The presence of filler in asphalt concrete may improve the properties of the mixture. This study investigates the mechanical and volumetric properties of such a mixture using walnut shell ash as a filler in various replacement ratios. The mixtures were mixed with various [...] Read more.
The presence of filler in asphalt concrete may improve the properties of the mixture. This study investigates the mechanical and volumetric properties of such a mixture using walnut shell ash as a filler in various replacement ratios. The mixtures were mixed with various proportions of limestone (0%, 10%, 20%, 30%, 40%, 50%, 60%, 80%, and 100%) in addition to WSA as a replacement filler. Tests were subsequently carried out, including tests of Marshall’s stability and flow, voids in mineral aggregates, air voids, and theoretical maximum specific gravity. The results revealed that increasing the replacement percentage resulted in a considerable improvement in the performance of the asphalt–concrete mixtures. The results revealed that the mixture with a 60% replacement ratio achieved the best Marshall stability, achieving an improvement of 15.02% compared to the conventional sample, alongside good flow properties. This improvement was accompanied by high conformity with the other physical properties of the asphalt mixture, including a 3.55% air void percentage, which is within the permissible limits for the surface layer, as well as a 21.80% increase in the percentage of voids in the mineral aggregate, which is considered an ideal value. These results paved the way for further study and adjustments to other requirements of the asphalt mixture, as there were no issues with the availability or production costs of the filler material, given the abundance of raw materials. However, it is important to note that, as is evident from the results, a complete 100% replacement led to undesirable outcomes, resulting in a 10.68% decrease in Marshall strength compared to that of the conventional sample. This decrease indicates that the mixture was unable to provide its most important property. Although improving the other properties with complete replacement is not beneficial, a detailed investigation into this ineffective percentage revealed that, according to the results, the ideal replacement ratio is 60% walnut shells and 40% limestone, which results in optimal performance. Full article
(This article belongs to the Special Issue Sustainable Composite Construction Materials, Volume II)
Show Figures

Figure 1

18 pages, 4008 KB  
Article
Source and Ecological Risk Assessment of Potentially Toxic Metals in Urban Riverine Sediments Using Multivariate Analytical and Statistical Tools
by Xiaojun Zheng, Abdul Rehman, Shan Zhong, Shah Faisal, Muhammad Mahroz Hussain, Syeda Urooj Fatima and Daolin Du
Land 2025, 14(1), 32; https://doi.org/10.3390/land14010032 - 27 Dec 2024
Cited by 1 | Viewed by 1201
Abstract
Multivariate and statistical tool advancements help to assess potential pollution threats, their geochemical distribution, and the competition between natural and anthropogenic influences, particularly on sediment contamination with potentially toxic metals (PTMs). For this, riverine sediments from 25 locations along urban banksides of the [...] Read more.
Multivariate and statistical tool advancements help to assess potential pollution threats, their geochemical distribution, and the competition between natural and anthropogenic influences, particularly on sediment contamination with potentially toxic metals (PTMs). For this, riverine sediments from 25 locations along urban banksides of the River Ravi, Pakistan, were collected and analyzed to explore the distribution, pollution, ecological, and toxicity risk indices of PTMs like Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, Sn, Sr, V, and Zn using Inductively Coupled Plasma–Optical Emission Spectrometry (ICP-OES) technique. Additionally, techniques such as X-ray Diffraction (XRD) and Scanning Electron Microscopy–Energy Dispersive X-ray Spectroscopy (SEM-EDS) were employed to investigate the mineralogical and morphological aspects. The results indicated that mean concentrations (mg kg−1) of Cd (2.37), Cr (128), Hg (16.6), Pb (26.6), and Sb (2.44) were significantly higher than reference values given for upper continental crust (UCC) and world soil average (WSA), posing potential threats. Furthermore, the geochemical pollution indices showed that sediments were moderately polluted with Cd (Igeo = 2.37, EF = 12.1, and CF = 7.89) and extremely polluted with Hg (Igeo = 4.54, EF = 63.2, and CF = 41.41). Ecological and toxicity risks were calculated to be extremely high, using respective models, predominantly due to Hg (Eri = 1656 and ITRI = 91.6). SEM-EDS illustrated the small extent of anthropogenic particles having predominant concentrations of Zn, Fe, Pb, and Sr. Multivariate statistical analyses revealed significant associations between the concentrations of PTMs and the sampling locations, highlighting the anthropogenic contributions linked to local land-use characteristics. The present study concludes that River Ravi sediments exhibit moderate levels of Cd and extreme pollution by Hg, both of which contribute highly to extreme ecological and toxicity risks, influenced by both natural and anthropogenic contributions. Full article
Show Figures

Figure 1

22 pages, 8720 KB  
Article
Sustainable Cement Paste Development Using Wheat Straw Ash and Silica Fume Replacement Model
by Bryan Bastías, Marcelo González, Juan Rey-Rey, Guillermo Valerio and Pablo Guindos
Sustainability 2024, 16(24), 11226; https://doi.org/10.3390/su162411226 - 21 Dec 2024
Cited by 1 | Viewed by 1313
Abstract
Conventional cement production is a major source of carbon dioxide emissions, which creates a significant environmental challenge. This research addresses the problem of how to reduce the carbon footprint of cement paste production using agricultural and industrial waste by-products, namely wheat straw ash [...] Read more.
Conventional cement production is a major source of carbon dioxide emissions, which creates a significant environmental challenge. This research addresses the problem of how to reduce the carbon footprint of cement paste production using agricultural and industrial waste by-products, namely wheat straw ash (WSA) and silica fume (SF). Currently, accurate models that can predict the mechanical properties of cement pastes incorporating these waste materials are lacking. To fill this gap, our study proposes a model based on response surface methodology and Box-Behnken design, designed to predict the strength of cement pastes with partial substitutions of WSA and SF. Through mechanical and characterization tests, the model demonstrated high accuracy in predicting the strength of the pastes, validated with three mixes, which showed maximum errors of less than 6% at different ages (7, 28, and 56 days). Response surface analysis revealed that replacing cement with 0–20% WSA and more than 5% SF can effectively reduce the carbon footprint by maximizing waste incorporation. This model allows for the calculation of optimal cement substitution levels based on the required strength, thus promoting sustainability in the construction industry through the use of local waste/resources. Full article
Show Figures

Figure 1

Back to TopTop