Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = X-nuclei imaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 6394 KB  
Article
Neuro-Bridge-X: A Neuro-Symbolic Vision Transformer with Meta-XAI for Interpretable Leukemia Diagnosis from Peripheral Blood Smears
by Fares Jammal, Mohamed Dahab and Areej Y. Bayahya
Diagnostics 2025, 15(16), 2040; https://doi.org/10.3390/diagnostics15162040 - 14 Aug 2025
Viewed by 473
Abstract
Background/Objectives: Acute Lymphoblastic Leukemia (ALL) poses significant diagnostic challenges due to its ambiguous symptoms and the limitations of conventional methods like bone marrow biopsies and flow cytometry, which are invasive, costly, and time-intensive. Methods: This study introduces Neuro-Bridge-X, a novel neuro-symbolic hybrid model [...] Read more.
Background/Objectives: Acute Lymphoblastic Leukemia (ALL) poses significant diagnostic challenges due to its ambiguous symptoms and the limitations of conventional methods like bone marrow biopsies and flow cytometry, which are invasive, costly, and time-intensive. Methods: This study introduces Neuro-Bridge-X, a novel neuro-symbolic hybrid model designed for automated, explainable ALL diagnosis using peripheral blood smear (PBS) images. Leveraging two comprehensive datasets, ALL Image (3256 images from 89 patients) and C-NMC (15,135 images from 118 patients), the model integrates deep morphological feature extraction, vision transformer-based contextual encoding, fuzzy logic-inspired reasoning, and adaptive explainability. To address class imbalance, advanced data augmentation techniques were applied, ensuring equitable representation across benign and leukemic classes. The proposed framework was evaluated through 5-fold cross-validation and fixed train-test splits, employing Nadam, SGD, and Fractional RAdam optimizers. Results: Results demonstrate exceptional performance, with SGD achieving near-perfect accuracy (1.0000 on ALL, 0.9715 on C-NMC) and robust generalization, while Fractional RAdam closely followed (0.9975 on ALL, 0.9656 on C-NMC). Nadam, however, exhibited inconsistent convergence, particularly on C-NMC (0.5002 accuracy). A Meta-XAI controller enhances interpretability by dynamically selecting optimal explanation strategies (Grad-CAM, SHAP, Integrated Gradients, LIME), ensuring clinically relevant insights into model decisions. Conclusions: Visualizations confirm that SGD and RAdam models focus on morphologically critical features, such as leukocyte nuclei, while Nadam struggles with spurious attributions. Neuro-Bridge-X offers a scalable, interpretable solution for ALL diagnosis, with potential to enhance clinical workflows and diagnostic precision in oncology. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

15 pages, 3655 KB  
Article
Indium-Doped ZnO Thin Films Obtained Using Spray Pyrolysis for Position-Sensitive Photodetection
by Pavlina Bancheva-Koleva, Veselin Zhelev, Plamen Petkov and Tamara Petkova
Materials 2025, 18(16), 3744; https://doi.org/10.3390/ma18163744 - 11 Aug 2025
Viewed by 416
Abstract
The main goal of this study was to investigate the properties of ZnO thin films, including pure films and those doped with indium (up to 8 mol%) that was deposited using a spray pyrolysis technique on glass and silicon substrates in order to [...] Read more.
The main goal of this study was to investigate the properties of ZnO thin films, including pure films and those doped with indium (up to 8 mol%) that was deposited using a spray pyrolysis technique on glass and silicon substrates in order to prepare the position-sensitive structure, Si-SiO2-ZnO:In. To this aim, the present work is focused on investigating the effect of indium concentration on the morphology, structure, and optical properties of the films. X-ray diffraction (XRD) analysis reveals a wurtzite polycrystalline structure. Scanning electron microscopy (SEM) images display a smooth and uniform surface characterized by closely packed nanocrystalline clusters. As the indium concentration rises to 8 mol%, the number of nuclei grows, resulting in uniformly distributed grains across the entire substrate surface. The estimated root mean square (RMS) roughness values for the thin films undoped and doped with 3 mol%, 5 mol%, and 8 mol% of ZnO measured using AFM are 6.13, 9.64, and 13.76 nm, respectively. The increase in indium concentration leads to a slight decrease in film transmittance. The measured LPV photosensitivity of about 44 mV/mm confirms the potential use of these thin films in practical applications. Full article
Show Figures

Figure 1

52 pages, 10192 KB  
Review
Broad Observational Perspectives Achieved by the Accreting White Dwarf Sciences in the XMM-Newton and Chandra Eras
by Şölen Balman, Marina Orio and Gerardo J. M. Luna
Universe 2025, 11(4), 105; https://doi.org/10.3390/universe11040105 - 21 Mar 2025
Viewed by 1814
Abstract
Accreting white dwarf binaries (AWDs) comprise cataclysmic variables (CVs), symbiotics, AM CVns, and other related systems that host a primary white dwarf (WD) accreting from a main sequence or evolved companion star. AWDs are a product of close binary evolution; thus, they are [...] Read more.
Accreting white dwarf binaries (AWDs) comprise cataclysmic variables (CVs), symbiotics, AM CVns, and other related systems that host a primary white dwarf (WD) accreting from a main sequence or evolved companion star. AWDs are a product of close binary evolution; thus, they are important for understanding the evolution and population of X-ray binaries in the Milky Way and other galaxies. AWDs are essential for studying astrophysical plasmas under different conditions along with accretion physics and processes, transient events, matter ejection and outflows, compact binary evolution, mergers, angular momentum loss mechanisms, and nuclear processes leading to explosions. AWDs are also closely related to other objects in the late stages of stellar evolution, with other accreting objects in compact binaries, and even share common phenomena with young stellar objects, active galactic nuclei, quasars, and supernova remnants. As X-ray astronomy came to a climax with the start of the Chandra and XMM-Newton missions owing to their unprecedented instrumentation, new excellent imaging capabilities, good time resolution, and X-ray grating technologies allowed immense advancement in many aspects of astronomy and astrophysics. In this review, we lay out a panorama of developments on the study of AWDs that have been accomplished and have been made possible by these two observatories; we summarize the key observational achievements and the challenges ahead. Full article
Show Figures

Figure 1

15 pages, 4387 KB  
Article
Enhancing Proton Radiosensitivity of Chondrosarcoma Using Nanoparticle-Based Drug Delivery Approaches: A Comparative Study of High- and Low-Energy Protons
by Mihaela Tudor, Roxana Cristina Popescu, Ionela N. Irimescu, Ann Rzyanina, Nicolae Tarba, Anca Dinischiotu, Liviu Craciun, Tiberiu Relu Esanu, Eugeniu Vasile, Andrei Theodor Hotnog, Mihai Radu, Gennady Mytsin, Mona Mihailescu and Diana Iulia Savu
Int. J. Mol. Sci. 2024, 25(21), 11481; https://doi.org/10.3390/ijms252111481 - 25 Oct 2024
Cited by 2 | Viewed by 1331
Abstract
To overcome chondrosarcoma’s (CHS) high chemo- and radioresistance, we used polyethylene glycol-encapsulated iron oxide nanoparticles (IONPs) for the controlled delivery of the chemotherapeutic doxorubicin (IONPDOX) to amplify the cytotoxicity of proton radiation therapy. Human 2D CHS SW1353 cells were treated with [...] Read more.
To overcome chondrosarcoma’s (CHS) high chemo- and radioresistance, we used polyethylene glycol-encapsulated iron oxide nanoparticles (IONPs) for the controlled delivery of the chemotherapeutic doxorubicin (IONPDOX) to amplify the cytotoxicity of proton radiation therapy. Human 2D CHS SW1353 cells were treated with protons (linear energy transfer (LET): 1.6 and 12.6 keV/µm) with and without IONPDOX. Cell survival was assayed using a clonogenic test, and genotoxicity was tested through the formation of micronuclei (MN) and γH2AX foci, respectively. Morphology together with spectral fingerprints of nuclei were measured using enhanced dark-field microscopy (EDFM) assembled with a hyperspectral imaging (HI) module and an axial scanning fluorescence module, as well as scanning electron microscopy (SEM) coupled with energy-dispersive X-Ray spectroscopy (EDX). Cell survival was also determined in 3D SW3153 spheroids following treatment with low-LET protons with/without the IONPDOX compound. IONPDOX increased radiosensitivity following proton irradiation at both LETs in correlation with DNA damage expressed as MN or γH2AX. The IONPDOX–low-LET proton combination caused a more lethal effect compared to IONPDOX–high-LET protons. CHS cell biological alterations were reflected by the modifications in the hyperspectral images and spectral profiles, emphasizing new possible spectroscopic markers of cancer therapy effects. Our findings show that the proposed treatment combination has the potential to improve the management of CHS. Full article
(This article belongs to the Special Issue Implication of Nanoparticles in Cancer Therapy Research, 2nd Edition)
Show Figures

Figure 1

16 pages, 1802 KB  
Review
Applying the Atomic Force Microscopy Technique in Medical Sciences—A Narrative Review
by Karolina Krawczyk-Wołoszyn, Damian Roczkowski, Adam Reich and Magdalena Żychowska
Biomedicines 2024, 12(9), 2012; https://doi.org/10.3390/biomedicines12092012 - 3 Sep 2024
Cited by 2 | Viewed by 2981
Abstract
Penetrating deep into the cells of the human body in real time has become increasingly possible with the implementation of modern technologies in medicine. Atomic force microscopy (AFM) enables the effective live imaging of cellular and molecular structures of biological samples (such as [...] Read more.
Penetrating deep into the cells of the human body in real time has become increasingly possible with the implementation of modern technologies in medicine. Atomic force microscopy (AFM) enables the effective live imaging of cellular and molecular structures of biological samples (such as cells surfaces, components of biological membranes, cell nuclei, actin networks, proteins, and DNA) and provides three-dimensional surface visualization (in X-, Y-, and Z-planes). Furthermore, the AFM technique enables the study of the mechanical, electrical, and magnetic properties of cells and cell organelles and the measurements of interaction forces between biomolecules. The technique has found wide application in cancer research. With the use of AFM, it is not only possible to differentiate between healthy and cancerous cells, but also to distinguish between the stages of cancerous conditions. For many years, AFM has been an important tool for the study of neurodegenerative diseases associated with the deposition of peptide amyloid plaques. In recent years, a significant amount of research has been conducted on the application of AFM in the evaluation of connective tissue cell mechanics. This review aims to provide the spectrum of the most important applications of the AFM technique in medicine to date. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Figure 1

22 pages, 7101 KB  
Article
Influence of Glycerol on the Surface Morphology and Crystallinity of Polyvinyl Alcohol Films
by Ganna Kovtun, David Casas and Teresa Cuberes
Polymers 2024, 16(17), 2421; https://doi.org/10.3390/polym16172421 - 27 Aug 2024
Cited by 15 | Viewed by 4934
Abstract
The structure and physicochemical properties of polyvinyl alcohol (PVA) and PVA/glycerol films have been investigated by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetry/differential thermal analysis (TG/DTA), and advanced scanning probe microscopy (SPM). In the pure PVA films, SPM allowed us to [...] Read more.
The structure and physicochemical properties of polyvinyl alcohol (PVA) and PVA/glycerol films have been investigated by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetry/differential thermal analysis (TG/DTA), and advanced scanning probe microscopy (SPM). In the pure PVA films, SPM allowed us to observe ribbon-shaped domains with a different frictional and elastic contrast, which apparently originated from a correlated growth or assembly of PVA crystalline nuclei located within individual PVA clusters. The incorporation of 22% w/w glycerol led to modification in shape of those domains from ribbon-like in pure PVA to rounded in PVA/glycerol 22% w/w films; changes in the relative intensities of the XRD peaks and a decrease in the amorphous halo in the XRD pattern were also detected, while the DTA peak corresponding to the melting point remained at almost the same temperature. For higher glycerol content, FT-IR revealed additional glycerol-characteristic peaks presumably related to the formation of glycerol aggregates, and XRD, FT-IR, and DTA all indicated a reduction in crystallinity. For more than 36% w/w glycerol, the plasticization of the films complicated the acquisition of SPM images without tip-induced surface modification. Our study contributes to the understanding of crystallinity in PVA and how it is altered by a plasticizer such as glycerol. Full article
(This article belongs to the Special Issue Biodegradable Polymers to Biomedical and Packaging Applications)
Show Figures

Figure 1

10 pages, 1034 KB  
Review
X-ray Polarization of Blazars and Radio Galaxies Measured by the Imaging X-ray Polarimetry Explorer
by Alan P. Marscher, Laura Di Gesu, Svetlana G. Jorstad, Dawoon E. Kim, Ioannis Liodakis, Riccardo Middei and Fabrizio Tavecchio
Galaxies 2024, 12(4), 50; https://doi.org/10.3390/galaxies12040050 - 22 Aug 2024
Cited by 6 | Viewed by 2000
Abstract
X-ray polarization, which now can be measured by the Imaging X-ray Polarimetry Explorer (IXPE), is a new probe of jets in the supermassive black hole systems of active galactic nuclei (AGNs). Here, we summarize IXPE observations of radio-loud AGNs that have been published [...] Read more.
X-ray polarization, which now can be measured by the Imaging X-ray Polarimetry Explorer (IXPE), is a new probe of jets in the supermassive black hole systems of active galactic nuclei (AGNs). Here, we summarize IXPE observations of radio-loud AGNs that have been published thus far. Blazars with synchrotron spectral energy distributions (SEDs) that peak at X-ray energies are routinely detected. The degree of X-ray polarization is considerably higher than at longer wavelengths. This is readily explained by energy stratification of the emission regions when electrons lose energy via radiation as they propagate away from the sites of particle acceleration as predicted in shock models. However, the 2–8 keV polarization electric vector is not always aligned with the jet direction as one would expect unless the shock is oblique. Magnetic reconnection may provide an alternative explanation. The rotation of the polarization vector in Mrk421 suggests the presence of a helical magnetic field in the jet. In blazars with lower-frequency peaks and the radio galaxy Centaurus A, the non-detection of X-ray polarization by IXPE constrains the X-ray emission mechanism. Full article
Show Figures

Figure 1

11 pages, 548 KB  
Review
An Examination of the Very First Polarimetric X-ray Observations of Radio-Quiet Active Galactic Nuclei
by Frédéric Marin, Vittoria E. Gianolli, Adam Ingram, Dawoon E. Kim, Andrea Marinucci, Daniele Tagliacozzo and Francesco Ursini
Galaxies 2024, 12(4), 35; https://doi.org/10.3390/galaxies12040035 - 2 Jul 2024
Cited by 2 | Viewed by 1947
Abstract
Active galactic nuclei (AGNs), either radio-quiet or radio-loud, had never been observed in X-ray polarized light until the advent of the Imaging X-ray Polarimetry Explorer (IXPE) in the end of 2021. This satellite opened a new observational window for studying supermassive black holes [...] Read more.
Active galactic nuclei (AGNs), either radio-quiet or radio-loud, had never been observed in X-ray polarized light until the advent of the Imaging X-ray Polarimetry Explorer (IXPE) in the end of 2021. This satellite opened a new observational window for studying supermassive black holes and their complex environment. In this regard, radio-quiet AGNs are probably better targets than radio-loud objects to probe accretion processes due to the lack of synchrotron emission from jets that can dilute the polarized signal from the central engine. Their relatively clean environment not only allows to detect and measure the X-ray polarization originating from the hot corona responsible for X-ray emission, but also to assess the geometry of the media immediately surrounding the supermassive black hole. Such geometrical measurements work just as well for characterizing the corona morphology in pole-on AGNs as it does for determining the three-dimensional shape of the circumnuclear cold obscurer (the so-called torus) in edge-on AGNs. In this review paper, we will return to each of the observations made by IXPE so far in the field of radio-quiet AGNs and highlight the fundamental contribution of X-ray polarimetry to our understanding of how light is emitted and how matter is shaped around supermassive black holes. Full article
Show Figures

Figure 1

17 pages, 42688 KB  
Article
The Multi-Detectors System of the PANDORA Facility: Focus on the Full-Field Pin-Hole CCD System for X-ray Imaging and Spectroscopy
by David Mascali, Eugenia Naselli, Sandor Biri, Giorgio Finocchiaro, Alessio Galatà, Giorgio Sebastiano Mauro, Maria Mazzaglia, Bharat Mishra, Santi Passarello, Angelo Pidatella, Richard Rácz, Domenico Santonocito and Giuseppe Torrisi
Condens. Matter 2024, 9(2), 28; https://doi.org/10.3390/condmat9020028 - 20 Jun 2024
Cited by 2 | Viewed by 1818
Abstract
PANDORA (Plasmas for Astrophysics Nuclear Decays Observation and Radiation for Archaeometry) is an INFN project aiming at measuring, for the first time, possible variations in in-plasma β-decay lifetimes in isotopes of astrophysical interest as a function of thermodynamical conditions of the in-laboratory [...] Read more.
PANDORA (Plasmas for Astrophysics Nuclear Decays Observation and Radiation for Archaeometry) is an INFN project aiming at measuring, for the first time, possible variations in in-plasma β-decay lifetimes in isotopes of astrophysical interest as a function of thermodynamical conditions of the in-laboratory controlled plasma environment. Theoretical predictions indicate that the ionization state can dramatically modify the β-decay lifetime (even of several orders of magnitude). The PANDORA experimental approach consists of confining a plasma able to mimic specific stellar-like conditions and measuring the nuclear decay lifetime as a function of plasma parameters. The β-decay events will be measured by detecting the γ-ray emitted by the daughter nuclei, using an array of 12 HPGe detectors placed around the magnetic trap. In this frame, plasma parameters have to be continuously monitored online. For this purpose, an innovative, non-invasive multi-diagnostic system, including high-resolution time- and space-resolved X-ray analysis, was developed, which will work synergically with the γ-rays detection system. In this contribution, we will describe this multi-diagnostics system with a focus on spatially resolved high-resolution X-ray spectroscopy. The latter is performed by a pin-hole X-ray camera setup operating in the 0.5–20 keV energy domain. The achieved spatial and energy resolutions are 450 µm and 230 eV at 8.1 keV, respectively. An analysis algorithm was specifically developed to obtain SPhC (Single Photon-Counted) images and local plasma emission spectrum in High-Dynamic-Range (HDR) mode. Thus, investigations of image regions where the emissivity can change by even orders of magnitude are now possible. Post-processing analysis is also able to remove readout noise, which is often observable and dominant at very low exposure times (ms). Several measurements have already been used in compact magnetic plasma traps, e.g., the ATOMKI ECRIS in Debrecen and the Flexible Plasma Trap at LNS. The main outcomes will be shortly presented. The collected data allowed for a quantitative and absolute evaluation of local emissivity, the elemental analysis, and the local evaluation of plasma density and temperature. This paper also discusses the new plasma emission models, implemented on PIC-ParticleInCell codes, which were developed to obtain powerful 3D maps of the X-rays emitted by the magnetically confined plasma. These data also support the evaluation procedure of spatially resolved plasma parameters from the experimental spectra as well as, in the near future, the development of appropriate algorithms for the tomographic reconstruction of plasma parameters in the X-ray domain. The described setups also include the most recent upgrade, consisting of the use of fast X-ray shutters with special triggering systems that will be routinely implemented to perform both space- and time-resolved spectroscopy during transient, stable, and turbulent plasma regimes (in the ms timescale). Full article
(This article belongs to the Special Issue High Precision X-ray Measurements 2023)
Show Figures

Figure 1

9 pages, 3850 KB  
Article
Molybdenum-Doped ZnO Thin Films Obtained by Spray Pyrolysis
by Pavlina Bancheva-Koleva, Veselin Zhelev, Plamen Petkov and Tamara Petkova
Materials 2024, 17(9), 2164; https://doi.org/10.3390/ma17092164 - 6 May 2024
Cited by 5 | Viewed by 2013
Abstract
A batch of ZnO thin films, pure and doped with molybdenum (up to 2 mol %), were prepared using the spray pyrolysis technique on glass and silicon substrates. The effect of molybdenum concentration on the morphology, structure and optical properties of the films [...] Read more.
A batch of ZnO thin films, pure and doped with molybdenum (up to 2 mol %), were prepared using the spray pyrolysis technique on glass and silicon substrates. The effect of molybdenum concentration on the morphology, structure and optical properties of the films was investigated. X-ray diffraction (XRD) results show a wurtzite polycrystalline crystal structure. The average crystallite size increases from 30 to 80 nm with increasing molybdenum content. Scanning electron microscopy (SEM) images demonstrate a smooth and homogeneous surface with densely spaced nanocrystalline grains. The number of nuclei increases, growing over the entire surface of the substrate with uniform grains, when the molybdenum concentration is increased to 2 mol %. The estimated root mean square (RMS) roughness values for the undoped and doped with 1 mol % and 2 mol % of ZnO thin films, defined by atomic force microscopy (AFM), are 6.12, 23.54 and 23.83 nm, respectively. The increase in Mo concentration contributes to the increase in film transmittance. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

16 pages, 1306 KB  
Review
Investigating the Properties of the Relativistic Jet and Hot Corona in AGN with X-ray Polarimetry
by Dawoon E. Kim, Laura Di Gesu, Frédéric Marin, Alan P. Marscher, Giorgio Matt, Paolo Soffitta, Francesco Tombesi, Enrico Costa and Immacolata Donnarumma
Galaxies 2024, 12(3), 20; https://doi.org/10.3390/galaxies12030020 - 23 Apr 2024
Cited by 2 | Viewed by 2081
Abstract
X-ray polarimetry has been suggested as a prominent tool for investigating the geometrical and physical properties of the emissions from active galactic nuclei (AGN). The successful launch of the Imaging X-ray Polarimetry Explorer (IXPE) on 9 December 2021 has expanded the previously restricted [...] Read more.
X-ray polarimetry has been suggested as a prominent tool for investigating the geometrical and physical properties of the emissions from active galactic nuclei (AGN). The successful launch of the Imaging X-ray Polarimetry Explorer (IXPE) on 9 December 2021 has expanded the previously restricted scope of polarimetry into the X-ray domain, enabling X-ray polarimetric studies of AGN. Over a span of two years, IXPE has observed various AGN populations, including blazars and radio-quiet AGN. In this paper, we summarize the remarkable discoveries achieved thanks to the opening of the new window of X-ray polarimetry of AGN through IXPE observations. We will delve into two primary areas of interest: first, the magnetic field geometry and particle acceleration mechanisms in the jets of radio-loud AGN, such as blazars, where the relativistic acceleration process dominates the spectral energy distribution; and second, the geometry of the hot corona in radio-quiet AGN. Thus far, the IXPE results from blazars favor the energy-stratified shock acceleration model, and they provide evidence of helical magnetic fields inside the jet. Concerning the corona geometry, the IXPE results are consistent with a disk-originated slab-like or wedge-like shape, as could result from Comptonization around the accretion disk. Full article
(This article belongs to the Special Issue Multi-Phase Fueling and Feedback Processes in Jetted AGN)
Show Figures

Figure 1

28 pages, 15669 KB  
Article
Characterization of Kinetics-Controlled Morphologies in the Growth of Silver Crystals from a Primary Lead Melt
by Steven King, Dillon Rajoo, Alexander Norori-McCormac and Alberto Striolo
Minerals 2024, 14(1), 56; https://doi.org/10.3390/min14010056 - 1 Jan 2024
Cited by 1 | Viewed by 2067
Abstract
Silver, a precious metal, can be recovered as a by-product of the processing of non-ferrous metals such as lead. In this work, silver crystals grown from the controlled cooling of a 10% silver–90% lead melt have been examined to quantify crystal morphologies developed [...] Read more.
Silver, a precious metal, can be recovered as a by-product of the processing of non-ferrous metals such as lead. In this work, silver crystals grown from the controlled cooling of a 10% silver–90% lead melt have been examined to quantify crystal morphologies developed under industrial conditions. X-ray tomography (XCT) is adapted to quantify the size and morphology of silver crystal structures grown from the Ag-Pb melt. The examination utilized high X-ray energies and small sample sizes to mitigate attenuation and enhance image quality. Examination of single crystal dendrites under high magnification demonstrates that silver crystals, even those grown under commercial conditions, yield a Face-Centered Cubic (FCC) crystalline lattice, which could be important for the practical extension of this work to the commercial production of Ag nano-crystals and crystalline supra-molecular structures. The crystals observed are composed of multiple twinned euhedral grains in a variety of dendritic to acicular arrangements, yielding a substantial heterogeneity of crystalline forms. XCT data were used to generate size and shape descriptors for the individual crystals. The results were compared to an equivalent set of descriptors generated from laser sizing examination of a sample of unconsolidated crystals from the same experimental run. The correspondence to within 9% of the crystal equivalent diameters determined independently by the XCT and laser sizing demonstrates a favorable outcome in particle sizing as achieved by visual inspection of XCT results. XCT examination of crystal assemblages identifies small octahedral crystals and larger triangular platelets. The structures expected for FCC crystals grown at thermodynamically controlled conditions are not observed in our systems, suggesting the possibility of the first crystal nuclei form at such conditions, but their growth transition to kinetically controlled mechanisms occurs as their size increases above a threshold cutoff. Based on literature observations, this size threshold is much smaller than the resolution of the XCT instrumentation employed herein. Our characterization data are in fact consistent with thermodynamics/kinetics—and then kinetics-controlled mechanisms—as the crystal size increases. This observation is important because the systems considered here are representative of commercial processes. As such, this work extends prior crystal growth concepts, which were explored in aqueous systems often probed by electrodeposition. Full article
(This article belongs to the Special Issue Thermodynamics, Mechanism and Kinetics of Metallurgical Processes)
Show Figures

Figure 1

23 pages, 8756 KB  
Article
The Solar Particle Acceleration Radiation and Kinetics (SPARK) Mission Concept
by Hamish A. S. Reid, Sophie Musset, Daniel F. Ryan, Vincenzo Andretta, Frédéric Auchère, Deborah Baker, Federico Benvenuto, Philippa Browning, Éric Buchlin, Ariadna Calcines Rosario, Steven D. Christe, Alain Jody Corso, Joel Dahlin, Silvia Dalla, Giulio Del Zanna, Carsten Denker, Jaroslav Dudík, Robertus Erdélyi, Ilaria Ermolli, Lyndsay Fletcher, Andrzej Fludra, Lucie M. Green, Mykola Gordovskyy, Salvo L. Guglielmino, Iain Hannah, Richard Harrison, Laura A. Hayes, Andrew R. Inglis, Natasha L. S. Jeffrey, Jana Kašparová, Graham S. Kerr, Christian Kintziger, Eduard P. Kontar, Säm Krucker, Timo Laitinen, Philippe Laurent, Olivier Limousin, David M. Long, Shane A. Maloney, Paolo Massa, Anna Maria Massone, Sarah Matthews, Tomasz Mrozek, Valery M. Nakariakov, Susanna Parenti, Michele Piana, Vanessa Polito, Melissa Pesce-Rollins, Paolo Romano, Alexis P. Rouillard, Clementina Sasso, Albert Y. Shih, Marek Stęślicki, David Orozco Suárez, Luca Teriaca, Meetu Verma, Astrid M. Veronig, Nicole Vilmer, Christian Vocks and Alexander Warmuthadd Show full author list remove Hide full author list
Aerospace 2023, 10(12), 1034; https://doi.org/10.3390/aerospace10121034 - 15 Dec 2023
Cited by 7 | Viewed by 4044
Abstract
Particle acceleration is a fundamental process arising in many astrophysical objects, including active galactic nuclei, black holes, neutron stars, gamma-ray bursts, accretion disks, solar and stellar coronae, and planetary magnetospheres. Its ubiquity means energetic particles permeate the Universe and influence the conditions for [...] Read more.
Particle acceleration is a fundamental process arising in many astrophysical objects, including active galactic nuclei, black holes, neutron stars, gamma-ray bursts, accretion disks, solar and stellar coronae, and planetary magnetospheres. Its ubiquity means energetic particles permeate the Universe and influence the conditions for the emergence and continuation of life. In our solar system, the Sun is the most energetic particle accelerator, and its proximity makes it a unique laboratory in which to explore astrophysical particle acceleration. However, despite its importance, the physics underlying solar particle acceleration remain poorly understood. The SPARK mission will reveal new discoveries about particle acceleration through a uniquely powerful and complete combination of γ-ray, X-ray, and EUV imaging and spectroscopy at high spectral, spatial, and temporal resolutions. SPARK’s instruments will provide a step change in observational capability, enabling fundamental breakthroughs in our understanding of solar particle acceleration and the phenomena associated with it, such as the evolution of solar eruptive events. By providing essential diagnostics of the processes that drive the onset and evolution of solar flares and coronal mass ejections, SPARK will elucidate the underlying physics of space weather events that can damage satellites and power grids, disrupt telecommunications and GPS navigation, and endanger astronauts in space. The prediction of such events and the mitigation of their potential impacts are crucial in protecting our terrestrial and space-based infrastructure. Full article
(This article belongs to the Special Issue Space Telescopes & Payloads)
Show Figures

Figure 1

17 pages, 5745 KB  
Concept Paper
The Large Imaging Spectrometer for Solar Accelerated Nuclei (LISSAN): A Next-Generation Solar γ-ray Spectroscopic Imaging Instrument Concept
by Daniel F. Ryan, Sophie Musset, Hamish A. S. Reid, Säm Krucker, Andrea F. Battaglia, Eric Bréelle, Claude Chapron, Hannah Collier, Joel Dahlin, Carsten Denker, Ewan Dickson, Peter T. Gallagher, Iain Hannah, Natasha L. S. Jeffrey, Jana Kašparová, Eduard Kontar, Philippe Laurent, Shane A. Maloney, Paolo Massa, Anna Maria Massone, Tomasz Mrozek, Damien Pailot, Melody Pallu, Melissa Pesce-Rollins, Michele Piana, Illya Plotnikov, Alexis Rouillard, Albert Y. Shih, David Smith, Marek Steslicki, Muriel Z. Stiefel, Alexander Warmuth, Meetu Verma, Astrid Veronig, Nicole Vilmer, Christian Vocks and Anna Volparaadd Show full author list remove Hide full author list
Aerospace 2023, 10(12), 985; https://doi.org/10.3390/aerospace10120985 - 23 Nov 2023
Cited by 3 | Viewed by 2461
Abstract
Models of particle acceleration in solar eruptive events suggest that roughly equal energy may go into accelerating electrons and ions. However, while previous solar X-ray spectroscopic imagers have transformed our understanding of electron acceleration, only one resolved image of γ-ray emission from solar [...] Read more.
Models of particle acceleration in solar eruptive events suggest that roughly equal energy may go into accelerating electrons and ions. However, while previous solar X-ray spectroscopic imagers have transformed our understanding of electron acceleration, only one resolved image of γ-ray emission from solar accelerated ions has ever been produced. This paper outlines a new satellite instrument concept—the large imaging spectrometer for solar accelerated nuclei (LISSAN)—with the capability not only to observe hundreds of events over its lifetime, but also to capture multiple images per event, thereby imaging the dynamics of solar accelerated ions for the first time. LISSAN provides spectroscopic imaging at photon energies of 40 keV–100 MeV on timescales of ≲10 s with greater sensitivity and imaging capability than its predecessors. This is achieved by deploying high-resolution scintillator detectors and indirect Fourier imaging techniques. LISSAN is suitable for inclusion in a multi-instrument platform such as an ESA M-class mission or as a smaller standalone mission. Without the observations that LISSAN can provide, our understanding of solar particle acceleration, and hence the space weather events with which it is often associated, cannot be complete. Full article
(This article belongs to the Special Issue Space Telescopes & Payloads)
Show Figures

Figure 1

21 pages, 2500 KB  
Article
Microscopic Analysis of Heterochromatin, Euchromatin and Cohesin in Cancer Cell Models and under Anti-Cancer Treatment
by Elias Ferdinand Fischer, Götz Pilarczyk and Michael Hausmann
Curr. Issues Mol. Biol. 2023, 45(10), 8152-8172; https://doi.org/10.3390/cimb45100515 - 9 Oct 2023
Cited by 2 | Viewed by 3914
Abstract
The spatial organization of euchromatin (EC) and heterochromatin (HC) appears as a cell-type specific network, which seems to have an impact on gene regulation and cell fate. The spatial organization of cohesin should thus also be characteristic for a cell type since it [...] Read more.
The spatial organization of euchromatin (EC) and heterochromatin (HC) appears as a cell-type specific network, which seems to have an impact on gene regulation and cell fate. The spatial organization of cohesin should thus also be characteristic for a cell type since it is involved in a TAD (topologically associating domain) formation, and thus in gene regulation or DNA repair processes. Based on the previous hypotheses and results on the general importance of heterochromatin organization on genome functions in particular, the configurations of these organizational units (EC represented by H3K4me3-positive regions, HC represented by H3K9me3-positive regions, cohesins) are investigated in the cell nuclei of different cancer and non-cancerous cell types and under different anti-cancer treatments. Confocal microscopic images of the model cell systems were used and analyzed using analytical processes of quantification created in Fiji, an imaging tool box well established in different fields of science. Human fibroblasts, breast cancer and glioblastoma cells as well as murine embryonal terato-carcinoma cells were used as these cell models and compared according to the different parameters of spatial arrangements. In addition, proliferating, quiescent and from the quiescent state reactivated fibroblasts were analyzed. In some selected cases, the cells were treated with X-rays or azacitidine. Heterogeneous results were obtained by the analyses of the configurations of the three different organizational units: granulation and a loss of H3K4me3-positive regions (EC) occurred after irradiation with 4 Gy or azacitidine treatment. While fibroblasts responded to irradiation with an increase in cohesin and granulation, in breast cancer cells, it resulted in decreases in cohesin and changes in granulation. H3K9me3-positive regions (HC) in fibroblasts experienced increased granulation, whereas in breast cancer cells, the amount of such regions increased. After azacitidine treatment, murine stem cells showed losses of cohesin and granulation and an increase in the granulation of H3K9me3-positive regions. Fibroblasts that were irradiated with 2 Gy only showed irregularities in structural amounts and granulation. Quiescent fibroblasts contained less euchromatin-related H3K4me3-positive signals and cohesin levels as well as higher heterochromatin-related H3K9me3-positive signals than non-quiescent ones. In general, fibroblasts responded more intensely to X-ray irradiation than breast cancer cells. The results indicate the usefulness of model cell systems and show that, in general, characteristic differences initially existing in chromatin and cohesin organizations result in specific responses to anti-cancer treatment. Full article
(This article belongs to the Special Issue Advances in Molecular Pathogenesis Regulation in Cancer, 2nd Edition)
Show Figures

Figure 1

Back to TopTop