Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (648)

Search Parameters:
Keywords = X-ray detectors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5698 KB  
Article
A Broad Photon Energy Range Multi-Strip Imaging Array Based upon Single Crystal Diamond Schottky Photodiode
by Claudio Verona, Maurizio Angelone, Marco Marinelli and Gianluca Verona-Rinati
Instruments 2025, 9(4), 26; https://doi.org/10.3390/instruments9040026 - 28 Oct 2025
Abstract
A multi-strip detector made of synthetic single crystal diamond (SCD), based on a p-type/intrinsic diamond/Schottky metal transverse configuration and operating at zero bias voltage, was developed for imaging from extreme UV (EUV) to soft X-rays. The photodetector was patterned with 32 strips made [...] Read more.
A multi-strip detector made of synthetic single crystal diamond (SCD), based on a p-type/intrinsic diamond/Schottky metal transverse configuration and operating at zero bias voltage, was developed for imaging from extreme UV (EUV) to soft X-rays. The photodetector was patterned with 32 strips made of boron-doped diamond directly deposited, by means of the CVD technique and the standard lithographic technique, on top of the HPHT diamond growth substrate. The width of each strip and the gap between two adjacent strips were 100 μm and 20 μm, respectively. The strips were embedded in intrinsic SCD of an active area of 3.2 × 2.5 mm2, also deposited using the CVD technique in a separate growing machine. In the present structure, the prototype photodetector is suitable for 1D imaging. However, all the dimensions above can be varied depending on the applications. The use of p-type diamond strips represents an attempt to mitigate the photoelectron emission from metal contacts, a non-negligible problem under EUV irradiation. The detector was tested with UV radiation and soft X-rays. To test the photodetector as an imaging device, a headboard (XDAS-DH) and a signal processing board (XDAS-SP) were used as front-end electronics. A standard XDAS software was used to acquire the experimental data. The results of the tests and the detector’s construction process are presented and discussed in the paper. Full article
11 pages, 3010 KB  
Article
Optimization of Tungsten Anode Target Design for High-Energy Microfocus X-Ray Sources via Geant4 Monte Carlo Simulation
by Yuetian Liu, Lili Li, Yiheng Liu, Xue Zhang, Liwei Xin, Zhengkun Fu, Jinshou Tian, Wei Zhao and Duan Luo
Photonics 2025, 12(11), 1062; https://doi.org/10.3390/photonics12111062 - 27 Oct 2025
Viewed by 117
Abstract
High-energy microfocus X-ray sources are increasingly applied in non-destructive testing, high-resolution imaging, and additive manufacturing. The design and optimization of the anode target critically determine source efficiency, spectral characteristics, and imaging performance. In this study, Monte Carlo simulations using the Geant4 toolkit were [...] Read more.
High-energy microfocus X-ray sources are increasingly applied in non-destructive testing, high-resolution imaging, and additive manufacturing. The design and optimization of the anode target critically determine source efficiency, spectral characteristics, and imaging performance. In this study, Monte Carlo simulations using the Geant4 toolkit were conducted to systematically evaluate transmission and reflection tungsten targets with varied thicknesses and incidence angles under electron beam energies ranging from 100 to 300 keV. The results reveal that, for a microfocus X-ray source operating at a maximum tube voltage of 225 kV, the optimal transmission tungsten target exhibits a thickness of 18 μm, whereas the optimal reflection tungsten target achieves maximum efficiency at a 30 μm thickness with a 25° incidence angle. A nearly linear relationship between electron energy and optimal transmission target thickness is established within the 100–300 keV range. Additionally, the influence of beryllium window thickness and filter materials on the emergent X-ray spectrum is analyzed, demonstrating pathways for spectral hardening and transmission optimization. This study further elucidates the angular–intensity distribution of emitted X-rays, providing critical insights into beam spatial characteristics. Collectively, these findings establish a theoretical foundation for target optimization, enabling enhanced X-ray source performance in high-resolution imaging and supporting applications in detector calibration, flatness correction, beam hardening correction, and radiation shielding design. Full article
(This article belongs to the Special Issue Ultrafast Dynamics Probed by Photonics and Electron-Based Techniques)
Show Figures

Figure 1

27 pages, 6239 KB  
Article
Pro-Angiogenic and Wound-Healing Potential of Bioactive Polysaccharides Extracted from Moroccan Algae Osmundea pinnatifida
by Zakaria Boujhoud, Malek Eleroui, Amal Feki, Hajer Ben Saad, Marwa Kraiem, Ibtissam Youlyouz Marfak, Sanah Essayagh, Said Hilali, Riadh Badraoui, Hatem Kallel, Jean Marc Pujo, Ibtissem Ben Amara and Abderraouf Hilali
Life 2025, 15(10), 1564; https://doi.org/10.3390/life15101564 - 7 Oct 2025
Viewed by 490
Abstract
Various therapeutic approaches have been explored to speed up wound healing, with angiogenesis being a crucial factor in this process and skin repair. This study shows that a polysaccharide extracted from the red alga Osmundea pinnatifida (PSOP) can promote angiogenesis and accelerate healing. [...] Read more.
Various therapeutic approaches have been explored to speed up wound healing, with angiogenesis being a crucial factor in this process and skin repair. This study shows that a polysaccharide extracted from the red alga Osmundea pinnatifida (PSOP) can promote angiogenesis and accelerate healing. The structural properties of PSOP were investigated using various techniques, including scanning electron microscopy, X-ray diffraction, Fourier–transform infrared spectroscopy, ultraviolet–-visible spectroscopy, and high-performance liquid chromatography coupled with a refractive index detector. Additionally, the in vitro antioxidant activity of PSOP was evaluated using the reducing power assay, total antioxidant capacity measurement, and DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging tests. The PSOP extract exhibited significant pro-angiogenic effects in the avian chorioallantoic membrane model. Furthermore, the efficacy of PSOP-based hydrogels for wound healing was assessed in vivo using an excision wound model in Wistar rats. The results indicated accelerated wound healing, increased collagen deposition, and enhanced tissue regeneration. Computational studies suggest that the observed wound healing and pro-angiogenic effects may be attributed to the affinity of the PSOP units for cyclooxygenase-2 and vascular endothelial growth factor. These findings support the potential use of PSOP as a bioactive agent in wound care. Full article
Show Figures

Figure 1

10 pages, 1603 KB  
Article
Beam Tracking X-Ray Phase-Contrast Imaging Using a Conventional X-Ray Source
by Jiaqi Li, Jianheng Huang, Xin Liu, Yaohu Lei, Botao Mai and Chenggong Zhang
Sensors 2025, 25(19), 6089; https://doi.org/10.3390/s25196089 - 2 Oct 2025
Viewed by 468
Abstract
To address the issue of insufficient contrast in conventional X-ray absorption imaging for biological soft tissues and weakly absorbing materials, this paper proposes a beam tracking X-ray phase-contrast imaging system using a conventional X-ray source. A periodic pinhole array mask is placed between [...] Read more.
To address the issue of insufficient contrast in conventional X-ray absorption imaging for biological soft tissues and weakly absorbing materials, this paper proposes a beam tracking X-ray phase-contrast imaging system using a conventional X-ray source. A periodic pinhole array mask is placed between the X-ray source and the sample to spatially modulate the X-ray beam, dividing it into multiple independent sub-beams. Each sub-beam is deflected due to the modulation effect of the sample, resulting in slight positional shifts in the intensity patterns formed on the detector. The experiments employ an X-ray source with a 400 μm focal spot and use a two-dimensional step-scanning approach to acquire image sequences of various samples. The experimental results show that this method can extract the edge profile and structural changes in the samples to some extent, and it demonstrates good contrast and detail recovery under weak absorption conditions. These results suggest that this method has certain application potential in material inspection, non-destructive testing, and related fields. Full article
(This article belongs to the Special Issue Recent Innovations in X-Ray Sensing and Imaging)
Show Figures

Figure 1

9 pages, 4977 KB  
Article
A New Measurement of Light Yield Quenching in EJ-200 and LYSO Scintillators
by Francesco Dimiccoli, Francesco Maria Follega, Luigi Ernesto Ghezzer, Roberto Iuppa, Alessandro Lega, Riccardo Nicolaidis, Francesco Nozzoli, Ester Ricci, Enrico Verroi and Paolo Zuccon
Particles 2025, 8(4), 82; https://doi.org/10.3390/particles8040082 - 30 Sep 2025
Viewed by 381
Abstract
Lutetium–Yttrium Oxyorthosilicate (LYSO) crystals and EJ-200 plastic scintillators are widely recognized fast scintillating materials, valued for their high light yield and mechanical robustness, which make them well suited for demanding applications in high-energy physics and space research. Their non-proportional light response, along with [...] Read more.
Lutetium–Yttrium Oxyorthosilicate (LYSO) crystals and EJ-200 plastic scintillators are widely recognized fast scintillating materials, valued for their high light yield and mechanical robustness, which make them well suited for demanding applications in high-energy physics and space research. Their non-proportional light response, along with their non-linear behavior at low-energy X-rays, has been extensively investigated in previous studies, revealing potential systematic effects in existing measurements. In this work, light quenching in both scintillators is measured under charged-particle excitation. The results are interpreted using the modified Birks–Onsager model, which provides a theoretical framework for understanding the underlying quenching mechanisms, as well as a generalized logistic parametrization, offering experimentalists a useful tool to characterize the detector’s light yield and associated uncertainties. Full article
Show Figures

Figure 1

18 pages, 3733 KB  
Article
Dual-Head Pix2Pix Network for Material Decomposition of Conventional CT Projections with Photon-Counting Guidance
by Yanyun Liu, Zhiqiang Li, Yang Wang, Ruitao Chen, Dinghong Duan, Xiaoyi Liu, Xiangyu Liu, Yu Shi, Songlin Li and Shouping Zhu
Sensors 2025, 25(19), 5960; https://doi.org/10.3390/s25195960 - 25 Sep 2025
Viewed by 545
Abstract
Material decomposition in X-ray imaging is essential for enhancing tissue differentiation and reducing the radiation dose, but the clinical adoption of photon-counting detectors (PCDs) is limited by their high cost and technical complexity. To address this, we propose Dual-head Pix2Pix, a PCD-guided deep [...] Read more.
Material decomposition in X-ray imaging is essential for enhancing tissue differentiation and reducing the radiation dose, but the clinical adoption of photon-counting detectors (PCDs) is limited by their high cost and technical complexity. To address this, we propose Dual-head Pix2Pix, a PCD-guided deep learning framework that enables simultaneous iodine and bone decomposition from single-energy X-ray projections acquired with conventional energy-integrating detectors. The model was trained and tested on 1440 groups of energy-integrating detector (EID) projections with their corresponding iodine/bone decomposition images. Experimental results demonstrate that the Dual-head Pix2Pix outperforms baseline models. For iodine decomposition, it achieved a mean absolute error (MAE) of 5.30 ± 1.81, representing an ~10% improvement over Pix2Pix (5.92) and a substantial advantage over CycleGAN (10.39). For bone decomposition, the MAE was reduced to 9.55 ± 2.49, an ~6% improvement over Pix2Pix (10.18). Moreover, Dual-head Pix2Pix consistently achieved the highest MS-SSIM, PSNR, and Pearson correlation coefficients across all benchmarks. In addition, we performed a cross-domain validation using projection images acquired from a conventional EID-CT system. The results show that the model successfully achieved the effective separation of iodine and bone in this new domain, demonstrating a strong generalization capability beyond the training distribution. In summary, Dual-head Pix2Pix provides a cost-effective, scalable, and hardware-friendly solution for accurate dual-material decomposition, paving the way for the broader clinical and industrial adoption of material-specific imaging without requiring PCDs. Full article
Show Figures

Figure 1

8 pages, 6043 KB  
Case Report
Dual-Layer Spectral CT for Advanced Tissue Characterization: Differentiating Bladder Neoplasm from Intraluminal Thrombus—A Case Report
by Bianca Catalano, Damiano Caruso and Giuseppe Tremamunno
Reports 2025, 8(3), 186; https://doi.org/10.3390/reports8030186 - 20 Sep 2025
Viewed by 377
Abstract
Background and Clinical Significance: Bladder neoplasms often present with coexisting thrombi and hematuria, appearing as complex intraluminal masses on imaging, and posing a key diagnostic challenge in distinguishing neoplastic tissue from thrombus, to prevent harmful overstaging. Case Presentation: An 82-year-old man with recurrent [...] Read more.
Background and Clinical Significance: Bladder neoplasms often present with coexisting thrombi and hematuria, appearing as complex intraluminal masses on imaging, and posing a key diagnostic challenge in distinguishing neoplastic tissue from thrombus, to prevent harmful overstaging. Case Presentation: An 82-year-old man with recurrent gross hematuria and urinary disturbances was evaluated by ultrasound, which identified a large endoluminal lesion in the anterior bladder wall. The patient subsequently underwent contrast-enhanced CT using a second-generation dual-layer spectral CT system, which utilizes a dual-layer detector to simultaneously acquire high- and low-energy X-ray data. Conventional CT images confirmed a multifocal, bulky hyperdense lesion along the bladder wall, protruding into the lumen and raising suspicion for a heterogeneous mass, though further characterization was not possible. Spectral imaging enabled the reconstruction of additional maps—such as iodine density, effective atomic number (Z-effective), and electron density—which were used to further characterize these findings. The combination of these techniques clearly demonstrated differences in iodine uptake and tissue composition within the parietal lesions, allowing for a reliable differentiation between neoplastic tissue and intraluminal thrombus. Conclusions: The integration of conventional CT imaging with spectral-derived maps generated in post-processing allowed for accurate and reliable tissue differentiation between bladder neoplasm and thrombus. Spectral imaging holds the potential to prevent tumor overstaging, thereby supporting more appropriate clinical management. The dual-layer technology enables the generation of these maps from every acquisition without altering the scan protocol, thereby having minimal impact on the daily clinical workflow. Full article
(This article belongs to the Section Nephrology/Urology)
Show Figures

Figure 1

16 pages, 11832 KB  
Article
The Effects of High-Energy Carbon Co-Doping on IMB-CNM LGAD Fabrication and Performance
by Jairo Villegas, Florent Dougados, Carmen Torres, Pablo Fernandez-Martinez, María del Carmen Jiménez-Ramos and Salvador Hidalgo
Sensors 2025, 25(17), 5571; https://doi.org/10.3390/s25175571 - 6 Sep 2025
Viewed by 998
Abstract
Over the past few years, Low-Gain Avalanche Detectors (LGADs) have demonstrated excellent timing performance, showing great potential for use in 4D tracking of high-energy charged particles. Carbon co-doping is a key factor for enhancing LGAD performance, which are detectors with intrinsic amplification, in [...] Read more.
Over the past few years, Low-Gain Avalanche Detectors (LGADs) have demonstrated excellent timing performance, showing great potential for use in 4D tracking of high-energy charged particles. Carbon co-doping is a key factor for enhancing LGAD performance, which are detectors with intrinsic amplification, in harsh radiation environments. This work presents a broad pre-irradiation characterization of the latest carbon-co-implanted (or carbonated) LGADs fabricated at IMB-CNM. The results indicate that the addition of carbon reduces the nominal gain of the devices compared with non-carbonated detectors. Furthermore, a comprehensive study is presented on how carbon co-implantation can either enhance or suppress the diffusion of the multiplication layer during LGAD fabrication, depending on the device structure and fabrication parameters. Full article
(This article belongs to the Special Issue Advances in Radiation Sensors and Detectors)
Show Figures

Figure 1

17 pages, 3956 KB  
Article
Synergistic LPCVD and PECVD Growth of β-Ga2O3 Thin Films for High-Sensitivity and Low-Dose Direct X-Ray Detection
by Lan Yang, Dingyuan Niu, Yong Zhang, Xueping Zhao, Xinxin Li, Jun Zhu and Hai Zhang
Nanomaterials 2025, 15(17), 1360; https://doi.org/10.3390/nano15171360 - 3 Sep 2025
Viewed by 757
Abstract
Ultra-wide bandgap β-Ga2O3 is a promising low-cost alternative to conventional direct X-ray detector materials that are limited by fabrication complexity, instability, or slow temporal response. Here, we comparatively investigate β-Ga2O3 thin films grown on c-sapphire by low-pressure [...] Read more.
Ultra-wide bandgap β-Ga2O3 is a promising low-cost alternative to conventional direct X-ray detector materials that are limited by fabrication complexity, instability, or slow temporal response. Here, we comparatively investigate β-Ga2O3 thin films grown on c-sapphire by low-pressure chemical vapor deposition (LPCVD) and plasma-enhanced CVD (PECVD), establishing a quantitative linkage between growth kinetics, microstructure, defect landscape, and X-ray detection figures of merit. The LPCVD-grown film (thickness ≈ 0.289 μm) exhibits layered coalesced grains, a narrower rocking curve (FWHM = 1.840°), and deep-level oxygen-vacancy-assisted high photoconductive gain, yielding a high sensitivity of 1.02 × 105 μC Gyair−1 cm−2 at 20 V and a thickness-normalized sensitivity of 3.539 × 105 μCGyair−1 cm−2 μm−1. In contrast, the PECVD-grown film (≈1.57 μm) shows dense columnar growth, higher O/Ga stoichiometric proximity, and shallow-trap dominance, enabling a lower dark current, superior dose detection limit (30.13 vs. 57.07 nGyair s−1), faster recovery, and monotonic SNR improvement with bias. XPS and dual exponential transient analysis corroborate a deep-trap persistent photoconductivity mechanism in LPCVD versus moderated shallow trapping in PECVD. The resulting high-gain vs. low-noise complementary paradigm clarifies defect–gain trade spaces and provides a route to engineer β-Ga2O3 thin-film X-ray detectors that simultaneously target high sensitivity, low dose limit, and temporal stability through trap and electric field management. Full article
Show Figures

Figure 1

14 pages, 15482 KB  
Article
Energy-Selective X-Ray Detection Using Chemically Tunable High-Z Nanocomposites
by Inga Pudza, Kaspars Pudzs, Andrejs Tokmakovs, Aleksandr Kalinko and Alexei Kuzmin
Materials 2025, 18(17), 4118; https://doi.org/10.3390/ma18174118 - 2 Sep 2025
Viewed by 876
Abstract
Hybrid organic–inorganic materials incorporating high-Z nanocompounds represent an emerging area of research with high, cost-effective potential for radiation detection applications, owing to their ability to enable unprecedented architectures and functional devices. Herein, we introduce a new hybrid system composed of tungstate nanoparticles [...] Read more.
Hybrid organic–inorganic materials incorporating high-Z nanocompounds represent an emerging area of research with high, cost-effective potential for radiation detection applications, owing to their ability to enable unprecedented architectures and functional devices. Herein, we introduce a new hybrid system composed of tungstate nanoparticles (SrWO4 or CdWO4) blended with P3HT:PCBM, engineered for direct X-ray detection without the need for external bias. The nanocrystalline tungstates were synthesized through a hydrothermal route. X-ray diffraction and scanning electron microscopy were employed to characterize the nanoparticle structure and morphology, respectively. Incorporation of high-Z tungstate nanoparticles was found to substantially enhance detector sensitivity within specific energy ranges, with performance tunable by varying the tungstate composition. The use of the fabricated detectors was demonstrated for both spectroscopic and imaging applications. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

14 pages, 2756 KB  
Article
Development, Design, and Electrical Performance Simulation of Novel Through-Type 3D Semi Spherical Electrode Detector Based on SOI Substrate
by Zhiyu Liu, Tao Long, Zheng Li, Xuran Zhu, Jun Zhao, Xinqing Li, Manwen Liu and Meishan Wang
Micromachines 2025, 16(9), 1006; https://doi.org/10.3390/mi16091006 - 31 Aug 2025
Viewed by 719
Abstract
This article proposes a novel three-dimensional trench electrode detector, named the through-type three-dimensional quasi-hemispherical electrode detector. The detector adopts a trench structure to package each independent unit and achieves complete penetration of trench electrodes with the help of an SOI substrate. The horizontal [...] Read more.
This article proposes a novel three-dimensional trench electrode detector, named the through-type three-dimensional quasi-hemispherical electrode detector. The detector adopts a trench structure to package each independent unit and achieves complete penetration of trench electrodes with the help of an SOI substrate. The horizontal distances from the center anode of the detector to the trench cathode and the detector thickness are equal. It has a near-spherical structure and exhibits spherical-like electrical performance. In this study, we modeled the device physics of the new structure and conducted a systematic three-dimensional simulation of its electrical characteristics, including the electric field, electric potential, electron concentration distribution of the detector, the inducted current caused by incident ions, and the crosstalk between detector units. Computational and technology computer-aided design (TCAD) simulation results show that the detector has an ultra-small capacitance (2.7 fF), low depletion voltage (1.4 V), and uniform electric field distribution. The trench electrodes electrically isolate the pixel units from each other so that the coherence effect between the units is small and can be applied in high-resolution X-ray photon counting detectors to enhance the contrast-to-noise ratio of low-dose imaging and the detection rate of tiny structures, among other things. Full article
(This article belongs to the Special Issue Photonic and Optoelectronic Devices and Systems, Third Edition)
Show Figures

Figure 1

12 pages, 2879 KB  
Article
Fabrication and Characterization of Ce-Doped LiCaAlF6–CaF2–Li3AlF6 and CaF2–LiF–Li3AlF6 Scintillators for Thermal Neutron Detection
by Tomoaki Matsuyama, Kei Kamada, Naveenkarthik Murugesan, Masao Yoshino, Rikito Murakami, Akihito Yamaji, Hiroki Sato, Kyoung-Jin Kim, Satoshi Ishizawa, Shunsuke Kurosawa, Takashi Hanada, Yuui Yokota and Akira Yoshikawa
Crystals 2025, 15(9), 761; https://doi.org/10.3390/cryst15090761 - 27 Aug 2025
Viewed by 591
Abstract
In this study, we developed and characterized novel scintillators with Ce: LiCaAlF6–CaF2–Li3AlF6 and Ce: CaF2–LiF–Li3AlF6 ternary systems for thermal neutron detectors. The eutectics were grown by the vertical Stochbarger-Bridgman (VB) technique, [...] Read more.
In this study, we developed and characterized novel scintillators with Ce: LiCaAlF6–CaF2–Li3AlF6 and Ce: CaF2–LiF–Li3AlF6 ternary systems for thermal neutron detectors. The eutectics were grown by the vertical Stochbarger-Bridgman (VB) technique, and their constituent phases were identified using powder X-ray diffraction and scanning electron microscopy. Radioluminescence spectra irradiated under an Ag-target X-ray tube and confirmed the 5d-4f and self-trapped exciton luminescence derived from Ce3+. Scintillation decay and pulse height measurements were performed using 252Cf and 60Co sources. The Ce: CaF2–LiF–Li3AlF6 sample exhibited approximately 5.6 times higher effective neutron sensitivity compared with a Ce: LiCaAlF6 single crystal. A favorable decrease in the neutron discrimination threshold level (Qth) due to reduced γ-ray emission was observed. 6Li-enriched Ce: CaF-based scintillators hold potential for nuclear decommissioning applications. Full article
Show Figures

Figure 1

17 pages, 4347 KB  
Article
Carbon Quantum Dot-Embedded SiO2: PMMA Hybrid as a Blue-Emitting Plastic Scintillator for Cosmic Ray Detection
by Lorena Cruz León, Martin Rodolfo Palomino Merino, José Eduardo Espinosa Rosales, Samuel Tehuacanero Cuapa, Benito de Celis Alonso, Oscar Mario Martínez Bravo, Oliver Isac Ruiz-Hernandez, José Gerardo Suárez García, Miller Toledo-Solano and Jesús Eduardo Lugo Arce
Photonics 2025, 12(9), 854; https://doi.org/10.3390/photonics12090854 - 26 Aug 2025
Cited by 1 | Viewed by 1033
Abstract
This work reports the synthesis and characterization of Carbon Quantum Dots (CQDs) embedded in an organic–inorganic hybrid SiO2: PMMA matrix, designed as a novel plastic scintillator material. The CQDs were synthesized through a solvo-hydrothermal method and incorporated using a sol–gel polymerization [...] Read more.
This work reports the synthesis and characterization of Carbon Quantum Dots (CQDs) embedded in an organic–inorganic hybrid SiO2: PMMA matrix, designed as a novel plastic scintillator material. The CQDs were synthesized through a solvo-hydrothermal method and incorporated using a sol–gel polymerization process, resulting in a mechanically durable and optically active hybrid. Structural analysis with X-ray diffraction and TEM confirmed crystalline quantum dots approximately 10 nm in size. Extensive optical characterization, including band gap measurement, photoluminescence under 325 nm UV excitation, lifetime evaluations, and quantum yield measurement, revealed a blue emission centered at 426 nm with a decay time of 3–3.6 ns. The hybrid scintillator was integrated into a compact cosmic ray detector using a photomultiplier tube optimized for 420 nm detection. The system effectively detected secondary atmospheric muons produced by low-energy cosmic rays, validated through the vertical equivalent muon (VEM) technique. These findings highlight the potential of CQD-based hybrid materials for advanced optical sensing and scintillation applications in complex environments, supporting the development of compact and sensitive detection systems. Full article
Show Figures

Figure 1

18 pages, 22685 KB  
Article
ASC-YOLO: Multi-Scale Feature Fusion and Adaptive Decoupled Head for Fracture Detection in Medical Imaging
by Shenghong Du and Yan Wei
Appl. Sci. 2025, 15(16), 9031; https://doi.org/10.3390/app15169031 - 15 Aug 2025
Viewed by 860
Abstract
Fractures occur frequently in daily life, and before a surgeon implements treatment, the plan needs to be based on the radiologist’s imaging diagnosis of the X-ray. Despite progress in deep learning–based fracture detection, existing methods (e.g., two-stage detectors) face challenges such as small [...] Read more.
Fractures occur frequently in daily life, and before a surgeon implements treatment, the plan needs to be based on the radiologist’s imaging diagnosis of the X-ray. Despite progress in deep learning–based fracture detection, existing methods (e.g., two-stage detectors) face challenges such as small target leakage and sensitivity to background interference in complex medical images. To address these issues, this paper proposes the ASC-YOLO model, which employs the Scale-Sensitive Feature Fusion (SSFF) module to enhance multi-scale information extraction through cross-layer feature interaction. In addition, an Adaptive Decoupled Detection Head (AsDDet) is introduced to decouple the classification and regression tasks of the detection head, thereby improving the localization accuracy of small fracture regions and suppressing background noise. Experiments on a large fracture radiograph dataset, GRAZPEDWRI-DX, demonstrate that ASC-YOLO achieves 61% mAP@50, representing an 8% improvement over the baseline YOLO model (mAP@53%). It attains 95% mAP@50 for the fracture category and 97% mAP@50 for the metal category. Furthermore, the model was evaluated on a tumor dataset to verify its generalization capability. The proposed framework provides reliable technical support for accurate fracture screening, which is expected to reduce missed diagnoses and optimize treatment. Full article
Show Figures

Figure 1

20 pages, 3199 KB  
Article
The Application of a Simple Synthesis Process to Obtain Trirutile-Type Cobalt Antimonate Powders and the Study of Their Electrical Properties in Propane Atmospheres for Use in Gas Sensors
by Lucía Ivonne Juárez Amador, Héctor Guillén Bonilla, Alex Guillén Bonilla, José Trinidad Guillén Bonilla, Verónica María Rodríguez Betancourtt, Jorge Alberto Ramírez Ortega, Antonio Casillas Zamora and Emilio Huizar Padilla
Coatings 2025, 15(8), 952; https://doi.org/10.3390/coatings15080952 - 14 Aug 2025
Viewed by 745
Abstract
The dynamic response in propane atmospheres at different voltages was investigated for samples made from powders of the semiconductor oxide CoSb2O6 synthesized using the microwave-assisted colloidal method. Powders of the compound calcined at 700 °C were studied with X-ray diffraction, [...] Read more.
The dynamic response in propane atmospheres at different voltages was investigated for samples made from powders of the semiconductor oxide CoSb2O6 synthesized using the microwave-assisted colloidal method. Powders of the compound calcined at 700 °C were studied with X-ray diffraction, confirming the CoSb2O6 crystalline phase. The microstructural characteristics of the oxide were analyzed using scanning and transmission electron microscopy (SEM/TEM), revealing a high abundance of nanorods, nanoplates, and irregular nanoparticles. These nanoparticles have an average size of ~21 nm. Using UV-Vis, absorption bands associated with the electronic transitions of the CoSb2O6’s characteristic bonds were identified, which yielded a bandgap value of ~1.8 eV. Raman spectroscopy identified vibrational bands corresponding to the oxide’s Sb–O and Co–O bonds. Dynamic sensing tests at 300 °C confirmed the material’s p-type semiconductor behavior, showing an increase in resistance upon exposure to propane. Critically, these tests revealed that the sensor’s baseline resistance and overall response are tunable by the applied voltage (1–12 V), with the highest sensitivity observed at the lowest voltages. This establishes a clear relationship between the electrical operating parameters and the sensing performance. The samples exhibited good operational stability, capacity, and efficiency, along with short response and recovery times. Extra-dry air (1500 cm3/min) was used as the carrier gas to stabilize the films’ surfaces during propane detection. These findings lead us to conclude that the CoSb2O6 could serve as an excellent gas detector. Full article
(This article belongs to the Special Issue Thin Films and Nanostructures Deposition Techniques)
Show Figures

Figure 1

Back to TopTop