Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = YOLO-UOD

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3729 KiB  
Article
An Improved YOLO Algorithm for Fast and Accurate Underwater Object Detection
by Shijia Zhao, Jiachun Zheng, Shidan Sun and Lei Zhang
Symmetry 2022, 14(8), 1669; https://doi.org/10.3390/sym14081669 - 11 Aug 2022
Cited by 33 | Viewed by 6925
Abstract
Due to the abundant natural resources of the underwater world, autonomous exploration using underwater robots has become an effective technological tool in recent years. Real-time object detection is critical when employing robots for independent underwater exploration. However, when a robot detects underwater, its [...] Read more.
Due to the abundant natural resources of the underwater world, autonomous exploration using underwater robots has become an effective technological tool in recent years. Real-time object detection is critical when employing robots for independent underwater exploration. However, when a robot detects underwater, its computing power is usually limited, which makes it challenging to detect objects effectively. To solve this problem, this study presents a novel algorithm for underwater object detection based on YOLOv4-tiny to achieve better performance with less computational cost. First, a symmetrical bottleneck-type structure is introduced into the YOLOv4-tiny’s backbone network based on dilated convolution and 1 × 1 convolution. It captures contextual information in feature maps with reasonable computational cost and improves the mAP score by 8.74% compared to YOLOv4-tiny. Second, inspired by the convolutional block attention module, a symmetric FPN-Attention module is constructed by integrating the channel-attention module and the spatial-attention module. Features extracted by the backbone network can be fused more efficiently by the symmetric FPN-Attention module, achieving a performance improvement of 8.75% as measured by mAP score compared to YOLOv4-tiny. Finally, this work proposed the YOLO-UOD for underwater object detection through the fusion of the YOLOv4-tiny structure, symmetric FPN-Attention module, symmetric bottleneck-type dilated convolutional layers, and label smoothing training strategy. It can efficiently detect underwater objects in an embedded system environment with limited computing power. Experiments show that the proposed YOLO-UOD outperforms the baseline model on the Brackish underwater dataset, with a detection mAP of 87.88%, 10.5% higher than that of YOLOv4-tiny’s 77.38%, and the detection result exceeds YOLOv5s’s 83.05% and YOLOv5m’s 84.34%. YOLO-UOD is deployed on the embedded system Jetson Nano 2 GB with a detection speed of 9.24 FPS, which shows that it can detect effectively in scenarios with limited computing power. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

Back to TopTop