Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (101)

Search Parameters:
Keywords = YOLOv8-seg

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 39557 KiB  
Article
Automated Segmentation and Quantification of Histology Fragments for Enhanced Macroscopic Reporting
by Mounira Chaiani, Sid Ahmed Selouani and Sylvain Mailhot
Appl. Sci. 2025, 15(17), 9276; https://doi.org/10.3390/app15179276 (registering DOI) - 23 Aug 2025
Abstract
Manual tissue documentation is a critical step in the field of pathology that sets the stage for microscopic analysis and significantly influences diagnostic outcomes. In routine practice, technicians verbally dictate descriptions of specimens during gross examination; these are later transcribed into macroscopic reports. [...] Read more.
Manual tissue documentation is a critical step in the field of pathology that sets the stage for microscopic analysis and significantly influences diagnostic outcomes. In routine practice, technicians verbally dictate descriptions of specimens during gross examination; these are later transcribed into macroscopic reports. Fragment sizes are measured manually with rulers; however, these measurements are often inconsistent for small, irregular biopsies. No photographic record is captured for traceability. To address these limitations, we propose a proof-of-concept framework that automates the image capture and documentation of biopsy and resection cassettes. It integrates a custom imaging platform and a segmentation pipeline leveraging the YOLOv8 and YOLOv9 architectures to improve accuracy and efficiency. The framework was tested in a real clinical context and was evaluated on two datasets of 100 annotated images each, achieving a mask mean Average Precision (mAP) of 0.9517 ± 0107 and a tissue fragment spatial accuracy of 96.20 ± 1.37%. These results demonstrate the potential of our framework to enhance the standardization, reliability, and speed of macroscopic documentation, contributing to improved traceability and diagnostic precision. Full article
(This article belongs to the Special Issue Improving Healthcare with Artificial Intelligence)
25 pages, 24334 KiB  
Article
Unsupervised Knowledge Extraction of Distinctive Landmarks from Earth Imagery Using Deep Feature Outliers for Robust UAV Geo-Localization
by Zakhar Ostrovskyi, Oleksander Barmak, Pavlo Radiuk and Iurii Krak
Mach. Learn. Knowl. Extr. 2025, 7(3), 81; https://doi.org/10.3390/make7030081 - 13 Aug 2025
Viewed by 290
Abstract
Vision-based navigation is a common solution for the critical challenge of GPS-denied Unmanned Aerial Vehicle (UAV) operation, but a research gap remains in the autonomous discovery of robust landmarks from aerial survey imagery needed for such systems. In this work, we propose a [...] Read more.
Vision-based navigation is a common solution for the critical challenge of GPS-denied Unmanned Aerial Vehicle (UAV) operation, but a research gap remains in the autonomous discovery of robust landmarks from aerial survey imagery needed for such systems. In this work, we propose a framework to fill this gap by identifying visually distinctive urban buildings from aerial survey imagery and curating them into a landmark database for GPS-free UAV localization. The proposed framework constructs semantically rich embeddings using intermediate layers from a pre-trained YOLOv11n-seg segmentation network. This novel technique requires no additional training. An unsupervised landmark selection strategy, based on the Isolation Forest algorithm, then identifies objects with statistically unique embeddings. Experimental validation on the VPAIR aerial-to-aerial benchmark shows that the proposed max-pooled embeddings, assembled from selected layers, significantly improve retrieval performance. The top-1 retrieval accuracy for landmarks more than doubled compared to typical buildings (0.53 vs. 0.31), and a Recall@5 of 0.70 is achieved for landmarks. Overall, this study demonstrates that unsupervised outlier selection in a carefully constructed embedding space yields a highly discriminative, computation-friendly set of landmarks suitable for real-time, robust UAV navigation. Full article
(This article belongs to the Special Issue Deep Learning in Image Analysis and Pattern Recognition, 2nd Edition)
Show Figures

Figure 1

18 pages, 3256 KiB  
Article
YOLOv8-Seg with Dynamic Multi-Kernel Learning for Infrared Gas Leak Segmentation: A Weakly Supervised Approach
by Haoyang Shen, Lushuai Xu, Mingyue Wang, Shaohua Dong, Qingqing Xu, Feng Li and Haiyang Yu
Sensors 2025, 25(16), 4939; https://doi.org/10.3390/s25164939 - 10 Aug 2025
Viewed by 338
Abstract
Gas leak detection in oil and gas processing facilities is a critical component of the safety production monitoring system. Non-contact detection technology based on infrared imaging has emerged as a vital real-time monitoring method due to its rapid response and extensive coverage. However, [...] Read more.
Gas leak detection in oil and gas processing facilities is a critical component of the safety production monitoring system. Non-contact detection technology based on infrared imaging has emerged as a vital real-time monitoring method due to its rapid response and extensive coverage. However, existing pixel-level segmentation networks face challenges such as insufficient segmentation accuracy, rough gas edges, and jagged boundaries. To address these issues, this study proposes a novel pixel-level segmentation network training framework based on anchor box annotation and enhances the segmentation performance of the YOLOv8-seg network for gas detection applications. First, a dynamic threshold is introduced using the Visual Background Extractor (ViBe) method, which, in combination with the YOLOv8-det network, generates binary masks to serve as training masks. Next, a segmentation head architecture is designed, incorporating dynamic kernels and multi-branch collaboration. This architecture utilizes feature concatenation under deformable convolution and attention mechanisms to replace parts of the original segmentation head, thereby enhancing the extraction of detailed gas features and reducing dependency on anchor boxes during segmentation. Finally, a joint Dice-BCE (Binary Cross-Entropy) loss, weighted by ViBe-CRF (Conditional Random Fields) confidence, is employed to replace the original Seg_loss. This effectively reduces roughness and jaggedness at gas edges, significantly improving segmentation accuracy. Experimental results indicate that the improved network achieves a 6.4% increase in F1 score and a 7.6% improvement in the mIoU (mean Intersection over Union) metric. This advancement provides a new, real-time, and efficient detection algorithm for infrared imaging of gas leaks in oil and gas processing facilities. Furthermore, it introduces a low-cost weakly supervised learning approach for training pixel-level segmentation networks. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

24 pages, 4902 KiB  
Article
A Classification Method for the Severity of Aloe Anthracnose Based on the Improved YOLOv11-seg
by Wenshan Zhong, Xuantian Li, Xuejun Yue, Wanmei Feng, Qiaoman Yu, Junzhi Chen, Biao Chen, Le Zhang, Xinpeng Cai and Jiajie Wen
Agronomy 2025, 15(8), 1896; https://doi.org/10.3390/agronomy15081896 - 7 Aug 2025
Viewed by 391
Abstract
Anthracnose, a significant disease of aloe with characteristics of contact transmission, poses a considerable threat to the economic viability of aloe cultivation. To address the challenges of accurately detecting and classifying crop diseases in complex environments, this study proposes an enhanced algorithm, YOLOv11-seg-DEDB, [...] Read more.
Anthracnose, a significant disease of aloe with characteristics of contact transmission, poses a considerable threat to the economic viability of aloe cultivation. To address the challenges of accurately detecting and classifying crop diseases in complex environments, this study proposes an enhanced algorithm, YOLOv11-seg-DEDB, based on the improved YOLOv11-seg model. This approach integrates multi-scale feature enhancement and a dynamic attention mechanism, aiming to achieve precise segmentation of aloe anthracnose lesions and effective disease level discrimination in complex scenarios. Specifically, a novel Disease Enhance attention mechanism is introduced, combining spatial attention and max pooling to improve the accuracy of lesion segmentation. Additionally, the DCNv2 is incorporated into the network neck to enhance the model’s ability to extract multi-scale features from targets in challenging environments. Furthermore, the Bidirectional Feature Pyramid Network structure, which includes an additional p2 detection head, replaces the original PANet network. A more lightweight detection head structure is designed, utilizing grouped convolutions and structural simplifications to reduce both the parameter count and computational load, thereby enhancing the model’s inference capability, particularly for small lesions. Experiments were conducted using a self-collected dataset of aloe anthracnose infected leaves. The results demonstrate that, compared to the original model, the improved YOLOv11-seg-DEDB model improves segmentation accuracy and mAP@50 for infected lesions by 5.3% and 3.4%, respectively. Moreover, the model size is reduced from 6.0 MB to 4.6 MB, and the number of parameters is decreased by 27.9%. YOLOv11-seg-DEDB outperforms other mainstream segmentation models, providing a more accurate solution for aloe disease segmentation and grading, thereby offering farmers and professionals more reliable disease detection outcomes. Full article
(This article belongs to the Special Issue Smart Pest Control for Building Farm Resilience)
Show Figures

Figure 1

25 pages, 9225 KiB  
Article
Enhanced YOLO11n-Seg with Attention Mechanism and Geometric Metric Optimization for Instance Segmentation of Ripe Blueberries in Complex Greenhouse Environments
by Rongxiang Luo, Rongrui Zhao and Bangjin Yi
Agriculture 2025, 15(15), 1697; https://doi.org/10.3390/agriculture15151697 - 6 Aug 2025
Viewed by 297
Abstract
This study proposes an improved YOLO11n-seg instance segmentation model to address the limitations of existing models in accurately identifying mature blueberries in complex greenhouse environments. Current methods often lack sufficient accuracy when dealing with complex scenarios, such as fruit occlusion, lighting variations, and [...] Read more.
This study proposes an improved YOLO11n-seg instance segmentation model to address the limitations of existing models in accurately identifying mature blueberries in complex greenhouse environments. Current methods often lack sufficient accuracy when dealing with complex scenarios, such as fruit occlusion, lighting variations, and target overlap. To overcome these challenges, we developed a novel approach that integrates a Spatial–Channel Adaptive (SCA) attention mechanism and a Dual Attention Balancing (DAB) module. The SCA mechanism dynamically adjusts the receptive field through deformable convolutions and fuses multi-scale color features. This enhances the model’s ability to recognize occluded targets and improves its adaptability to variations in lighting. The DAB module combines channel–spatial attention and structural reparameterization techniques. This optimizes the YOLO11n structure and effectively suppresses background interference. Consequently, the model’s accuracy in recognizing fruit contours improves. Additionally, we introduce Normalized Wasserstein Distance (NWD) to replace the traditional intersection over union (IoU) metric and address bias issues that arise in dense small object matching. Experimental results demonstrate that the improved model significantly improves target detection accuracy, recall rate, and mAP@0.5, achieving increases of 1.8%, 1.5%, and 0.5%, respectively, over the baseline model. On our self-built greenhouse blueberry dataset, the mask segmentation accuracy, recall rate, and mAP@0.5 increased by 0.8%, 1.2%, and 0.1%, respectively. In tests across six complex scenarios, the improved model demonstrated greater robustness than mainstream models such as YOLOv8n-seg, YOLOv8n-seg-p6, and YOLOv9c-seg, especially in scenes with dense occlusions. The improvement in mAP@0.5 and F1 scores validates the effectiveness of combining attention mechanisms and multiple metric optimizations, for instance, segmentation tasks in complex agricultural scenes. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

29 pages, 3842 KiB  
Article
SABE-YOLO: Structure-Aware and Boundary-Enhanced YOLO for Weld Seam Instance Segmentation
by Rui Wen, Wu Xie, Yong Fan and Lanlan Shen
J. Imaging 2025, 11(8), 262; https://doi.org/10.3390/jimaging11080262 - 6 Aug 2025
Viewed by 289
Abstract
Accurate weld seam recognition is essential in automated welding systems, as it directly affects path planning and welding quality. With the rapid advancement of industrial vision, weld seam instance segmentation has emerged as a prominent research focus in both academia and industry. However, [...] Read more.
Accurate weld seam recognition is essential in automated welding systems, as it directly affects path planning and welding quality. With the rapid advancement of industrial vision, weld seam instance segmentation has emerged as a prominent research focus in both academia and industry. However, existing approaches still face significant challenges in boundary perception and structural representation. Due to the inherently elongated shapes, complex geometries, and blurred edges of weld seams, current segmentation models often struggle to maintain high accuracy in practical applications. To address this issue, a novel structure-aware and boundary-enhanced YOLO (SABE-YOLO) is proposed for weld seam instance segmentation. First, a Structure-Aware Fusion Module (SAFM) is designed to enhance structural feature representation through strip pooling attention and element-wise multiplicative fusion, targeting the difficulty in extracting elongated and complex features. Second, a C2f-based Boundary-Enhanced Aggregation Module (C2f-BEAM) is constructed to improve edge feature sensitivity by integrating multi-scale boundary detail extraction, feature aggregation, and attention mechanisms. Finally, the inner minimum point distance-based intersection over union (Inner-MPDIoU) is introduced to improve localization accuracy for weld seam regions. Experimental results on the self-built weld seam image dataset show that SABE-YOLO outperforms YOLOv8n-Seg by 3 percentage points in the AP(50–95) metric, reaching 46.3%. Meanwhile, it maintains a low computational cost (18.3 GFLOPs) and a small number of parameters (6.6M), while achieving an inference speed of 127 FPS, demonstrating a favorable trade-off between segmentation accuracy and computational efficiency. The proposed method provides an effective solution for high-precision visual perception of complex weld seam structures and demonstrates strong potential for industrial application. Full article
(This article belongs to the Section Image and Video Processing)
Show Figures

Figure 1

18 pages, 6413 KiB  
Article
A Recognition Method for Marigold Picking Points Based on the Lightweight SCS-YOLO-Seg Model
by Baojian Ma, Zhenghao Wu, Yun Ge, Bangbang Chen, He Zhang, Hao Xia and Dongyun Wang
Sensors 2025, 25(15), 4820; https://doi.org/10.3390/s25154820 - 5 Aug 2025
Viewed by 385
Abstract
Accurate identification of picking points remains a critical challenge for automated marigold harvesting, primarily due to complex backgrounds and significant pose variations of the flowers. To overcome this challenge, this study proposes SCS-YOLO-Seg, a novel method based on a lightweight segmentation model. The [...] Read more.
Accurate identification of picking points remains a critical challenge for automated marigold harvesting, primarily due to complex backgrounds and significant pose variations of the flowers. To overcome this challenge, this study proposes SCS-YOLO-Seg, a novel method based on a lightweight segmentation model. The approach enhances the baseline YOLOv8n-seg architecture by replacing its backbone with StarNet and introducing C2f-Star, a novel lightweight feature extraction module. These modifications achieve substantial model compression, significantly reducing the model size, parameter count, and computational complexity (GFLOPs). Segmentation efficiency is further optimized through a dual-path collaborative architecture (Seg-Marigold head). Following mask extraction, picking points are determined by intersecting the optimized elliptical mask fitting results with the stem skeleton. Experimental results demonstrate that SCS-YOLO-Seg effectively balances model compression with segmentation performance. Compared to YOLOv8n-seg, it maintains high accuracy while significantly reducing resource requirements, achieving a picking point identification accuracy of 93.36% with an average inference time of 28.66 ms per image. This work provides a robust and efficient solution for vision systems in automated marigold harvesting. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

28 pages, 8838 KiB  
Article
An End-to-End Particle Gradation Detection Method for Earth–Rockfill Dams from Images Using an Enhanced YOLOv8-Seg Model
by Yu Tang, Shixiang Zhao, Hui Qin, Pan Ming, Tianxing Fang and Jinyuan Zeng
Sensors 2025, 25(15), 4797; https://doi.org/10.3390/s25154797 - 4 Aug 2025
Viewed by 393
Abstract
Rockfill particle gradation significantly influences mechanical performance in earth–rockfill dam construction, yet on-site screening is often time-consuming, labor-intensive, and structurally invasive. This study proposes a rapid and non-destructive detection method using mobile-based photography and an end-to-end image segmentation approach. An enhanced YOLOv8-seg model [...] Read more.
Rockfill particle gradation significantly influences mechanical performance in earth–rockfill dam construction, yet on-site screening is often time-consuming, labor-intensive, and structurally invasive. This study proposes a rapid and non-destructive detection method using mobile-based photography and an end-to-end image segmentation approach. An enhanced YOLOv8-seg model with an integrated dual-attention mechanism was pre-trained on laboratory images to accurately segment densely stacked particles. Transfer learning was then employed to retrain the model using a limited number of on-site images, achieving high segmentation accuracy. The proposed model attains a mAP50 of 97.8% (base dataset) and 96.1% (on-site dataset), enabling precise segmentation of adhered and overlapped particles with various sizes. A Minimum Area Rectangle algorithm was introduced to compute the gradation, closely matching the results from manual screening. This method significantly contributes to the automation of construction workflows, cutting labor costs, minimizing structural disruption, and ensuring reliable measurement quality in earth–rockfill dam projects. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

19 pages, 2276 KiB  
Article
Segmentation of Stone Slab Cracks Based on an Improved YOLOv8 Algorithm
by Qitao Tian, Runshu Peng and Fuzeng Wang
Appl. Sci. 2025, 15(15), 8610; https://doi.org/10.3390/app15158610 - 3 Aug 2025
Viewed by 474
Abstract
To tackle the challenges of detecting complex cracks on large stone slabs with noisy textures, this paper presents the first domain-optimized framework for stone slab cracks, an improved semantic segmentation model (YOLOv8-Seg) synergistically integrating U-NetV2, DSConv, and DySample. The network uses the lightweight [...] Read more.
To tackle the challenges of detecting complex cracks on large stone slabs with noisy textures, this paper presents the first domain-optimized framework for stone slab cracks, an improved semantic segmentation model (YOLOv8-Seg) synergistically integrating U-NetV2, DSConv, and DySample. The network uses the lightweight U-NetV2 backbone combined with dynamic feature recalibration and multi-scale refinement to better capture fine crack details. The dynamic up-sampling module (DySample) helps to adaptively reconstruct curved boundaries. In addition, the dynamic snake convolution head (DSConv) improves the model’s ability to follow irregular crack shapes. Experiments on the custom-built ST stone crack dataset show that YOLOv8-Seg achieves an mAP@0.5 of 0.856 and an mAP@0.5–0.95 of 0.479. The model also reaches a mean intersection over union (MIoU) of 79.17%, outperforming both baseline and mainstream segmentation models. Ablation studies confirm the value of each module. Comparative tests and industrial validation demonstrate stable performance across different stone materials and textures and a 30% false-positive reduction in real production environments. Overall, YOLOv8-Seg greatly improves segmentation accuracy and robustness in industrial crack detection on natural stone slabs, offering a strong solution for intelligent visual inspection in real-world applications. Full article
Show Figures

Figure 1

40 pages, 18923 KiB  
Article
Twin-AI: Intelligent Barrier Eddy Current Separator with Digital Twin and AI Integration
by Shohreh Kia, Johannes B. Mayer, Erik Westphal and Benjamin Leiding
Sensors 2025, 25(15), 4731; https://doi.org/10.3390/s25154731 - 31 Jul 2025
Viewed by 293
Abstract
The current paper presents a comprehensive intelligent system designed to optimize the performance of a barrier eddy current separator (BECS), comprising a conveyor belt, a vibration feeder, and a magnetic drum. This system was trained and validated on real-world industrial data gathered directly [...] Read more.
The current paper presents a comprehensive intelligent system designed to optimize the performance of a barrier eddy current separator (BECS), comprising a conveyor belt, a vibration feeder, and a magnetic drum. This system was trained and validated on real-world industrial data gathered directly from the working separator under 81 different operational scenarios. The intelligent models were used to recommend optimal settings for drum speed, belt speed, vibration intensity, and drum angle, thereby maximizing separation quality and minimizing energy consumption. the smart separation module utilizes YOLOv11n-seg and achieves a mean average precision (mAP) of 0.838 across 7163 industrial instances from aluminum, copper, and plastic materials. For shape classification (sharp vs. smooth), the model reached 91.8% accuracy across 1105 annotated samples. Furthermore, the thermal monitoring unit can detect iron contamination by analyzing temperature anomalies. Scenarios with iron showed a maximum temperature increase of over 20 °C compared to clean materials, with a detection response time of under 2.5 s. The architecture integrates a Digital Twin using Azure Digital Twins to virtually mirror the system, enabling real-time tracking, behavior simulation, and remote updates. A full connection with the PLC has been implemented, allowing the AI-driven system to adjust physical parameters autonomously. This combination of AI, IoT, and digital twin technologies delivers a reliable and scalable solution for enhanced separation quality, improved operational safety, and predictive maintenance in industrial recycling environments. Full article
(This article belongs to the Special Issue Sensors and IoT Technologies for the Smart Industry)
Show Figures

Figure 1

30 pages, 92065 KiB  
Article
A Picking Point Localization Method for Table Grapes Based on PGSS-YOLOv11s and Morphological Strategies
by Jin Lu, Zhongji Cao, Jin Wang, Zhao Wang, Jia Zhao and Minjie Zhang
Agriculture 2025, 15(15), 1622; https://doi.org/10.3390/agriculture15151622 - 26 Jul 2025
Viewed by 375
Abstract
During the automated picking of table grapes, the automatic recognition and segmentation of grape pedicels, along with the positioning of picking points, are vital components for all the following operations of the harvesting robot. In the actual scene of a grape plantation, however, [...] Read more.
During the automated picking of table grapes, the automatic recognition and segmentation of grape pedicels, along with the positioning of picking points, are vital components for all the following operations of the harvesting robot. In the actual scene of a grape plantation, however, it is extremely difficult to accurately and efficiently identify and segment grape pedicels and then reliably locate the picking points. This is attributable to the low distinguishability between grape pedicels and the surrounding environment such as branches, as well as the impacts of other conditions like weather, lighting, and occlusion, which are coupled with the requirements for model deployment on edge devices with limited computing resources. To address these issues, this study proposes a novel picking point localization method for table grapes based on an instance segmentation network called Progressive Global-Local Structure-Sensitive Segmentation (PGSS-YOLOv11s) and a simple combination strategy of morphological operators. More specifically, the network PGSS-YOLOv11s is composed of an original backbone of the YOLOv11s-seg, a spatial feature aggregation module (SFAM), an adaptive feature fusion module (AFFM), and a detail-enhanced convolutional shared detection head (DE-SCSH). And the PGSS-YOLOv11s have been trained with a new grape segmentation dataset called Grape-⊥, which includes 4455 grape pixel-level instances with the annotation of ⊥-shaped regions. After the PGSS-YOLOv11s segments the ⊥-shaped regions of grapes, some morphological operations such as erosion, dilation, and skeletonization are combined to effectively extract grape pedicels and locate picking points. Finally, several experiments have been conducted to confirm the validity, effectiveness, and superiority of the proposed method. Compared with the other state-of-the-art models, the main metrics F1 score and mask mAP@0.5 of the PGSS-YOLOv11s reached 94.6% and 95.2% on the Grape-⊥ dataset, as well as 85.4% and 90.0% on the Winegrape dataset. Multi-scenario tests indicated that the success rate of positioning the picking points reached up to 89.44%. In orchards, real-time tests on the edge device demonstrated the practical performance of our method. Nevertheless, for grapes with short pedicels or occluded pedicels, the designed morphological algorithm exhibited the loss of picking point calculations. In future work, we will enrich the grape dataset by collecting images under different lighting conditions, from various shooting angles, and including more grape varieties to improve the method’s generalization performance. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

21 pages, 3463 KiB  
Article
Apple Rootstock Cutting Drought-Stress-Monitoring Model Based on IMYOLOv11n-Seg
by Xu Wang, Hongjie Liu, Pengfei Wang, Long Gao and Xin Yang
Agriculture 2025, 15(15), 1598; https://doi.org/10.3390/agriculture15151598 - 24 Jul 2025
Viewed by 341
Abstract
To ensure the normal water status of apple rootstock softwood cuttings during the initial stage of cutting, a drought stress monitoring model was designed. The model is optimized based on the YOLOv11n-seg instance segmentation model, using the leaf curl degree of cuttings as [...] Read more.
To ensure the normal water status of apple rootstock softwood cuttings during the initial stage of cutting, a drought stress monitoring model was designed. The model is optimized based on the YOLOv11n-seg instance segmentation model, using the leaf curl degree of cuttings as the classification basis for drought-stress grades. The backbone structure of the IMYOLOv11n-seg model is improved by the C3K2_CMUNeXt module and the multi-head self-attention (MHSA) mechanism module. The neck part is optimized by the KFHA module (Kalman filter and Hungarian algorithm model), and the head part enhances post-processing effects through HIoU-SD (hierarchical IoU–spatial distance filtering algorithm). The IMYOLOv11-seg model achieves an average inference speed of 33.53 FPS (frames per second) and the mean intersection over union (MIoU) value of 0.927. The average recognition accuracies for cuttings under normal water status, mild drought stress, moderate drought stress, and severe drought stress are 94.39%, 93.27%, 94.31%, and 94.71%, respectively. The IMYOLOv11n-seg model demonstrates the best comprehensive performance in ablation and comparative experiments. The automatic humidification system equipped with the IMYOLOv11n-seg model saves 6.14% more water than the labor group. This study provides a design approach for an automatic humidification system in protected agriculture during apple rootstock cutting propagation. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

26 pages, 78396 KiB  
Article
SWRD–YOLO: A Lightweight Instance Segmentation Model for Estimating Rice Lodging Degree in UAV Remote Sensing Images with Real-Time Edge Deployment
by Chunyou Guo and Feng Tan
Agriculture 2025, 15(15), 1570; https://doi.org/10.3390/agriculture15151570 - 22 Jul 2025
Viewed by 422
Abstract
Rice lodging severely affects crop growth, yield, and mechanized harvesting efficiency. The accurate detection and quantification of lodging areas are crucial for precision agriculture and timely field management. However, Unmanned Aerial Vehicle (UAV)-based lodging detection faces challenges such as complex backgrounds, variable lighting, [...] Read more.
Rice lodging severely affects crop growth, yield, and mechanized harvesting efficiency. The accurate detection and quantification of lodging areas are crucial for precision agriculture and timely field management. However, Unmanned Aerial Vehicle (UAV)-based lodging detection faces challenges such as complex backgrounds, variable lighting, and irregular lodging patterns. To address these issues, this study proposes SWRD–YOLO, a lightweight instance segmentation model that enhances feature extraction and fusion using advanced convolution and attention mechanisms. The model employs an optimized loss function to improve localization accuracy, achieving precise lodging area segmentation. Additionally, a grid-based lodging ratio estimation method is introduced, dividing images into fixed-size grids to calculate local lodging proportions and aggregate them for robust overall severity assessment. Evaluated on a self-built rice lodging dataset, the model achieves 94.8% precision, 88.2% recall, 93.3% mAP@0.5, and 91.4% F1 score, with real-time inference at 16.15 FPS on an embedded NVIDIA Jetson Orin NX device. Compared to the baseline YOLOv8n-seg, precision, recall, mAP@0.5, and F1 score improved by 8.2%, 16.5%, 12.8%, and 12.8%, respectively. These results confirm the model’s effectiveness and potential for deployment in intelligent crop monitoring and sustainable agriculture. Full article
Show Figures

Figure 1

20 pages, 4148 KiB  
Article
Automated Discrimination of Appearance Quality Grade of Mushroom (Stropharia rugoso-annulata) Using Computer Vision-Based Air-Blown System
by Meng Lv, Lei Kong, Qi-Yuan Zhang and Wen-Hao Su
Sensors 2025, 25(14), 4482; https://doi.org/10.3390/s25144482 - 18 Jul 2025
Viewed by 409
Abstract
The mushroom Stropharia rugoso-annulata is one of the most popular varieties in the international market because it is highly nutritious and has a delicious flavor. However, grading is still performed manually, leading to inconsistent grading standards and low efficiency. In this study, deep [...] Read more.
The mushroom Stropharia rugoso-annulata is one of the most popular varieties in the international market because it is highly nutritious and has a delicious flavor. However, grading is still performed manually, leading to inconsistent grading standards and low efficiency. In this study, deep learning and computer vision techniques were used to develop an automated air-blown grading system for classifying this mushroom into three quality grades. The system consisted of a classification module and a grading module. In the classification module, the cap and stalk regions were extracted using the YOLOv8-seg algorithm, then post-processed using OpenCV based on quantitative grading indexes, forming the proposed SegGrade algorithm. In the grading module, an air-blown grading system with an automatic feeding unit was developed in combination with the SegGrade algorithm. The experimental results show that for 150 randomly selected mushrooms, the trained YOLOv8-seg algorithm achieved an accuracy of 99.5% in segmenting the cap and stalk regions, while the SegGrade algorithm achieved an accuracy of 94.67%. Furthermore, the system ultimately achieved an average grading accuracy of 80.66% and maintained the integrity of the mushrooms. This system can be further expanded according to production needs, improving sorting efficiency and meeting market demands. Full article
Show Figures

Figure 1

21 pages, 7297 KiB  
Article
FGS-YOLOv8s-seg: A Lightweight and Efficient Instance Segmentation Model for Detecting Tomato Maturity Levels in Greenhouse Environments
by Dongfang Song, Ping Liu, Yanjun Zhu, Tianyuan Li and Kun Zhang
Agronomy 2025, 15(7), 1687; https://doi.org/10.3390/agronomy15071687 - 12 Jul 2025
Viewed by 486
Abstract
In a greenhouse environment, the application of artificial intelligence technology for selective tomato harvesting still faces numerous challenges, including varying lighting, background interference, and indistinct fruit surface features. This study proposes an improved instance segmentation model called FGS-YOLOv8s-seg, which achieves accurate detection and [...] Read more.
In a greenhouse environment, the application of artificial intelligence technology for selective tomato harvesting still faces numerous challenges, including varying lighting, background interference, and indistinct fruit surface features. This study proposes an improved instance segmentation model called FGS-YOLOv8s-seg, which achieves accurate detection and maturity grading of tomatoes in greenhouse environments. The model incorporates a novel SegNext_Attention mechanism at the end of the backbone, while simultaneously replacing Bottleneck structures in the neck layer with FasterNet blocks and integrating Gaussian Context Transformer modules to form a lightweight C2f_FasterNet_GCT structure. Experiments show that this model performs significantly better than mainstream segmentation models in core indicators such as precision (86.9%), recall (76.3%), average precision (mAP@0.5 84.8%), F1-score (81.3%), and GFLOPs (35.6 M). Compared with the YOLOv8s-seg baseline model, these metrics show improvements of 2.6%, 3.8%, 5.1%, 3.3%, and 6.8 M, respectively. Ablation experiments demonstrate that the improved architecture contributes significantly to performance gains, with combined improvements yielding optimal results. The analysis of detection performance videos under different cultivation patterns demonstrates the generalizability of the improved model in complex environments, achieving an optimal balance between detection accuracy (86.9%) and inference speed (53.2 fps). This study provides a reliable technical solution for the selective harvesting of greenhouse tomatoes. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

Back to TopTop