Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (204)

Search Parameters:
Keywords = ZnS–CdS composite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4302 KB  
Article
New Data on Phase Composition and Geochemistry of the Muschelkalk Carbonate Rocks of the Upper Silesian Province in Poland
by Katarzyna J. Stanienda-Pilecki and Rafał Jendruś
Appl. Sci. 2025, 15(19), 10751; https://doi.org/10.3390/app151910751 - 6 Oct 2025
Viewed by 87
Abstract
Detailed description of phase composition and geochemistry of the Muschelkalk carbonate rocks of the Upper Silesian Province in Poland were presented in this article. The tests were carried out to determine mineralogical features and geochemical properties. The samples were collected from the formations [...] Read more.
Detailed description of phase composition and geochemistry of the Muschelkalk carbonate rocks of the Upper Silesian Province in Poland were presented in this article. The tests were carried out to determine mineralogical features and geochemical properties. The samples were collected from the formations of the Lower Muschelkalk (Gogolin Unit), Middle Muschelkalk (Diplopore Dolomite Unit) and Upper Muschelkalk (Tarnowice Unit, Boruszowice Unit). The following research methods were used: macroscopic description, X-Ray Diffraction, Fourier transform infrared spectroscopy, X-Ray Fluorescence and Atomic spectrometry with plasma intensification. The following carbonate phases were identified: a low-Mg calcite, a high-Mg calcite, a proto-dolomite, an ordered dolomite and a huntite. The results of XRD analysis allowed the determination of the chemical formulas of the mineral phases. XRF and ICP AES analyses allowed to establish the content of following trace elements: Sr, Ba, Al, Si, Fe, Mn, K, Na, S, Cl, Ti, Cr, Ni, Zn, Rb, Zr, Pb, As, V, Be, B, Co, Cu, Br, Mo and Cd. Apart from Sr and Ba, they are not fundamental components of carbonate rocks. They indicate the presence of minerals such as silicates, aluminosilicates, oxides and sulfides. Full article
Show Figures

Figure 1

44 pages, 68239 KB  
Article
Spatial Distribution of Geochemical Anomalies in Soils of River Basins of the Northeastern Caucasus
by Ekaterina Kashirina, Roman Gorbunov, Ibragim Kerimov, Tatiana Gorbunova, Polina Drygval, Ekaterina Chuprina, Aleksandra Nikiforova, Nastasia Lineva, Anna Drygval, Andrey Kelip, Cam Nhung Pham and Nikolai Bratanov
Geosciences 2025, 15(10), 380; https://doi.org/10.3390/geosciences15100380 - 1 Oct 2025
Viewed by 149
Abstract
The aim of this study is to determine the spatial distribution of geochemical anomalies of selected potential toxic elements in the soils of the river basins in the Northeastern Caucasus—specifically the Ulluchay, Sulak, and Sunzha Rivers. A concentration of 25 chemical elements was [...] Read more.
The aim of this study is to determine the spatial distribution of geochemical anomalies of selected potential toxic elements in the soils of the river basins in the Northeastern Caucasus—specifically the Ulluchay, Sulak, and Sunzha Rivers. A concentration of 25 chemical elements was measured using inductively coupled plasma mass spectrometry (ICP-MS). Petrogenic elements commonly found in the Earth’s crust (Al, Na, Ca, Fe, Mg) showed high concentrations (Na up to 306,600.70 mg/kg). Conversely, concentrations of Ag, Cd, Sn, Sb, and Te at many sampling sites were extremely low, falling below the detection limits of analytical instruments. The geochemical indicators Cf (contamination factor) and Igeo (geoaccumulation index) indicate that the regional characteristics of the territory, such as lithological conditions, hydrochemical schedules, and the history of geological development of the territory, affect the concentration of elements. Anomalous concentrations were found for seven elements (Ba, Na, Zn, Ag, Li, Sc, As), whereas no anomalies were identified for Be, Mg, Al, Mn, Fe, Co, Ni, Cu, Pb, Te, and Cs. For the most part (8 of 10), the sampling sites with anomalous chemical element content are located in the basin of the Sunzha River. Two sites with anomalous chemical element content have been identified in the Sulak River Basin. Anomalous values in the Sulak River Basin are noted for two chemical elements—Ba and Na. Natural features such as geological structure, parent rock composition, vertical climatic zonation, and landscape diversity play a major role in forming geochemical anomalies. The role of anthropogenic factors increases in localized areas near settlements, industrial facilities, and roads. The spatial distribution of geochemical anomalies must be considered in agricultural management, the use of water sources for drinking supply, the development of tourist routes, and comprehensive spatial planning. Full article
(This article belongs to the Special Issue Soil Geochemistry)
20 pages, 8045 KB  
Article
Photocatalytic Hydrogen Production Performance of ZnCdS/CoWO4 Heterojunctions in the Reforming of Lignin Model Compounds
by Jianxu Zhang, Jingwei Li and Weisheng Guan
Materials 2025, 18(18), 4401; https://doi.org/10.3390/ma18184401 - 21 Sep 2025
Viewed by 295
Abstract
Biomass reforming under mild conditions for synergistic hydrogen production, driven by renewable solar energy, has rapidly emerged as a promising strategy that not only enables the efficient reutilization of biomass but also facilitates the generation of high-purity hydrogen. In this work, ZnCdS (ZCS) [...] Read more.
Biomass reforming under mild conditions for synergistic hydrogen production, driven by renewable solar energy, has rapidly emerged as a promising strategy that not only enables the efficient reutilization of biomass but also facilitates the generation of high-purity hydrogen. In this work, ZnCdS (ZCS) nanoparticles and CoWO4 (CW) nanocrystals were assembled via a solvothermal method to construct a ZCS/CW S-type heterojunction composite. The resultant materials’ physicochemical characteristics were methodically described. With lignin model compounds (PP-ol) and sodium lignosulfonate as substrates, the ZnCdS/CoWO4-10% catalyst demonstrated a significant generation of hydrogen activity, producing hydrogen at rates of 223.30 μmol·g−1·h−1 and 140.28 μmol·g−1·h−1, respectively, according to experimental results. The formation of heterojunctions endows composite photocatalysts with higher hydrogen evolution rates compared to single-component catalysts. This is attributed to energy band bending at the interface of the heterojunction, which facilitates efficient charge separation while maintaining strong redox capabilities. High-value compounds like phenol and acetophenone were formed when the oxidation products in the post-reaction lignin model compound solution were subsequently analyzed using high-performance liquid chromatography. Additionally, a convincing mechanism for the catalytic reaction was suggested. It is expected that this study will offer a viable route for the creation of effective photocatalytic materials, high-value organic waste transformation, and sustainable hydrogen production. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

16 pages, 5701 KB  
Article
Zn0.8Cd0.2S Photocatalyst Modified with Ni(OH)2 for Enhanced Photocatalytic Hydrogen Production
by Qianran Feng, Xiaoting Yu, Jinlian Peng, Siying Du, Liuyun Chen, Xinyuan Xu and Tongming Su
Catalysts 2025, 15(9), 886; https://doi.org/10.3390/catal15090886 - 15 Sep 2025
Viewed by 333
Abstract
Sustainable production of hydrogen is currently a global research hotspot. In this study, a Ni(OH)2 cocatalyst was loaded on Zn0.8Cd0.2S to form Ni(OH)2/ZCS composites and achieve highly efficient photocatalytic hydrogen production. After Ni(OH)2 loading, a [...] Read more.
Sustainable production of hydrogen is currently a global research hotspot. In this study, a Ni(OH)2 cocatalyst was loaded on Zn0.8Cd0.2S to form Ni(OH)2/ZCS composites and achieve highly efficient photocatalytic hydrogen production. After Ni(OH)2 loading, a close contact interface was established between Ni(OH)2 and Zn0.8Cd0.2S, which increased the separation efficiency of the photogenerated electrons and holes. Moreover, the addition of Ni(OH)2 increases the specific surface area and light absorption of Ni(OH)2/Zn0.8Cd0.2S, and the Ni(OH)2 can act as active sites for photocatalytic hydrogen production. The photocatalytic H2 production rate of Ni(OH)2/ZCS composites increases with the increase in the Ni amount. 9Ni(OH)2/ZCS exhibited the optimum H2 production rate of 12.88 mmol h−1 g−1, which was 9.9 times higher than that of Zn0.8Cd0.2S. When the amount of Ni(OH)2 is further increased, the excess Ni(OH)2 covers the active site of Zn0.8Cd0.2S and reduced the light absorption of Zn0.8Cd0.2S, resulting in a decrease in the H2 production rate. Furthermore, the H2 production rate of 9Ni(OH)2/ZCS decreased from 12.88 to 5.15 mmol g−1 h−1 after 3 cycles. The main reason for the decline in the photocatalytic performance of Ni(OH)2/ZCS is the photocorrosion of Zn0.8Cd0.2S. This study provides an innovative design for loading Ni(OH)2 cocatalysts on Zn0.8Cd0.2S to improve the performance of photocatalysts. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Figure 1

32 pages, 3950 KB  
Article
Macrozoobenthos Response to Sediment Contamination near the S/s Stuttgart Wreck: A Biological and Chemical Assessment in the Gulf of Gdańsk, Southern Baltic Sea
by Anna Tarała, Diana Dziaduch, Katarzyna Galer-Tatarowicz, Aleksandra Bojke, Maria Kubacka and Marcin Kalarus
Water 2025, 17(15), 2199; https://doi.org/10.3390/w17152199 - 23 Jul 2025
Viewed by 567
Abstract
This study provides an up-to-date assessment of the environmental status in the area of the S/s Stuttgart wreck in the southern Baltic Sea, focusing on macrozoobenthos, sediment chemistry, and contamination in Mytilus trossulus soft tissues. Comparative analyses from 2016 and 2023 revealed increased [...] Read more.
This study provides an up-to-date assessment of the environmental status in the area of the S/s Stuttgart wreck in the southern Baltic Sea, focusing on macrozoobenthos, sediment chemistry, and contamination in Mytilus trossulus soft tissues. Comparative analyses from 2016 and 2023 revealed increased species richness and distinct benthic assemblages, shaped primarily by depth and distance from the wreck. Among macrozoobenthos, there dominated opportunistic species, characterized by a high degree of resistance to the unfavorable state of the environment, suggesting adaptation to local conditions. Elevated concentrations of heavy metals were detected in sediments, with maximum values of Cd—0.85 mg·kg−1, Cu—34 mg·kg−1, Zn—119 mg·kg−1, and Ni—32.3 mg·kg−1. However, no significant correlations between sediment contamination and macrozoobenthos composition were found. In Mytilus trossulus, contaminant levels were mostly within regulatory limits; however, mercury concentrations reached 0.069 mg·kg−1 wet weight near the wreck and 0.493 mg·kg−1 at the reference station, both exceeding the threshold defined in national legislation (0.02 mg·kg−1) (Journal of Laws of 2021, item 568). Condition indices for Macoma balthica were lower in the wreck area, suggesting sublethal stress. Ecotoxicological tests showed no acute toxicity in most sediment samples, emphasizing the complexity of pollutant effects. The data presented here not only enrich the existing literature on marine pollution but also contribute to the development of more effective environmental protection strategies for marine ecosystems under international protection. Full article
Show Figures

Figure 1

11 pages, 1808 KB  
Article
CdZnS Nanowire Decorated with Graphene for Efficient Photocatalytic Hydrogen Evolution
by Zemeng Wang, Yunsheng Shen, Qingsheng Liu, Tao Deng, Kangqiang Lu and Zhaoguo Hong
Molecules 2025, 30(14), 3042; https://doi.org/10.3390/molecules30143042 - 20 Jul 2025
Viewed by 474
Abstract
Harnessing abundant and renewable solar energy for photocatalytic hydrogen production is a highly promising approach to sustainable energy generation. To realize the practical implementation of such systems, the development of photocatalysts that simultaneously exhibit high activity, cost-effectiveness, and long-term stability is critically important. [...] Read more.
Harnessing abundant and renewable solar energy for photocatalytic hydrogen production is a highly promising approach to sustainable energy generation. To realize the practical implementation of such systems, the development of photocatalysts that simultaneously exhibit high activity, cost-effectiveness, and long-term stability is critically important. In this study, a Cd0.8Zn0.2S nanowire photocatalytic system decorated with graphene (GR) was prepared by a simple hydrothermal method. The introduction of graphene increased the reaction active area of Cd0.8Zn0.2S, promoted the separation of photogenerated charge carriers in the semiconductor, and improved the photocatalytic performance of the Cd0.8Zn0.2S semiconductor. The results showed that Cd0.8Zn0.2S loaded with 5% graphene exhibited the best photocatalytic activity, with a hydrogen production rate of 1063.4 µmol·g−1·h−1. Characterization data revealed that the graphene cocatalyst significantly enhances electron transfer kinetics in Cd0.8Zn0.2S, thereby improving the separation efficiency of photogenerated charge carriers. This study demonstrates a rational strategy for designing high-performance, low-cost composite photocatalysts using earth-abundant cocatalysts, advancing sustainable hydrogen production. Full article
(This article belongs to the Section Photochemistry)
Show Figures

Figure 1

26 pages, 2544 KB  
Article
From Invasive Species to Sustainable Nutrition: Safety, Nutritional, and Consumer Perception Study on Faxonius limosus in Serbia
by Milica Vidosavljević, Branislav Šojić, Tatjana Peulić, Predrag Ikonić, Jasmina Lazarević, Slađana Rakita, Milica Vidak Vasić, Zorica Tomičić and Ivana Čabarkapa
Foods 2025, 14(14), 2523; https://doi.org/10.3390/foods14142523 - 18 Jul 2025
Viewed by 750
Abstract
Faxonius limosus is an invasive alien crayfish species that has a negative effect on aquatic biodiversity. Using its meat as food could help reduce its ecological impact while providing a protein source. In order to do that, the initial step was to determine [...] Read more.
Faxonius limosus is an invasive alien crayfish species that has a negative effect on aquatic biodiversity. Using its meat as food could help reduce its ecological impact while providing a protein source. In order to do that, the initial step was to determine safety and nutritional parameters of crayfish meat. Samples from two localities were analyzed for energy value, moisture, ash, protein, fat, carbohydrates, fatty acid and amino acid composition, and macro- and micro-mineral content. Moreover, an online survey was conducted in order to evaluate the public’s current knowledge about invasive alien species and willingness to consume crayfish meat as a food product. Heavy metal concentrations (Hg, Pb, Cd) were below European Commission limits, confirming safety. The meat had a high protein content (16.68%), low fat (0.22%), and a favorable fatty acid profile with notable levels of omega-3 polyunsaturated fatty acids, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Predominant macro-minerals were K, Na, Ca, Mg, and P, while Zn, Cu, Fe, and Mn were the most abundant micro-minerals. Even though most participants (79.7%) were not informed about Faxonius limosus, the majority expressed willingness to participate in the assessment of new products made from invasive crayfish. These findings suggest that F. limosus meat is a nutritionally valuable and safe alternative protein source, with potential for sustainable food production and ecological management. Full article
Show Figures

Figure 1

16 pages, 1420 KB  
Article
Light-Driven Quantum Dot Dialogues: Oscillatory Photoluminescence in Langmuir–Blodgett Films
by Tefera Entele Tesema
Nanomaterials 2025, 15(14), 1113; https://doi.org/10.3390/nano15141113 - 18 Jul 2025
Viewed by 471
Abstract
This study explores the optical properties of a close-packed monolayer composed of core/shell-alloyed CdSeS/ZnS quantum dots (QDs) of two different sizes and compositions. The monolayers were self-assembled in a stacked configuration at the water/air interface using Langmuir–Blodgett (LB) techniques. Under continuous 532 nm [...] Read more.
This study explores the optical properties of a close-packed monolayer composed of core/shell-alloyed CdSeS/ZnS quantum dots (QDs) of two different sizes and compositions. The monolayers were self-assembled in a stacked configuration at the water/air interface using Langmuir–Blodgett (LB) techniques. Under continuous 532 nm laser illumination on the red absorption edge of the blue-emitting smaller QDs (QD450), the red-emitting larger QDs (QD645) exhibited oscillatory temporal dynamics in their photoluminescence (PL), characterized by a pronounced blueshift in the emission peak wavelength and an abrupt decrease in peak intensity. Conversely, excitation by a 405 nm laser on the blue absorption edge induced a drastic redshift in the emission wavelength over time. These significant shifts in emission spectra are attributed to photon- and anisotropic-strain-assisted interlayer atom transfer. The findings provide new insights into strain-driven atomic rearrangements and their impact on the photophysical behavior of QD systems. Full article
Show Figures

Graphical abstract

18 pages, 7559 KB  
Article
An Electrochemical Sensor for the Simultaneous Detection of Pb2+ and Cd2+ in Contaminated Seawater Based on Intelligent Mobile Detection Devices
by Zizi Zhao, Wei Qu, Chengjun Qiu, Yuan Zhuang, Kaixuan Chen, Yi Qu, Huili Hao, Wenhao Wang, Haozheng Liu and Jiahua Su
Chemosensors 2025, 13(7), 251; https://doi.org/10.3390/chemosensors13070251 - 11 Jul 2025
Viewed by 822
Abstract
Excessive levels of Pb2+ and Cd2+ in seawater pose significant combined toxicity to marine organisms, resulting in harmful effects and further threatening human health through biomagnification in the food chain. Traditional methods for detecting marine Pb2+ and Cd2+ rely [...] Read more.
Excessive levels of Pb2+ and Cd2+ in seawater pose significant combined toxicity to marine organisms, resulting in harmful effects and further threatening human health through biomagnification in the food chain. Traditional methods for detecting marine Pb2+ and Cd2+ rely on laboratory analyses, which are hindered by limitations such as sample degradation during transport and complex operational procedures. In this study, we present an electrochemical sensor based on intelligent mobile detection devices. By combining G-COOH-MWCNTs/ZnO with differential pulse voltammetry, the sensor enables the efficient, simultaneous detection of Pb2+ and Cd2+ in seawater. The G-COOH-MWCNTs/ZnO composite film is prepared via drop-coating and is applied to a glassy carbon electrode. The film is characterized using cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy, while Pb2+ and Cd2+ are quantified using differential pulse voltammetry. Using a 0.1 mol/L sodium acetate buffer (pH 5.5), a deposition potential of −1.1 V, and an accumulation time of 300 s, a strong linear correlation was observed between the peak response currents of Pb2+ and Cd2+ and their concentrations in the range of 25–450 µg/L. The detection limits were 0.535 µg/L for Pb2+ and 0.354 µg/L for Cd2+. The sensor was applied for the analysis of seawater samples from Maowei Sea, achieving recovery rates for Pb2+ ranging from 97.7% to 103%, and for Cd2+ from 97% to 106.1%. These results demonstrate that the sensor exhibits high sensitivity and stability, offering a reliable solution for the on-site monitoring of heavy metal contamination in marine environments. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

19 pages, 1351 KB  
Article
Comparative Nutritional and Healthy Values of Macro- and Microelements in Edible and Non-Edible Tissues of Raw and Processed Common Octopus (Octopus vulgaris)
by Ricardo Prego, Antonio Cobelo-García, Susana Calvo and Santiago P. Aubourg
Foods 2025, 14(13), 2210; https://doi.org/10.3390/foods14132210 - 23 Jun 2025
Viewed by 698
Abstract
The macroelement (Na, Mg, P, S, K, and Ca) and microelement (Mn, Fe, Co, Cu, Zn, As, Cd, Sn, Ba, and Pb) composition of edible (arm and mantle) and non-edible (viscera) tissues of octopus (Octopus vulgaris) was studied. Three different size [...] Read more.
The macroelement (Na, Mg, P, S, K, and Ca) and microelement (Mn, Fe, Co, Cu, Zn, As, Cd, Sn, Ba, and Pb) composition of edible (arm and mantle) and non-edible (viscera) tissues of octopus (Octopus vulgaris) was studied. Three different size groups were considered separately (1–2, 2–3, and 3–4 kg per specimen). Additionally, the effect of cooking processing (40 min at 90 °C) and frozen storage (4 months at –18 °C) was determined. All raw tissues depicted the following increasing sequence for the macroelement content (p < 0.05): Ca < Mg < P ≈ K < Na ≈ S; regarding microelements, the raw viscera tissue showed a higher level (p < 0.05) than the counterpart edible tissues. The cooking process led to a general decrease in macroelement values (p < 0.05) in arm and mantle tissues; for microelements, no effect (p > 0.05) was observed for Co, Mn, and Sn content, but an average increase was obtained for Cd, Cu, and Pb values. The frozen storage did not lead to element content changes in the arm tissue (p > 0.05); in contrast, general content increases and decreases were detected for mantle and viscera, respectively. In spite of level changes detected, this study proves that viscera, a common waste of commercial processing, can be considered a valuable source of essential elements. Full article
(This article belongs to the Special Issue Trace Elements in Food: Nutritional and Safety Issues)
Show Figures

Figure 1

21 pages, 4516 KB  
Article
Exploring the Electrochemical Signatures of Heavy Metals on Synthetic Melanin Nanoparticle-Coated Electrodes: Synthesis and Characterization
by Mohamed Hefny, Rasha Gh. Orabi, Medhat M. Kamel, Haitham Kalil, Mekki Bayachou and Nasser Y. Mostafa
Appl. Nano 2025, 6(3), 11; https://doi.org/10.3390/applnano6030011 - 23 Jun 2025
Viewed by 1007
Abstract
This study investigates the development and sensing profile of synthetic melanin nanoparticle-coated electrodes for the electrochemical detection of heavy metals, including lead (Pb), cadmium (Cd), cobalt (Co), zinc (Zn), nickel (Ni), and iron (Fe). Synthetic melanin films were prepared in situ by the [...] Read more.
This study investigates the development and sensing profile of synthetic melanin nanoparticle-coated electrodes for the electrochemical detection of heavy metals, including lead (Pb), cadmium (Cd), cobalt (Co), zinc (Zn), nickel (Ni), and iron (Fe). Synthetic melanin films were prepared in situ by the deacetylation of diacetoxy indole (DAI) to dihydroxy indole (DHI), followed by the deposition of DHI monomers onto indium tin oxide (ITO) and glassy carbon electrodes (GCE) using cyclic voltammetry (CV), forming a thin layer of synthetic melanin film. The deposition process was characterized by electrochemical quartz crystal microbalance (EQCM) in combination with linear sweep voltammetry (LSV) and amperometry to determine the mass and thickness of the deposited film. Surface morphology and elemental composition were examined using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). In contrast, Fourier-transform infrared (FTIR) and UV–Vis spectroscopy confirmed the melanin’s chemical structure and its polyphenolic functional groups. Differential pulse voltammetry (DPV) and amperometry were employed to evaluate the melanin films’ electrochemical activity and sensitivity for detecting heavy metal ions. Reproducibility and repeatability were rigorously assessed, showing consistent electrochemical performance across multiple electrodes and trials. A comparative analysis of ITO, GCE, and graphite electrodes was conducted to identify the most suitable substrate for melanin film preparation, focusing on stability, electrochemical response, and metal ion sensing efficiency. Finally, the applicability of melanin-coated electrodes was tested on in-house heavy metal water samples, exploring their potential for practical environmental monitoring of toxic heavy metals. The findings highlight synthetic melanin-coated electrodes as a promising platform for sensitive and reliable detection of iron with a sensitivity of 106 nA/ppm and a limit of quantification as low as 1 ppm. Full article
Show Figures

Figure 1

11 pages, 1166 KB  
Article
Composition and Source Apportionment of Heavy Metals in Aerosols at the Great Wall Station, Antarctica
by Haiyu Zeng, Xiaoning Liu, Gaoen Wu, Jianjun Wang and Haitao Ding
Atmosphere 2025, 16(6), 689; https://doi.org/10.3390/atmos16060689 - 6 Jun 2025
Viewed by 568
Abstract
To elucidate the compositional characteristics and sources of heavy metals in aerosols at China’s Great Wall Station in Antarctica, high-volume aerosol sampling was conducted from 4 January to 26 December 2022, on Fildes Peninsula, King George Island. Ten heavy metals (V, Cr, Mn, [...] Read more.
To elucidate the compositional characteristics and sources of heavy metals in aerosols at China’s Great Wall Station in Antarctica, high-volume aerosol sampling was conducted from 4 January to 26 December 2022, on Fildes Peninsula, King George Island. Ten heavy metals (V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, and Pb) in total suspended particulates (TSPs) were quantified via inductively coupled plasma mass spectrometry (ICP-MS). Enrichment factor (EF) analysis, correlation metrics, and backward trajectory clustering were integrated to identify potential sources. The results revealed pronounced enrichment (EF > 10) for Cr, As, Zn, Cd, and Pb, indicating dominant non-crustal contributions. Source apportionment identified three pathways: (1) long-range transported anthropogenic emissions, including Southern Hemisphere marine traffic (e.g., V and Ni from ship fuel combustion) and industrial pollutants from South America (Pb and Cd); (2) local anthropogenic sources, primarily diesel generators and tourism-related gasoline combustion (Cu and Zn); and (3) crustal inputs via glacial melt and weathering (Fe and Mn). This study pioneers the quantification of direct anthropogenic impacts (e.g., power generation and tourism) on aerosol heavy metals in Antarctic research zones, offering critical insights into transboundary pollutant dynamics and regional mitigation strategies. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

63 pages, 12842 KB  
Review
Advances in One-Dimensional Metal Sulfide Nanostructure-Based Photodetectors with Different Compositions
by Jing Chen, Mingxuan Li, Haowei Lin, Chenchen Zhou, Wenbo Chen, Zhenling Wang and Huiying Li
J. Compos. Sci. 2025, 9(6), 262; https://doi.org/10.3390/jcs9060262 - 26 May 2025
Cited by 1 | Viewed by 1524
Abstract
One-dimensional (1D) nanomaterials have attracted considerable attention in the fabrication of nano-scale optoelectronic devices owing to their large specific surface areas, high surface-to-volume ratios, and directional electron transport channels. Compared to 1D metal oxide nanostructures, 1D metal sulfides have emerged as promising candidates [...] Read more.
One-dimensional (1D) nanomaterials have attracted considerable attention in the fabrication of nano-scale optoelectronic devices owing to their large specific surface areas, high surface-to-volume ratios, and directional electron transport channels. Compared to 1D metal oxide nanostructures, 1D metal sulfides have emerged as promising candidates for high-efficiency photodetectors due to their abundant surface vacancies and trap states, which facilitate oxygen adsorption and dissociation on their surfaces, thereby suppressing intrinsic carrier recombination while achieving enhanced optoelectronic performance. This review focuses on recent advancements in the performance of photodetectors fabricated using 1D binary metal sulfides as primary photosensitive layers, including nanowires, nanorods, nanotubes, and their heterostructures. Initially, the working principles of photodetectors are outlined, along with the key parameters and device types that influence their performance. Subsequently, the synthesis methods, device fabrication, and photoelectric properties of several extensively studied 1D metal sulfides and their composites, such as ZnS, CdS, SnS, Bi2S3, Sb2S3, WS2, and SnS2, are examined. Additionally, the current research status of 1D nanostructures of MoS2, TiS3, ReS2, and In2S3, which are predominantly utilized as 2D materials, is explored and summarized. For systematic performance evaluation, standardized metrics encompassing responsivity, detectivity, external quantum efficiency, and response speed are comprehensively tabulated in dedicated sub-sections. The review culminates in proposing targeted research trajectories for advancing photodetection systems employing 1D binary metal sulfides. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

15 pages, 5737 KB  
Article
Advanced Optimization of Optical Carbon Dioxide Sensor Through Sensitivity Enhancement in Anodic Aluminum Oxide Substrate
by Manna Septriani Simanjuntak, Rispandi and Cheng-Shane Chu
Polymers 2025, 17(11), 1460; https://doi.org/10.3390/polym17111460 - 24 May 2025
Viewed by 643
Abstract
The current research developed an optical carbon dioxide (CO2) sensor using anodized aluminum oxide (AAO) as the substrate. We developed an optical carbon dioxide (CO2) sensor utilizing CdSe/ZnS quantum dots (QDs) as the fluorescent dye and Phenol Red as [...] Read more.
The current research developed an optical carbon dioxide (CO2) sensor using anodized aluminum oxide (AAO) as the substrate. We developed an optical carbon dioxide (CO2) sensor utilizing CdSe/ZnS quantum dots (QDs) as the fluorescent dye and Phenol Red as the pH indicator. The QDs acted as the CO2-responsive fluorophore and were embedded in a polyimide butyl methacrylate (polyIBM) matrix. This sensing solution was applied to an anodized aluminum oxide (AAO) substrate, which provided a porous and stable platform for sensor fabrication. Photoluminescence measurements were conducted using the coated AAO substrate, with excitation from a 405 nm LED light source. The sensor exhibited red fluorescence emission at 570 nm and could detect CO2 concentrations in the linear range of 0–100%. Experimental results showed that fluorescence intensity increased with CO2 concentration, achieving a sensitivity of 211. A wavelength shift of 0.1657 nm/% was observed, indicating strong interactions among CO2 molecules, Phenol Red, and the QDs within the AAO matrix. The sensor demonstrated a response time of 55 s and a recovery time of 120 s. These results confirm the effectiveness of this optical sensing approach in minimizing fluctuations from the excitation light source and highlight the potential of the AAO-supported QDs and Phenol Red composite as a reliable CO2 sensing material. This advancement holds promise for applications in both medical and industrial fields. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

19 pages, 2717 KB  
Article
Response to Sensor-Based Fertigation of Nagpur Mandarin (Citrus reticulata Blanco) in Vertisol of Central India
by Deodas Meshram, Anoop Kumar Srivastava, Akshay Utkhede, Chetan Pangul and Vasileios Ziogas
Horticulturae 2025, 11(5), 508; https://doi.org/10.3390/horticulturae11050508 - 8 May 2025
Viewed by 1034
Abstract
In citriculture, inputs like water and fertilizer are applied through traditional basin methods, thereby incurring reduced use-efficiency. The response of conventional crop coefficient-based fertigation scheduling continues to be inconsistent and complex in its field implementation, thereby necessitating the intervention of sensor-based (Internet of [...] Read more.
In citriculture, inputs like water and fertilizer are applied through traditional basin methods, thereby incurring reduced use-efficiency. The response of conventional crop coefficient-based fertigation scheduling continues to be inconsistent and complex in its field implementation, thereby necessitating the intervention of sensor-based (Internet of Things; IoT) technology for fertigation scheduling on a real-time basis. The study aimed to investigate fertigation scheduling involving four levels of irrigation, viz., I1 (100% evapotranspiration (ET) as the conventional practice), I2 (15% volumetric moisture content (VMC)), I3 (20% VMC), and I4 (25% VMC), as the main treatments and three levels of recommended doses of fertigation, achieved by reappropriating different nutrients across phenologically defined critical growth stages, viz., F1, F2, and F3 (conventional fertilization practice), as sub-treatments, which were evaluated through a split-plot design over two harvesting seasons in 2021–2023. Nagpur mandarin (Citrus reticulata Blanco) was used as the test crop, which was raised on Indian Vertisol facing multiple nutrient constraints. Maximum values for physiological growth parameters (plant height, canopy area, canopy volume, and relative leaf water content (RLWC)) and fruit yield (characterized by 9% and 5%, respectively, higher A-grade-sized fruits with the I4 and F1 treatments over corresponding conventional practices, viz., I1 and F3) were observed with the I4 irrigation treatment in combination with the F1 fertilizer treatment (I4F1). Likewise, fruit quality parameters, viz., juice content, TSS, TSS: acid ratio, and fruit diameter, registered significantly higher with the I4F1 treatment, featuring the application of B at the new-leaf initiation stage (NLI) and Zn across the crop development (CD), color break (CB), and crop harvesting (CH) growth stages, which resulted in a higher leaf nutrient composition. Treatment I4F1 conserved 20–30% more water and 65–87% more nutrients than the I1F3 treatment (conventional practice) by reducing the rate of evaporation loss of water, thereby elevating the plant’s available nutrient supply within the root zone. Our study suggests that I4F1 is the best combination of sensor-based (IoT) irrigation and fertilization for optimizing the quality production of Nagpur mandarin, ensuring higher water productivity (WP) and nutrient-use-efficiency (NUE) coupled with the improved nutritional quality of the fruit. Full article
(This article belongs to the Special Issue Orchard Management: Strategies for Yield and Quality)
Show Figures

Figure 1

Back to TopTop