Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,338)

Search Parameters:
Keywords = acidic medium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 13148 KB  
Article
Scaffold-Free Bone Regeneration Through Collaboration Between Type IV Collagen and FBXL14
by Mari Akiyama
J. Clin. Med. 2025, 14(20), 7160; https://doi.org/10.3390/jcm14207160 (registering DOI) - 11 Oct 2025
Abstract
Background: The periosteum and periosteum-derived cells have attracted considerable attention for their potential use in clinical applications for treating bone defects. Bovine periosteum-derived cells have been investigated because of their capability for scaffold-free bone regeneration. Previous mass spectrometry (MS) and immunohistochemistry studies [...] Read more.
Background: The periosteum and periosteum-derived cells have attracted considerable attention for their potential use in clinical applications for treating bone defects. Bovine periosteum-derived cells have been investigated because of their capability for scaffold-free bone regeneration. Previous mass spectrometry (MS) and immunohistochemistry studies have shown the presence of F-box/leucine-rich repeat protein 14 (FBXL14) in bovine periosteum and periosteum-derived cells. Recently, studies using ESI-Q-Orbitrap MS suggested the presence of type IV collagen in the periosteum. The aim of the present study was to clarify the relationship between type IV collagen and FBXL14 in the formation of periosteum-derived cells. Methods: Bovine periosteum-derived cells were obtained from Japanese Black Cattle’s legs in Medium 199 with ascorbic acid and 10% fetal bovine serum. Immunohistochemistry for type IV collagen and FBXL14 was performed using bovine bone with periosteum and periosteum alone for explant culture. Results: Both type IV collagen and FBXL14 were expressed in Volkmann’s canals and the Haversian canals in bone and periosteum. After 5 weeks, type IV collagen and FBXL14 surrounded crystals containing osteocalcin and had formed periosteum-derived cells. Von Kossa staining and immunostaining of osteocalcin revealed that the crystals contained calcified substances and osteocalcin. Conclusions: Clinically, understanding osteocalcin-interacting proteins will help promote bone regeneration. Interactions between type IV collagen and FBXL14 may contribute to scaffold-free bone regeneration. Full article
Show Figures

Figure 1

12 pages, 903 KB  
Article
Preparation and Herbicidal Activity of a Microbial Agent Derived from Alternaria gaisen Strain GD-011
by Suifang Zhang, Haixia Zhu, Huan Li and Yongqiang Ma
Fermentation 2025, 11(10), 582; https://doi.org/10.3390/fermentation11100582 - 10 Oct 2025
Abstract
Microbial herbicides, recognized for their target specificity, environmental compatibility, and simple production processes, hold promising potential for sustainable agriculture. This study isolated a strain of Alternaria gaisen (designated GD-011) from infected Medicago sativa L. in Qinghai Province, China, and evaluated its herbicidal potential [...] Read more.
Microbial herbicides, recognized for their target specificity, environmental compatibility, and simple production processes, hold promising potential for sustainable agriculture. This study isolated a strain of Alternaria gaisen (designated GD-011) from infected Medicago sativa L. in Qinghai Province, China, and evaluated its herbicidal potential through systematic development and efficacy assessment. Using single-factor and orthogonal experimental designs, the optimal sporulation substrate was identified as wheat bran, and the fermentation medium was optimized to consist of 14.5 g wheat bran, 19.4 g wheat middlings, 1.5 g rapeseed cake, and 14.6 g corn flour. Based on colony diameter and OD600 measurements, diatomite was selected as the most suitable carrier, while bentonite, humic acid, and polyvinyl alcohol were chosen as the stabilizer, protectant, and dispersant, respectively. Pot trials under controlled conditions demonstrated strong herbicidal activity of GD-011 against three common weed species: Chenopodium album L., Elsholtzia densa Benth., and Galium aparine L. The highest efficacy was observed against C. album, with disease incidence and fresh weight inhibition reaching 80.83% and 79.87%, respectively. Inhibition rates for both E. densa and G. asparine exceeded 60%. A wettable powder formulation developed from GD-011 showed particularly effective control of C. album and E. densa, providing a practical foundation for the application of GD-011 as a novel bioherbicide. Full article
Show Figures

Figure 1

14 pages, 2291 KB  
Article
Infrared FEL-Induced Alteration of Zeta Potential in Electrochemically Grown Quantum Dots: Insights into Ion Modification
by Sukrit Sucharitakul, Siripatsorn Thanasanvorakun, Vasan Yarangsi, Suparoek Yarin, Kritsada Hongsith, Monchai Jitvisate, Hideaki Ohgaki, Surachet Phadungdhitidhada, Heishun Zen, Sakhorn Rimjaem and Supab Choopun
Nanomaterials 2025, 15(20), 1543; https://doi.org/10.3390/nano15201543 - 10 Oct 2025
Abstract
This study explores the use of mid-infrared (MIR) free-electron laser (FEL) irradiation as a tool for tailoring the surface properties of electrochemically synthesized TiO2—graphene quantum dots (QDs). The QDs, prepared in colloidal form via a cost-effective electrochemical method in a KCl—citric [...] Read more.
This study explores the use of mid-infrared (MIR) free-electron laser (FEL) irradiation as a tool for tailoring the surface properties of electrochemically synthesized TiO2—graphene quantum dots (QDs). The QDs, prepared in colloidal form via a cost-effective electrochemical method in a KCl—citric acid medium, were exposed to MIR wavelengths (5.76, 8.02, and 9.10 µm) at the Kyoto University FEL facility. Post-irradiation measurements revealed a pronounced inversion of zeta potential by 40–50 mV and approximately 10% reduction in hydrodynamic size, indicating double-layer contraction and ionic redistribution at the QD—solvent interface. Photoluminescence spectra showed enhanced emission for GQDs and TiO2/GQD composites, while Tauc analysis revealed modest bandgap blue shifts (0.04–0.08 eV), both consistent with trap-state passivation and sharper band edges. TEM confirmed intact crystalline structures, verifying that FEL-induced modifications were confined to surface chemistry rather than bulk lattice damage. Taken together, these results demonstrate that MIR FEL irradiation provides a resonance-driven, non-contact method to reorganize ions, suppress defect states, and improve the optoelectronic quality of QDs. This approach offers a scalable post-synthetic pathway for enhancing electron transport layers in perovskite solar cells and highlights the broader potential of photonic infrastructure for advanced nanomaterial processing and interface engineering in optoelectronic and energy applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

26 pages, 4126 KB  
Article
Structural Characterization of Polysaccharide from Flammulina velutipes and Its Impact on Hyperlipidemia Through Modulation of Hepatic Cholesterol Metabolism and Gut Microbiota
by Wei Jia, Huimin Wang, Ting Feng, Xiaoxiao Liu, Zhendong Liu, Zhengpeng Li, Wenhan Wang and Jingsong Zhang
Foods 2025, 14(19), 3452; https://doi.org/10.3390/foods14193452 - 9 Oct 2025
Abstract
FVPB1, a novel heteropolysaccharide, was extracted from the Flammulina velutipes fruiting body, and its structure was determined by methylation analysis, nuclear magnetic resonance (NMR) spectroscopy. FVPB1 demonstrated efficacy in inhibiting lipid accumulation in Raw264.7 cells and zebrafish, as well as in reducing weight [...] Read more.
FVPB1, a novel heteropolysaccharide, was extracted from the Flammulina velutipes fruiting body, and its structure was determined by methylation analysis, nuclear magnetic resonance (NMR) spectroscopy. FVPB1 demonstrated efficacy in inhibiting lipid accumulation in Raw264.7 cells and zebrafish, as well as in reducing weight gain and ameliorating liver injury in high-fat diet-induced mice. High concentration of FVPB1 significantly increased serum ApoA1 levels, while all tested doses (low, medium, and high) reduced serum ApoB levels in mice. Intervention with FVPB1 significantly increased the mRNA expression of Lcat and Cyp7a1 enzymes while markedly reducing the transcriptional level of Hmgcr reductase. Additionally, low concentration of FVPB1 enhanced CYP7A1 protein expression, whereas medium and high concentrations of FVPB1 promoted LCAT protein expression. Medium and high concentrations of FVPB1 significantly enhanced bile acid excretion in mice, with the high dose additionally promoting fecal sterol output. Alpha and beta diversity analyses demonstrated that a high-fat diet induced substantial dysbiosis in the gut microbiota of mice, characterized by reduced microbial diversity and richness. Intervention with FVPB1 significantly modulated the structural composition of the intestinal microbiota in high-fat diet-fed mice. Therefore, FVPB1 exerts lipid-lowering effect in high-fat diet-fed mice by modulating cholesterol metabolism and ameliorating gut microbiota dysbiosis. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

28 pages, 5883 KB  
Article
Microbiota–Metabolite–Host Crosstalk Mediates the Impact of Dietary Energy Levels on Colonic Homeostasis in High-Altitude Ruminants
by Qinran Yu, Ning Li, Pengjia Bao, Chun Huang, Qingbo Zheng, Tong Wang, Chaofan Ma, Jingying Deng, Fengtao Jiang, Jianlei Jia and Ping Yan
Animals 2025, 15(19), 2929; https://doi.org/10.3390/ani15192929 - 9 Oct 2025
Abstract
The colon plays a crucial role in energy metabolism and intestinal health of ruminants during various physiological stages. Plateau ruminants have long been subjected to extreme environments characterized by hypoxia, cold, and nutritional scarcity, which makes their dependence on energy metabolism particularly pronounced. [...] Read more.
The colon plays a crucial role in energy metabolism and intestinal health of ruminants during various physiological stages. Plateau ruminants have long been subjected to extreme environments characterized by hypoxia, cold, and nutritional scarcity, which makes their dependence on energy metabolism particularly pronounced. However, existing research on the regulatory effects of dietary energy levels on the colonic function of plateau ruminants is still quite limited. This study involved 60 healthy male Pamir yaks with consistent body conditions, which were randomly divided into three groups: a low-energy diet group (YG, Neg 1.53 MJ/kg), a medium-energy diet group (QG, Neg 2.12 MJ/kg), and a high-energy diet group (RG, Neg 2.69 MJ/kg). Each yak was provided with 5 kg of mixed feed daily over a 170-day feeding trial. The results indicated that a high-energy diet enhanced growth performance in yaks (p < 0.05). However, it also induced local colonic inflammation, decreased levels of immune factors (IgA, IgG, and IL-10), and increased the abundance of potentially pathogenic bacteria, such as Klebsiella and Campylobacter (p < 0.05). Conversely, a medium-energy diet fostered the proliferation of beneficial bacteria such as Bradymonadales, Parabacteroides, and Mogibacterium (p < 0.05), and preserved immune homeostasis. Additionally, multi-omics analysis revealed that the QG group was significantly enriched in key metabolic pathways, including pyruvate metabolism and glycine, serine, and threonine metabolism and panto-thenate and CoA biosynthesis pathways, among others (p < 0.05), demonstrating a synergistic regulatory effect among the microbiome, metabolism, and host. In summary, a moderate-energy diet can promote the proliferation of beneficial bacteria in the extreme environment of the plateau. By regulating pathways such as Amino acid, Nucleotide, and Lipid metabolism, it coordinates the expression of key host genes and metabolite levels, effectively balancing immune signals and energy metabolism. This interaction establishes a beneficial microbial-metabolism-host pattern that supports colon health. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

23 pages, 3808 KB  
Article
The Antiproliferative Activity of Tatridin A Against Prostate Cancer Cells Is Lost in Acid Medium by Transformation to Desacetyl-β-Cyclopyrethrosin
by Cecilia Villegas, Rebeca Pérez, Camilo Céspedes-Méndez, Viviana Burgos, Ricardo Baggio, Sebastián Suárez, Bernd Schmidt and Cristian Paz
J. Xenobiot. 2025, 15(5), 161; https://doi.org/10.3390/jox15050161 - 9 Oct 2025
Abstract
Background: Prostate cancer (PC) progression is strongly driven by dysregulated signaling pathways, with NF-κB playing a central role. Sesquiterpene lactones have been reported to modulate this pathway. This study evaluated and compared the cytotoxic effects of two structurally distinct sesquiterpene lactones: Tatridin A, [...] Read more.
Background: Prostate cancer (PC) progression is strongly driven by dysregulated signaling pathways, with NF-κB playing a central role. Sesquiterpene lactones have been reported to modulate this pathway. This study evaluated and compared the cytotoxic effects of two structurally distinct sesquiterpene lactones: Tatridin A, a germacranolide, and desacetyl-β-cyclopyrethrosin, a eudesmanolide derivative. Their mechanisms of action were also examined, focusing on oxidative stress induction and NF-κB modulation. Methods: Chemical structures were confirmed by NMR and X-ray crystallography. Cytotoxicity was assessed in DU-145 and 22Rv1 PC cells using real-time cell analysis. Reactive oxygen species (ROS) and mitochondrial membrane potential (ΔΨm) were measured with fluorometric assays. NF-κB activity was determined in THP-1 reporter cells and by Western blot of IκBα phosphorylation. Results: Tatridin A markedly reduced viability, showing lower IC50 values (81.4 ± 2.7 µM in DU-145 and 50.7 ± 1.9 µM in 22Rv1 cells) than desacetyl-β-cyclopyrethrosin (166.9 ± 3.2 µM and 290.3 ± 8.3 µM, respectively). It also inhibited proliferation at markedly lower concentrations, with clonogenic IC50 values of 7.7 µM in DU-145 and 5.24 µM in 22Rv1cells. Both compounds increased ROS, but tatridin A induced earlier and stronger responses and ΔΨm loss. Furthermore, tatridin A more effectively inhibited NF-κB signaling than classical inhibitors. Conclusions: Tatridin A exerts cytotoxic effects through oxidative stress, mitochondrial impairment, and NF-κB inhibition, supporting the therapeutic potential of germacranolides for the treatment of advanced PC. Full article
Show Figures

Figure 1

16 pages, 4007 KB  
Article
Influence of Humic Acid on the Swelling Inhibition of Clay Minerals and Process Optimization
by Ying Cheng, Dandan Zhang, Xing Gao, Junxia Yu, Ruan Chi, Bona Deng and Fang Zhou
Minerals 2025, 15(10), 1062; https://doi.org/10.3390/min15101062 - 9 Oct 2025
Abstract
Medium and heavy rare earths (REEs) are mainly from weathered crust elution-deposited rare earth ores (WREOs), where REEs are adsorbed in ionic form on the surface of clay minerals such as kaolinite, illite, halloysite, etc. REEs in WREOs are extracted through the in [...] Read more.
Medium and heavy rare earths (REEs) are mainly from weathered crust elution-deposited rare earth ores (WREOs), where REEs are adsorbed in ionic form on the surface of clay minerals such as kaolinite, illite, halloysite, etc. REEs in WREOs are extracted through the in situ leaching process with (NH4)2SO4 solution via ion exchange. However, this process often results in the swelling of clay minerals, subsequently destroying the ore body structure and causing landslides. This study investigated the inhibitory effects of humic acid (HA) on the swelling of primary clay minerals. An optimal inhibition on the swelling of clay minerals was demonstrated at 0.2 g/L. HA was mixed with 0.1 mol/L (NH4)2SO4 solution at the solution pH of 6.8 and temperature of 25 °C. The swelling efficiency of kaolinite, illite, and halloysite in presence of HA decreased by 0.29%, 1.19%, and 0.19%, respectively, compared to using (NH4)2SO4 alone. The surface hydration parameter of clay minerals was further calculated through viscosity theory. It was demonstrated that the surface hydration parameter of kaolinite and halloysite decreased nearly threefold, while that of illite decreased fivefold, demonstrating a desirable inhibition on clay swelling with HA. Viscosity theory offers valuable theoretical support for the development of anti-swelling agents. Full article
(This article belongs to the Special Issue Recent Progress in the Processing of Rare-Earth Ore)
Show Figures

Graphical abstract

28 pages, 4553 KB  
Article
Insights of Nanostructured Ferberite as Photocatalyst, Growth Mechanism and Photodegradation Under H2O2-Assisted Sunlight
by Andarair Gomes dos Santos, Yassine Elaadssi, Virginie Chevallier, Christine Leroux, Andre Luis Lopes-Moriyama and Madjid Arab
Molecules 2025, 30(19), 4026; https://doi.org/10.3390/molecules30194026 - 9 Oct 2025
Abstract
In this study, nanostructured ferberites (FeWO4) were synthesized via hydrothermal routes in an acidic medium. It was then investigated as an efficient photocatalyst for degrading organic dye molecules, with methylene blue (MB) as a model pollutant. The formation mechanism of ferberite [...] Read more.
In this study, nanostructured ferberites (FeWO4) were synthesized via hydrothermal routes in an acidic medium. It was then investigated as an efficient photocatalyst for degrading organic dye molecules, with methylene blue (MB) as a model pollutant. The formation mechanism of ferberite revealed that the physical form of the precursor, FeSO4·7H2O, acts as a decisive factor in morphological evolution. Depending on whether it is in a solid or dilute solution form, two distinct nanostructures are produced: nanoplatelets and self-organized microspheres. Both structures are composed of stoichiometric FeWO4 (Fe: 49%, W: 51%) in a single monoclinic phase (space group P2/c:1) with high purity and crystallinity. The p-type semiconductor behavior was confirmed using Mott–Schottky model and the optical analysis, resulting in small band gap energies (≈1.7 eV) favoring visible absorption light. Photocatalytic tests under simulated solar irradiation revealed rapid and efficient degradation in less than 10 min under near-industrial conditions (pH 5). This was achieved using only a ferberite catalyst and a low concentration of H2O2 (4 mM) without additives, dopants, or artificial light sources. Advanced studies based on photocurrent measurements, trapping and stability tests were carried out to identify the main reactive species involved in the photocatalytic process and better understanding of photodegradation mechanisms. These results demonstrate the potential of nanostructured FeWO4 as a sustainable and effective photocatalyst for water purification applications. Full article
(This article belongs to the Special Issue Research on Heterogeneous Catalysis—2nd Edition)
Show Figures

Figure 1

18 pages, 5469 KB  
Article
Trade-Offs Between Soil Environmental Impacts and Economic Returns in Optimizing Drip Fertigation for North China Greenhouse Tomatoes
by Lijuan Wang, Hanbo Wang, Tieqiang Wang and Daozhi Gong
Agronomy 2025, 15(10), 2363; https://doi.org/10.3390/agronomy15102363 - 9 Oct 2025
Abstract
Balancing soil nitrogen leaching with production benefits remains a critical challenge in sustainable greenhouse tomato cultivation. This study evaluated the effects of reduced water-soluble nitrogen fertilizer (N) application rates on soil environmental parameters and production outcomes to optimize nitrogen management strategies. Four treatments [...] Read more.
Balancing soil nitrogen leaching with production benefits remains a critical challenge in sustainable greenhouse tomato cultivation. This study evaluated the effects of reduced water-soluble nitrogen fertilizer (N) application rates on soil environmental parameters and production outcomes to optimize nitrogen management strategies. Four treatments were implemented across two growing seasons: control (CK), high-N (H), medium-N (M), and low-N (L) nitrogen fertilizer applications in soil solution (SS) and autumn–winter (AW) systems. Results demonstrated that reduced nitrogen inputs significantly decreased soil electrical conductivity and soil nitrogen retention by 88% and 83% in SS and AW, respectively, while reducing soil residual nitrate nitrogen. The tomato yield decreased by 14–26% under low fertilizer treatment, while fruit quality was substantially enhanced, with soluble solid content increasing by 56% in SS and 217% in AW for the L treatment compared to the CK. Nitrogen-use efficiency improved by 54.7% and 34.78% in SS and AW, respectively, demonstrating superior resource utilization under reduced fertilizer applications. Principal component analysis revealed that fruit quality was primarily influenced by soluble solid content, organic acid, total soluble solids, and sugar–acid ratio. Gray relational analysis identified the L treatment (361.62 kg ha−1 in SS and 182.6 kg ha−1 in AW) as optimal for comprehensive performance evaluation. The findings demonstrate that strategic nitrogen reduction effectively balances production benefits with environmental sustainability, providing a practical framework for sustainable nitrogen management in controlled environment agriculture. Full article
Show Figures

Figure 1

13 pages, 2087 KB  
Article
Solid-State Fermentation with Rhizopus oryzae: Enhancing Antioxidant and Phenolic Content in Pigmented Corn
by Ulises Ramírez-Esparza, Andrés J. Ordoñez-Cano, Leticia X. López-Martínez, José C. Espinoza-Hicks, Mónica Alvarado-González, Juan A. Ascacio-Valdés and José Juan Buenrostro-Figueroa
Resources 2025, 14(10), 158; https://doi.org/10.3390/resources14100158 - 9 Oct 2025
Viewed by 42
Abstract
Corn is one of the most widely cultivated cereal crops and is rich in antioxidant compounds, especially phenolics. However, many of these are bound to cell wall components, requiring pre-treatment for release. Solid-state fermentation (SSF) with Rhizopus oryzae has been used to enhance [...] Read more.
Corn is one of the most widely cultivated cereal crops and is rich in antioxidant compounds, especially phenolics. However, many of these are bound to cell wall components, requiring pre-treatment for release. Solid-state fermentation (SSF) with Rhizopus oryzae has been used to enhance antioxidant capacity in grains and legumes, though its application in pigmented corn (PC) has not been reported. This study evaluated R. oryzae growth on PC via SSF and its effect on phenolic compound release and antioxidant capacity (AC). Variables such as temperature, pH, inoculum, and medium salts were tested for their influence on phenolic release and AC. Nutrient changes in PC due to SSF were also examined. HPLC-MS was used to analyze the phenolic compounds’ profile. R. oryzae grew effectively on PC, increasing total phenolic content (TPC) and AC by 131 and 50%, respectively. The pH was found to negatively impact phenolic release. The SSF also raised protein content by 10% and reduced carbohydrates and fiber by 3 and 8%. Thirteen phenolic compounds were identified, including Feruloyl tartaric acid ester and p-Coumaroyl tartaric acid glycosidic ester, with known anti-inflammatory properties. This process offers a sustainable method for enhancing the functional properties of pigmented corn. Full article
(This article belongs to the Special Issue Resource Extraction from Agricultural Products/Waste: 2nd Edition)
Show Figures

Figure 1

17 pages, 5705 KB  
Article
Self-Assembled Monolayers of Various Alkyl-Phosphonic Acids on Bioactive FHA Coating for Improving Surface Stability and Corrosion Resistance of Biodegradable AZ91D Mg Alloy
by Chung-Wei Yang and Peng-Hsiu Li
Materials 2025, 18(19), 4633; https://doi.org/10.3390/ma18194633 - 8 Oct 2025
Viewed by 184
Abstract
The aim of present study is to deposit protective coatings with various surface chemical states on AZ91D Mg alloy. Hydrothermal bioactive ceramic coatings are performed with a surface modification by the chemical bonding of self-assembled monolayers (SAM). The electrochemical corrosion behaviors of various [...] Read more.
The aim of present study is to deposit protective coatings with various surface chemical states on AZ91D Mg alloy. Hydrothermal bioactive ceramic coatings are performed with a surface modification by the chemical bonding of self-assembled monolayers (SAM). The electrochemical corrosion behaviors of various surface-coated AZ91D alloy within DMEM cell culture medium related to their surface chemical states are evaluated through microstructure observations, XPS surface chemical bonding analysis, static contact angles measurements, potentiodynamic polarization curves, and immersion tests. XRD and high resolution XPS of F 1s analysis results show that the hydrothermal FHA coating with a phase composition of Ca10(PO4)6(OH)F can be effectively and uniformly deposited on the AZ91D alloy. FHA-coated AZ91D displays better anti-corrosion performances and lower degradation rates than those of uncoated AZ91D alloy in the DMEM solution. Through the high resolution XPS analysis of O 1s and P 2p spectra, it is demonstrated that 1-butylphosphonic acid (BP), 1 octylphosphonic acid (OP), and dodecylphosphonic acid (DP) molecules can be effectively bonded on the FHA surface by a covalent bond to form SAM. BP/OP/DP-SAM specimens display increased static contact angles to show a hydrophobic surface. It demonstrates that the SAM surface treatment can further enhance the corrosion resistance of FHA-coated AZ91D in the DMEM solution. After 2–16 days in vitro immersion tests in the DMEM, the surface SAM-bonded hydrophobic BP/OP/DP-SAM layers can effectively inhibit and reduce the penetration of DMEM into FHA coating. Long alkyl chains of the dodecylphosphonic acid (DP) SAM represents superior enhancing effects on the reduction of corrosion properties and weight loss. Full article
(This article belongs to the Special Issue Corrosion Resistance and Protection of Metal Alloys)
Show Figures

Figure 1

18 pages, 1088 KB  
Article
Bioleaching of Lithium-Ion Battery Black Mass: A Comparative Study on Gluconobacter oxydans and Acidithiobacillus thiooxidans
by Matthias Markus Mandl, Reinhard Lerchbammer and Eva Gerold
Metals 2025, 15(10), 1112; https://doi.org/10.3390/met15101112 - 7 Oct 2025
Viewed by 204
Abstract
The growing demand for lithium-ion batteries (LIBs) requires efficient and sustainable recycling solutions. This study investigates bioleaching as an alternative to conventional hydrometallurgical methods, focusing on (i) organic acid-mediated leaching with Gluconobacter oxydans and (ii) sulfuric acid bioleaching with Acidithiobacillus thiooxidans. Experiments [...] Read more.
The growing demand for lithium-ion batteries (LIBs) requires efficient and sustainable recycling solutions. This study investigates bioleaching as an alternative to conventional hydrometallurgical methods, focusing on (i) organic acid-mediated leaching with Gluconobacter oxydans and (ii) sulfuric acid bioleaching with Acidithiobacillus thiooxidans. Experiments were conducted at 26 °C with leaching durations of one to three weeks, depending on the microbial system, at pH 1.35 for sulfuric acid treatments, and with liquid-to-solid ratios equivalent to 100 mL g−1 (A. thiooxidans) or 100 mL g−1 in culture medium (G. oxydans). Results show that indirect bioleaching with G. oxydans achieved high recovery rates for cobalt (96%), manganese (100%), nickel (65%), and lithium (68%), while the direct approach was less effective due to microbial inhibition by black mass components. Similarly, biologically produced sulfuric acid exhibited moderate leaching efficiencies, but chemically synthesized sulfuric acid outperformed it, particularly for nickel (93%) and lithium (76%) after one week of leaching. These findings suggest that bioleaching is a promising, eco-friendly alternative for LIB recycling but requires further process optimization to improve metal recovery and industrial scalability. Future research should explore hybrid approaches combining bioleaching with conventional leaching techniques. Full article
Show Figures

Figure 1

17 pages, 6472 KB  
Article
High-Mountain Tuber Products Improve Selectively the Development and Detoxifying Capacity of Lactobacilli Strains as an Innovative Culture Strategy
by Cecilia Hebe Orphèe, María Inés Mercado, Fernando Eloy Argañaraz Martínez, Mario Eduardo Arena and Elena Cartagena
Fermentation 2025, 11(10), 576; https://doi.org/10.3390/fermentation11100576 - 6 Oct 2025
Viewed by 198
Abstract
The study provides valuable insights into the sustainable utilization of edible tuber peels from the high mountains of the Argentinian Puna, which constitutes promising reserves of bioactive phenolic compounds with the potential to enhance the biofunctional properties of lactic acid bacteria. Thirty-two extracts [...] Read more.
The study provides valuable insights into the sustainable utilization of edible tuber peels from the high mountains of the Argentinian Puna, which constitutes promising reserves of bioactive phenolic compounds with the potential to enhance the biofunctional properties of lactic acid bacteria. Thirty-two extracts derived from peels of different varieties of tubers, such as Oxalis tuberosa Mol., Ullucus tuberosus Caldas, and Solanum tuberosum L. were incorporated into lactobacilli cultures and individually evaluated. These selectively enhance the development of the probiotic strain Lactiplantibacillus plantarum ATCC 10241 and of Lacticaseibacillus paracasei CO1-LVP105 from ovine origin, without promoting the growth of a pathogenic bacteria set (Escherichia coli O157:H12 and ATCC 35218, Salmonella enterica serovar Typhimurium ATCC 14028, and S. corvalis SF2 and S. cerro SF16), in small amounts. To determine the main phenolic group concentrated in the phytoextracts, a bio-guided study was conducted. The most significant results were obtained by O. tuberosa phytochemicals added to the culture medium at 50 µg/mL, yielding promising increases in biofilm formation (78% for Lp. plantarum and 43% for L. paracasei) and biosurfactant activity (112% for CO1-LVP105 strain). These adaptive strategies developed by bacteria possess key biotechnological significance. Furthermore, the bio-detoxification capacity of phenol and o-phenyl phenol, particularly of the novel strain CO1-LVP105, along with its mode of action and genetic identification, is described for the first time to our knowledge. In conclusion, lactobacilli strains have potential as fermentation starters and natural products, recovered from O. tuberosa peels, and added into culture media contribute to multiple bacterial biotechnological applications in both health and the environment. Full article
Show Figures

Figure 1

17 pages, 4159 KB  
Article
Production of Bioactive Compounds in Grammatophyllum speciosum Blume Using Bioreactor Cultures Under Elicitation with Sodium Chloride
by Jittraporn Chusrisom, Gadewara Matmarurat, Nattanan Panjaworayan T-Thienprasert, Wannarat Phonphoem and Pattama Tongkok
Plants 2025, 14(19), 3083; https://doi.org/10.3390/plants14193083 - 6 Oct 2025
Viewed by 295
Abstract
Grammatophyllum speciosum Blume is an endangered wild orchid with medicinal properties. In this research, we propagated G. speciosum from vegetative organs grown under aseptic conditions. Subsequently, salinity stress was applied at the plantlet stage to investigate its effect on the accumulation of bioactive [...] Read more.
Grammatophyllum speciosum Blume is an endangered wild orchid with medicinal properties. In this research, we propagated G. speciosum from vegetative organs grown under aseptic conditions. Subsequently, salinity stress was applied at the plantlet stage to investigate its effect on the accumulation of bioactive compounds. Half-strength Murashige and Skoog (½ MS) medium supplemented with a combination of 1 mg of L−1 1-naphthaleneacetic acid (NAA) and 0.5 mg of L−1 6-benzylaminopurine (BAP) proved to be a more suitable medium for shoot formation (32.33 ± 2.52 shoots per explant). The protocorm-like bodies, derived from embryogenic callus, were transferred into a temporary immersion bioreactor (TIB) system; 10-min of immersion every 3 h enhanced the maximum number of shoots, shoot height, and the fresh growth index (127.00 ± 2.16, 5.00 ± 0.51 cm and 4.26 ± 0.52, respectively). The proliferated plantlets from the TIB system successfully rooted in Vacin and Went medium. Furthermore, the plantlets were maintained in ½ MS medium supplemented with sodium chloride (NaCl) (0, 50, 100 or 200 µM) under a white light-emitting diode for 72 h to determine the total phenolic content (TPC) in the in vitro cultures. The TPC was highest in the medium with 100 µM of NaCl (111.06 ± 2.24 mg gallic acid equivalent g−1 dry weight), the diphenyl picrylhydrazyl antioxidant activity was 24.50 ± 0.76% and ferric-reducing antioxidant power values were in the range 2441.79 ± 1.21 to 2491.96 ± 3.23 µM ascorbic acid equivalent g−1 dry weight. The G. speciosum extracts showed antibacterial activity against acne pathogens, with minimum inhibitory concentration and minimum bactericidal concentration values in the ranges 6.4–12.8 mg mL−1 and 12.8–25.6 mg mL−1, respectively. Full article
Show Figures

Graphical abstract

24 pages, 1249 KB  
Systematic Review
Evaluation of Factors Affecting Fluoride Release from Fluoride Varnishes: A Systematic Review
by Maciej Dobrzyński, Agnieszka Kotela, Sylwia Klimas, Zuzanna Majchrzak, Julia Kensy, Marzena Laszczyńska, Mateusz Michalak, Zbigniew Rybak, Magdalena Fast and Jacek Matys
Materials 2025, 18(19), 4603; https://doi.org/10.3390/ma18194603 - 4 Oct 2025
Viewed by 415
Abstract
Introduction: Fluoride varnishes are widely used in caries prevention, but the rate and duration of fluoride ion release differ depending on material composition and environmental factors. Objectives: This systematic review synthesized evidence from in vitro studies on human teeth to identify key factors [...] Read more.
Introduction: Fluoride varnishes are widely used in caries prevention, but the rate and duration of fluoride ion release differ depending on material composition and environmental factors. Objectives: This systematic review synthesized evidence from in vitro studies on human teeth to identify key factors influencing fluoride release. Methods: A systematic literature search was conducted in July 2025 in PubMed, Scopus, Web of Science, Embase, and the Cochrane Library using the terms “fluoride release” AND “varnish” in titles and abstracts. Study selection followed PRISMA 2020 guidelines, predefined eligibility criteria, and was structured according to the PICO framework. Of 484 retrieved records, 15 studies met the inclusion criteria and were analyzed qualitatively. Results: The primary outcome was the magnitude and duration of fluoride release from varnishes. Most studies reported peak release within the first 24 h, followed by a marked decline, although some formulations (e.g., Clinpro XT and Duraphat) maintained more stable long-term release. Substantial methodological heterogeneity was observed across studies, including differences in sample type, storage medium, pH, temperature, and measurement protocols, which influenced fluoride release dynamics. Reported secondary outcomes included enamel remineralization, changes in surface properties, and antibacterial activity, with bioactive additives such as CPP–ACP and TCP enhancing preventive effects. Acidic conditions consistently increased fluoride release. Conclusions: The magnitude and persistence of fluoride release from varnishes depend on both intrinsic material properties and external environmental conditions. Bioactive additives may prolong fluoride availability and provide additional preventive benefits. Full article
(This article belongs to the Special Issue Advanced Dental Materials: From Design to Application, Third Edition)
Show Figures

Graphical abstract

Back to TopTop