Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = active species crossover

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 354 KB  
Article
Efficacy of Probiotic VITA-PB2 from Fermented Foods on Alcohol Consumption and Hangover Symptoms: A Randomized, Double-Blind, Placebo-Controlled Trial
by Chaodeng Mo, Johny Bajgai, Md. Habibur Rahman, Sofian Abdul-Nasir, Hui Ma, Thu Thao Pham, Haiyang Zhang, Buchan Cao, Seong Hoon Goh, Bomi Kim, Hongik Kim, Min Kyeong Seol, Young Geon Yu, Cheol-Su Kim, Kyu-Jae Lee and Seung-Taek Lim
Nutrients 2025, 17(14), 2276; https://doi.org/10.3390/nu17142276 - 9 Jul 2025
Viewed by 909
Abstract
Background: Modulating ethanol metabolism and attenuating alcohol-induced oxidative stress are promising therapeutic strategies for reducing the severity of hangovers and alleviating their associated physiological burden. Methods: A randomized, double-blind, placebo-controlled, crossover study was conducted to evaluate the effects of the probiotic [...] Read more.
Background: Modulating ethanol metabolism and attenuating alcohol-induced oxidative stress are promising therapeutic strategies for reducing the severity of hangovers and alleviating their associated physiological burden. Methods: A randomized, double-blind, placebo-controlled, crossover study was conducted to evaluate the effects of the probiotic strain Leuconostoc mesenteroides VITA-PB2 on ethanol metabolism, oxidative stress, and hangover-related symptoms in 28 healthy adults. The participants consumed either VITA-PB2 or a placebo before standardized alcohol intake, with a 7-day washout period and subsequent crossover. Primary outcomes included blood ethanol, acetaldehyde levels, and aldehyde dehydrogenase (ALDH) activity. Secondary outcomes measured hangover severity assessed by the Acute Hangover Scale (AHS), liver enzymes including aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma-glutamyl transferase (GGT), oxidative stress indicators reactive oxygen species (ROS) and nitric oxide (NO), and antioxidant responses measured by glutathione peroxidase (GPx), catalase, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity. Results: VITA-PB2 supplementation led to a sustained reduction in blood ethanol concentrations beginning at 0.5 h post-ingestion compared with the placebo group, indicating more efficient ethanol clearance. Additionally, VITA-PB2 significantly reduced acetaldehyde levels at 1 h post-ingestion (p < 0.05) and increased ALDH activity by 42.15% at 30 min (p < 0.05). It also markedly reduced ROS levels at 1 h (p < 0.05), enhanced glutathione peroxidase (GPx) activity at 2 h (p < 0.01), and significantly improved the subjective hangover symptoms, particularly thirst (p < 0.05). Conclusions: No adverse effects were reported during the trial, indicating that Leuconostoc mesenteroides VITA-PB2 is a safe probiotic. These findings suggest its efficacy in mitigating alcohol-induced oxidative stress and alleviating hangover-related symptoms. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

13 pages, 2955 KB  
Article
Modeling of a Non-Aqueous Redox Flow Battery for Performance and Capacity Fade Analysis
by Mirko D’Adamo, Nicolas Daub, Lluis Trilla, Jose A. Saez-Zamora and Juan Manuel Paz-Garcia
Batteries 2025, 11(1), 8; https://doi.org/10.3390/batteries11010008 - 27 Dec 2024
Cited by 2 | Viewed by 1614
Abstract
This study presents a prototype non-aqueous redox flow battery that advances the capabilities of conventional systems by achieving a wide operational voltage range, high efficiency, and prolonged cycle life. Leveraging the redox pair 10-[2-(2-methoxy ethoxy)ethyl]-10H-phenothiazine and 2-ethylterephthalonitrile, the system delivers a discharge cell [...] Read more.
This study presents a prototype non-aqueous redox flow battery that advances the capabilities of conventional systems by achieving a wide operational voltage range, high efficiency, and prolonged cycle life. Leveraging the redox pair 10-[2-(2-methoxy ethoxy)ethyl]-10H-phenothiazine and 2-ethylterephthalonitrile, the system delivers a discharge cell voltage ranging from approximately 2.25 V to 1.9 V. To address the economic challenges associated with non-aqueous redox flow batteries, this work explores a cost-efficient design using a symmetric cell architecture and a low-cost, porous separator. To evaluate the feasibility and scalability of this approach, a 2D time-transient reactive transport model is developed, integrating Nernst–Planck electroneutrality principles and porous electrode kinetics. The model is optimized and validated against experimental charge/discharge cycles, accurately predicting voltage behavior. Additionally, the study provides crucial insights into the crossover phenomenon, elucidating the transport dynamics and spatial distribution of active species within the cell. This comprehensive framework establishes a robust foundation for future efforts to scale and optimize non-aqueous redox flow batteries for large-scale energy storage applications, bringing them closer to commercial viability. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

13 pages, 2832 KB  
Article
High-Performance Dual-Redox-Mediator Supercapacitors Based on Buckypaper Electrodes and Hydrogel Polymer Electrolytes
by Garbas A. Santos Junior, Kélrie H. A. Mendes, Sarah G. G. de Oliveira, Gabriel J. P. Tonon, Neide P. G. Lopes, Thiago H. R. da Cunha, Mario Guimarães Junior, Rodrigo L. Lavall and Paulo F. R. Ortega
Polymers 2024, 16(20), 2903; https://doi.org/10.3390/polym16202903 - 15 Oct 2024
Cited by 2 | Viewed by 1557
Abstract
In recent years, the demand for solid, thin, and flexible energy storage devices has surged in modern consumer electronics, which require autonomy and long duration. In this context, hybrid supercapacitors have become strategic, and significant efforts are being made to develop cells with [...] Read more.
In recent years, the demand for solid, thin, and flexible energy storage devices has surged in modern consumer electronics, which require autonomy and long duration. In this context, hybrid supercapacitors have become strategic, and significant efforts are being made to develop cells with higher energy densities while preserving the power density of conventional supercapacitors. Motivated by these requirements, we report the development of a new high-performance dual-redox-mediator supercapacitor. In this study, cells were constructed using fully moldable buckypapers (BPs), composed of carbon nanotubes and cellulose nanofibers, as electrodes. We evaluated the compatibility of BPs with hydrogel polymer electrolytes, based on 1 mol L−1 H2SO4 and polyvinyl alcohol (PVA), supplemented with different redox species: methylene blue, indigo carmine, and hydroquinone. Solid cells were constructed containing two active redox species to maximize the specific capacity of each electrode. Considering the main results, the dual-redox-mediator supercapacitor exhibits high energy density of 32.0 Wh kg−1 (at 0.8 kW kg−1) and is capable of delivering 25.9 Wh kg−1 at high power demand (4.0 kW kg−1). Stability studies conducted over 10,000 galvanostatic cycles revealed that the PVA polymer matrix benefits the system by inhibiting the crossover of redox species within the cell. Full article
Show Figures

Figure 1

20 pages, 5152 KB  
Article
Polyphenol-Rich Cranberry Beverage Positively Affected Skin Health, Skin Lipids, Skin Microbiome, Inflammation, and Oxidative Stress in Women in a Randomized Controlled Trial
by Lindsey Christman, Anna De Benedetto, Elizabeth Johnson, Christina Khoo and Liwei Gu
Nutrients 2024, 16(18), 3126; https://doi.org/10.3390/nu16183126 - 16 Sep 2024
Cited by 1 | Viewed by 4676
Abstract
This study aimed to determine whether a polyphenol-rich cranberry beverage affects skin properties, lipids, and the microbiome in women using a randomized, double-blinded, placebo-controlled, cross-over design. Twenty-two women with Fitzpatrick skin types 2–3 were randomized to drink a cranberry beverage or placebo for [...] Read more.
This study aimed to determine whether a polyphenol-rich cranberry beverage affects skin properties, lipids, and the microbiome in women using a randomized, double-blinded, placebo-controlled, cross-over design. Twenty-two women with Fitzpatrick skin types 2–3 were randomized to drink a cranberry beverage or placebo for six weeks. After a 21-day washout, they consumed the opposite beverage for six weeks. Six weeks of cranberry beverage significantly reduced UVB-induced erythema, improved net elasticity on the face and forearm, smoothness on the face, and gross elasticity on the forearm compared to the placebo. When stratified by age, these effects of the cranberry beverage were primarily observed in women >40 years old. SOD activities were improved after six weeks of cranberry beverage consumption compared to the placebo, while glutathione peroxide and TNF-α were improved compared to baseline. These effects were found to differ by age group. Skin lipid composition was modulated by both the cranberry beverage and the placebo. Cranberry beverages did not change α- or β-diversity but altered the abundance of several skin microbes at the species and strain level. Consumption of a cranberry beverage for six weeks improved specific skin properties and oxidative stress and modulated skin lipids and microbiome compared to placebo. Full article
(This article belongs to the Special Issue Nutritional Value and Health Benefits of Dietary Bioactive Compounds)
Show Figures

Graphical abstract

10 pages, 558 KB  
Article
Effect of Microencapsulated Cocoa Polyphenols on Macro- and Microvascular Function after Eccentric Exercise
by Gustavo Vieira de Oliveira, Leonardo Victor Miranda de Souza, Olavo João Frederico Ramos Junior, Mônica Volino-Souza and Thiago Silveira Alvares
J. Vasc. Dis. 2024, 3(3), 235-244; https://doi.org/10.3390/jvd3030019 - 3 Jul 2024
Viewed by 1317
Abstract
Background: Evidence has demonstrated that non-habitual exercise, such as eccentric exercise, can increase reactive oxygen species and induce endothelial dysfunction, which plays a central role in the development of cardiovascular disease. Polyphenol-rich foods, such as cocoa, have been widely investigated in vascular function [...] Read more.
Background: Evidence has demonstrated that non-habitual exercise, such as eccentric exercise, can increase reactive oxygen species and induce endothelial dysfunction, which plays a central role in the development of cardiovascular disease. Polyphenol-rich foods, such as cocoa, have been widely investigated in vascular function due to their antioxidant effect. Aims: The goal of this study was to evaluate the impact of microencapsulated cocoa (MC) polyphenols in the flow-mediated dilation (FMD) response and forearm muscle oxygenation (StO2) parameters after an eccentric exercise. Methods: Thirteen physically active adults were enrolled in a randomized, double-blind, and crossover study. FMD and StO2 were evaluated before and after 24 h, 48 h, and 72 h of eccentric exercise and MC or placebo supplementation. Results: No significant difference in FMD response and StO2 parameters was observed after MC and placebo (p > 0.05). Conclusions: A single dose of MC did not change FMD and muscle StO2 parameters after eccentric exercise in healthy individuals. Full article
(This article belongs to the Section Cardiovascular Diseases)
Show Figures

Figure 1

12 pages, 5842 KB  
Article
Use of Hydrogel Electrolyte in Zn-MnO2 Rechargeable Batteries: Characterization of Safety, Performance, and Cu2+ Ion Diffusion
by Jungsang Cho, Damon E. Turney, Gautam Ganapati Yadav, Michael Nyce, Bryan R. Wygant, Timothy N. Lambert and Sanjoy Banerjee
Polymers 2024, 16(5), 658; https://doi.org/10.3390/polym16050658 - 28 Feb 2024
Cited by 4 | Viewed by 2858
Abstract
Achieving commercially acceptable Zn-MnO2 rechargeable batteries depends on the reversibility of active zinc and manganese materials, and avoiding side reactions during the second electron reaction of MnO2. Typically, liquid electrolytes such as potassium hydroxide (KOH) are used for Zn-MnO2 [...] Read more.
Achieving commercially acceptable Zn-MnO2 rechargeable batteries depends on the reversibility of active zinc and manganese materials, and avoiding side reactions during the second electron reaction of MnO2. Typically, liquid electrolytes such as potassium hydroxide (KOH) are used for Zn-MnO2 rechargeable batteries. However, it is known that using liquid electrolytes causes the formation of electrochemically inactive materials, such as precipitation Mn3O4 or ZnMn2O4 resulting from the uncontrollable reaction of Mn3+ dissolved species with zincate ions. In this paper, hydrogel electrolytes are tested for MnO2 electrodes undergoing two-electron cycling. Improved cell safety is achieved because the hydrogel electrolyte is non-spillable, according to standards from the US Department of Transportation (DOT). The cycling of “half cells” with advanced-formulation MnO2 cathodes paired with commercial NiOOH electrodes is tested with hydrogel and a normal electrolyte, to detect changes to the zincate crossover and reaction from anode to cathode. These half cells achieved ≥700 cycles with 99% coulombic efficiency and 63% energy efficiency at C/3 rates based on the second electron capacity of MnO2. Other cycling tests with “full cells” of Zn anodes with the same MnO2 cathodes achieved ~300 cycles until reaching 50% capacity fade, a comparable performance to cells using liquid electrolyte. Electrodes dissected after cycling showed that the liquid electrolyte allowed Cu ions to migrate more than the hydrogel electrolyte. However, measurements of the Cu diffusion coefficient showed no difference between liquid and gel electrolytes; thus, it was hypothesized that the gel electrolytes reduced the occurrence of Cu short circuits by either (a) reducing electrode physical contact to the separator or (b) reducing electro-convective electrolyte transport that may be as important as diffusive transport. Full article
(This article belongs to the Special Issue Polymeric Materials in Energy Conversion and Storage)
Show Figures

Graphical abstract

15 pages, 3108 KB  
Article
Novel Microfluidic Septum to Optimize Energy Recovery in Single-Chamber Microbial Fuel Cells
by Giacomo Spisni, Giulia Massaglia, Valentina Bertana, Nicolò Vasile, Fabrizio C. Pirri, Stefano Bianco and Marzia Quaglio
Appl. Sci. 2023, 13(20), 11423; https://doi.org/10.3390/app132011423 - 18 Oct 2023
Cited by 1 | Viewed by 1202
Abstract
This study proposes a redesign of asymmetric single-chamber microbial fuel cells (a-SCMFCs) with the goal of optimizing energy production. In the present work, the new approach is based on the introduction of a novel intermediate microfluidic septum (IMS) inside the electrolyte chamber. This [...] Read more.
This study proposes a redesign of asymmetric single-chamber microbial fuel cells (a-SCMFCs) with the goal of optimizing energy production. In the present work, the new approach is based on the introduction of a novel intermediate microfluidic septum (IMS) inside the electrolyte chamber. This IMS was designed as a relatively simple and inexpensive method to optimize both electrolyte flow and species transfer inside the devices. a-SCMFCs, featuring the IMS, are compared to control cells (IMS-less), when operated with sodium acetate as the carbon energy source. Performances of cells are evaluated in terms both of maximum output potential achieved, and energy recovery (Erec) as the ratio between the energy yield and the inner electrolyte volume. The a-SCMFCs with the novel IMS are demonstrated to enhance the energy recovery compared to control cells exhibiting Erec values of (37 ± 1) J/m3, which is one order of magnitude higher than that achieved by control cells (3.0 ± 0.3) J/m3. Concerning the maximum output potential, IMS cells achieve (2.8 ± 0.2) mV, compared to control cells at (0.68 ± 0.07) mV. Furthermore, by varying the sodium acetate concentration, the Erec and maximum potential output values change accordingly. By monitoring the activity of a-SCMFCs for over one year, the beneficial impact of the IMS on both the initial inoculation phase and the long-term stability of electrical performance are observed. These improvements support the effectiveness of IMS to allow the development of efficient biofilms, likely due to the reduction in oxygen cross-over towards the anode. Electrochemical characterizations confirm that the presence of the IMS impacts the diffusion processes inside the electrolytic chamber, supporting the hypothesis of a beneficial effect on oxygen cross-over. Full article
(This article belongs to the Special Issue Microbial Enzymes, Fuels, and Industrial Chemicals)
Show Figures

Figure 1

19 pages, 3851 KB  
Article
Effects of Electrical Stimulation on Delayed Onset Muscle Soreness (DOMS): Evidences from Laboratory and In-Field Studies
by Maristella Gussoni, Sarah Moretti, Alessandra Vezzoli, Valerio Genitoni, Guido Giardini, Costantino Balestra, Gerardo Bosco, Lorenza Pratali, Elisabetta Spagnolo, Michela Montorsi and Simona Mrakic-Sposta
J. Funct. Morphol. Kinesiol. 2023, 8(4), 146; https://doi.org/10.3390/jfmk8040146 - 13 Oct 2023
Cited by 3 | Viewed by 5677
Abstract
Intense, long exercise can increase oxidative stress, leading to higher levels of inflammatory mediators and muscle damage. At the same time, fatigue has been suggested as one of the factors giving rise to delayed-onset muscle soreness (DOMS). The aim of this study was [...] Read more.
Intense, long exercise can increase oxidative stress, leading to higher levels of inflammatory mediators and muscle damage. At the same time, fatigue has been suggested as one of the factors giving rise to delayed-onset muscle soreness (DOMS). The aim of this study was to investigate the efficacy of a specific electrical stimulation (ES) treatment (without elicited muscular contraction) on two different scenarios: in the laboratory on eleven healthy volunteers (56.45 ± 4.87 years) after upper limbs eccentric exercise (Study 1) and in the field on fourteen ultra-endurance athletes (age 47.4 ± 10.2 year) after an ultra-running race (134 km, altitude difference of 10,970 m+) by lower exercising limbs (Study 2). Subjects were randomly assigned to two experimental tasks in cross-over: Active or Sham ES treatments. The ES efficacy was assessed by monitoring the oxy-inflammation status: Reactive Oxygen Species production, total antioxidant capacity, IL-6 cytokine levels, and lactate with micro-invasive measurements (capillary blood, urine) and scales for fatigue and recovery assessments. No significant differences (p > 0.05) were found in the time course of recovery and/or pre–post-race between Sham and Active groups in both study conditions. A subjective positive role of sham stimulation (VAS scores for muscle pain assessment) was reported. In conclusion, the effectiveness of ES in treating DOMS and its effects on muscle recovery remain still unclear. Full article
(This article belongs to the Special Issue Advances in Physiology of Training)
Show Figures

Figure 1

23 pages, 7448 KB  
Review
Modified Membranes for Redox Flow Batteries—A Review
by Misgina Tilahun Tsehaye, Ramato Ashu Tufa, Roviel Berhane, Francesco Deboli, Kibrom Alebel Gebru and Svetlozar Velizarov
Membranes 2023, 13(9), 777; https://doi.org/10.3390/membranes13090777 - 1 Sep 2023
Cited by 11 | Viewed by 4484
Abstract
In this review, the state of the art of modified membranes developed and applied for the improved performance of redox flow batteries (RFBs) is presented and critically discussed. The review begins with an introduction to the energy-storing chemical principles and the potential of [...] Read more.
In this review, the state of the art of modified membranes developed and applied for the improved performance of redox flow batteries (RFBs) is presented and critically discussed. The review begins with an introduction to the energy-storing chemical principles and the potential of using RFBs in the energy transition in industrial and transport-related sectors. Commonly used membrane modification techniques are briefly presented and compared next. The recent progress in applying modified membranes in different RFB chemistries is then critically discussed. The relationship between a given membrane modification strategy, corresponding ex situ properties and their impact on battery performance are outlined. It has been demonstrated that further dedicated studies are necessary in order to develop an optimal modification technique, since a modification generally reduces the crossover of redox-active species but, at the same time, leads to an increase in membrane electrical resistance. The feasibility of using alternative advanced modification methods, similar to those employed in water purification applications, needs yet to be evaluated. Additionally, the long-term stability and durability of the modified membranes during cycling in RFBs still must be investigated. The remaining challenges and potential solutions, as well as promising future perspectives, are finally highlighted. Full article
(This article belongs to the Special Issue Surface Modification and Performance Enhancement for Membranes)
Show Figures

Figure 1

16 pages, 2807 KB  
Article
Water-Soluble Tomato Concentrate, a Potential Antioxidant Supplement, Can Attenuate Platelet Apoptosis and Oxidative Stress in Healthy Middle-Aged and Elderly Adults: A Randomized, Double-Blinded, Crossover Clinical Trial
by Zezhong Tian, Kongyao Li, Die Fan, Xiaoli Gao, Xilin Ma, Yimin Zhao, Dan Zhao, Ying Liang, Qiuhua Ji, Yiting Chen and Yan Yang
Nutrients 2022, 14(16), 3374; https://doi.org/10.3390/nu14163374 - 17 Aug 2022
Cited by 2 | Viewed by 3819
Abstract
Increased oxidative stress and platelet apoptotic in middle-aged and elderly adults are important risk factors for atherosclerotic cardiovascular disease (ASCVD). Therefore, it is of great significance to control the oxidative stress and platelet apoptosis in middle-aged and elderly adults. Previous acute clinical trials [...] Read more.
Increased oxidative stress and platelet apoptotic in middle-aged and elderly adults are important risk factors for atherosclerotic cardiovascular disease (ASCVD). Therefore, it is of great significance to control the oxidative stress and platelet apoptosis in middle-aged and elderly adults. Previous acute clinical trials have shown that water-soluble tomato concentrate (WSTC) from fresh tomatoes could exert antiplatelet benefits after 3 h or 7 h, but its effects on platelet apoptosis and oxidative stress are still unknown, especially in healthy middle-aged and elderly adults. This current study aimed to examine the efficacies of WSTC on platelet apoptosis and oxidative stress in healthy middle-aged and elderly adults via a randomized double-blinded placebo-controlled crossover clinical trial (10 weeks in total). A total of 52 healthy middle-aged and elderly adults completed this trial. The results showed that WSTC could increase the serum total antioxidant capacity levels (p < 0.05) and decrease the serum malondialdehyde levels (p < 0.05) after a 4-week WSTC supplementation in healthy middle-aged and elderly adults. Platelet endogenous reactive oxygen species generation (p < 0.05), mitochondrial membrane potential dissipation (p < 0.05) and phosphatidylserine exposure (p < 0.05) were attenuated. In addition, our present study also found that WSTC could inhibit platelet aggregation and activation induced by collagen or ADP after intervention (p < 0.05), while having no effects on adverse events (p > 0.05). The results suggest that WSTC can inhibit oxidative stress and its related platelet apoptosis, which may provide a basis for the primary prevention of WSTC in ASCVD. Full article
(This article belongs to the Special Issue Dietary Supplements in Cardiovascular and Metabolic Diseases)
Show Figures

Graphical abstract

13 pages, 1202 KB  
Article
Investigations on the Spin States of Two Mononuclear Iron(II) Complexes Based on N-Donor Tridentate Schiff Base Ligands Derived from Pyridine-2,6-Dicarboxaldehyde
by Yosef Bayeh, Nithin Suryadevara, Sören Schlittenhardt, Róbert Gyepes, Assefa Sergawie, Peter Hrobárik, Wolfgang Linert, Mario Ruben and Madhu Thomas
Inorganics 2022, 10(7), 98; https://doi.org/10.3390/inorganics10070098 - 8 Jul 2022
Cited by 5 | Viewed by 3020
Abstract
Iron(II)-Schiff base complexes are a well-studied class of spin-crossover (SCO) active species due to their ability to interconvert between a paramagnetic high spin-state (HS, S = 2, 5T2) and a diamagnetic low spin-state (LS, S = 0, 1A1 [...] Read more.
Iron(II)-Schiff base complexes are a well-studied class of spin-crossover (SCO) active species due to their ability to interconvert between a paramagnetic high spin-state (HS, S = 2, 5T2) and a diamagnetic low spin-state (LS, S = 0, 1A1) by external stimuli under an appropriate ligand field. We have synthesized two mononuclear FeII complexes, viz., [Fe(L1)2](ClO4)2.CH3OH (1) and [Fe(L2)2](ClO4)2.2CH3CN (2), from two N6–coordinating tridentate Schiff bases derived from 2,6-bis[(benzylimino)methyl]pyridine. The complexes have been characterized by elemental analysis, electrospray ionization–mass spectrometry (ESI-MS), Fourier-transform infrared spectroscopy (FTIR), solution state nuclear magnetic resonance spectroscopy, 1H and 13C NMR (both theoretically and experimentally), single-crystal diffraction and magnetic susceptibility studies. The structural, spectroscopic and magnetic investigations revealed that 1 and 2 are with Fe–N6 distorted octahedral coordination geometry and remain locked in LS state throughout the measured temperature range from 5–350 K. Full article
(This article belongs to the Special Issue Metal Complexes with N-donor Ligands)
Show Figures

Figure 1

13 pages, 1618 KB  
Article
The Effect of Capsule-in-Capsule Combinations on In Vivo Disintegration in Human Volunteers: A Combined Imaging and Salivary Tracer Study
by Adrian Rump, Franziska N. Weiss, Louisa Schulz, Marie-Luise Kromrey, Eberhard Scheuch, Mladen V. Tzvetkov, Tyler White, Shane Durkee, Kevin W. Judge, Vincent Jannin, Aouatef Bellamine, Werner Weitschies and Michael Grimm
Pharmaceutics 2021, 13(12), 2002; https://doi.org/10.3390/pharmaceutics13122002 - 25 Nov 2021
Cited by 19 | Viewed by 5262
Abstract
Controlling the time point and site of the release of active ingredients within the gastrointestinal tract after administration of oral delivery systems is still a challenge. In this study, the effect of the combination of small capsules (size 3) and large capsules (size [...] Read more.
Controlling the time point and site of the release of active ingredients within the gastrointestinal tract after administration of oral delivery systems is still a challenge. In this study, the effect of the combination of small capsules (size 3) and large capsules (size 00) on the disintegration site and time was investigated using magnetic resonance imaging (MRI) in combination with a salivary tracer technique. As capsule shells, Vcaps® HPMC capsules, Vcaps® Plus HPMC capsules, gelatin and DRcaps® designed release capsules were used. The three HPMC-based capsules (Vcaps®, Vcaps® Plus and DRcaps® capsules) were tested as single capsules; furthermore, seven DUOCAP® capsule-in-capsule combinations were tested in a 10-way crossover open-label study in six healthy volunteers. The capsules contained iron oxide and hibiscus tea powder as tracers for visualization in MRI, and two different caffeine species (natural caffeine and 13C3) to follow caffeine release and absorption as measured by salivary levels. Results showed that the timing and location of disintegration in the gastrointestinal tract can be measured and differed when using different combinations of capsule shells. Increased variability among the six subjects was observed in most of the capsule combinations. The lowest variability in gastrointestinal localization of disintegration was observed for the DUOCAP® capsule-in-capsule configuration using a DRcaps® designed release capsule within a DRcaps® designed release outer capsule. In this combination, the inner DRcaps® designed release capsule always opened reliably after reaching the ileum. Thus, this combination enables targeted delivery to the distal small intestine. Among the single capsules tested, Vcaps® Plus HPMC capsules showed the fastest and most consistent disintegration. Full article
Show Figures

Graphical abstract

19 pages, 2261 KB  
Article
Investigation of Gas Diffusion Electrode Systems for the Electrochemical CO2 Conversion
by Hilmar Guzmán, Federica Zammillo, Daniela Roldán, Camilla Galletti, Nunzio Russo and Simelys Hernández
Catalysts 2021, 11(4), 482; https://doi.org/10.3390/catal11040482 - 9 Apr 2021
Cited by 21 | Viewed by 6373
Abstract
Electrochemical CO2 reduction is a promising carbon capture and utilisation technology. Herein, a continuous flow gas diffusion electrode (GDE)-cell configuration has been studied to convert CO2 via electrochemical reduction under atmospheric conditions. To this purpose, Cu-based electrocatalysts immobilised on a porous [...] Read more.
Electrochemical CO2 reduction is a promising carbon capture and utilisation technology. Herein, a continuous flow gas diffusion electrode (GDE)-cell configuration has been studied to convert CO2 via electrochemical reduction under atmospheric conditions. To this purpose, Cu-based electrocatalysts immobilised on a porous and conductive GDE have been tested. Many system variables have been evaluated to find the most promising conditions able to lead to increased production of CO2 reduction liquid products, specifically: applied potentials, catalyst loading, Nafion content, KHCO3 electrolyte concentration, and the presence of metal oxides, like ZnO or/and Al2O3. In particular, the CO productivity increased at the lowest Nafion content of 15%, leading to syngas with an H2/CO ratio of ~1. Meanwhile, at the highest Nafion content (45%), C2+ products formation has been increased, and the CO selectivity has been decreased by 80%. The reported results revealed that the liquid crossover through the GDE highly impacts CO2 diffusion to the catalyst active sites, thus reducing the CO2 conversion efficiency. Through mathematical modelling, it has been confirmed that the increase of the local pH, coupled to the electrode-wetting, promotes the formation of bicarbonate species that deactivate the catalysts surface, hindering the mechanisms for the C2+ liquid products generation. These results want to shine the spotlight on kinetics and transport limitations, shifting the focus from catalytic activity of materials to other involved factors. Full article
(This article belongs to the Special Issue Photoelectrochemical and Photocatalytic Materials for Fuel Production)
Show Figures

Graphical abstract

16 pages, 590 KB  
Review
The Role of Selenium Mineral Trace Element in Exercise: Antioxidant Defense System, Muscle Performance, Hormone Response, and Athletic Performance. A Systematic Review
by Diego Fernández-Lázaro, Cesar I. Fernandez-Lazaro, Juan Mielgo-Ayuso, Lourdes Jiménez Navascués, Alfredo Córdova Martínez and Jesús Seco-Calvo
Nutrients 2020, 12(6), 1790; https://doi.org/10.3390/nu12061790 - 16 Jun 2020
Cited by 75 | Viewed by 9506
Abstract
Exercise overproduces oxygen reactive species (ROS) and eventually exceeds the body’s antioxidant capacity to neutralize them. The ROS produce damaging effects on the cell membrane and contribute to skeletal muscle damage. Selenium (Se), a natural mineral trace element, is an essential component of [...] Read more.
Exercise overproduces oxygen reactive species (ROS) and eventually exceeds the body’s antioxidant capacity to neutralize them. The ROS produce damaging effects on the cell membrane and contribute to skeletal muscle damage. Selenium (Se), a natural mineral trace element, is an essential component of selenoproteins that plays an important role in antioxidant defense. The activity of the enzyme glutathione peroxidase (GPx), a highly-efficient antioxidant enzyme, is closely dependent on the presence of Se. These properties of Se may be potentially applicable to improve athletic performance and training recovery. We systematically searched for published studies to evaluate the effectiveness of Se supplementation on antioxidant defense system, muscle performance, hormone response, and athletic performance among physically active individuals. We used the Preferred Reporting Elements for Systematic Reviews and Meta-Analysis (PRISMA) guidelines and searched in SCOPUS, Web of Science (WOS), and PubMed databases to identify published studies until March 2020. The systematic review incorporated original studies with randomized controlled crossover or parallel design in which intake of Se administered once a day was compared with the same placebo conditions. No exclusions were applied for the type of physical exercise performed, the sex, nor the age of the participants. Among 150 articles identified in the search, 6 met the criteria and were included in the systematic review. The methodological quality of the studies was evaluated using the McMaster Critical Review Form. Oral Se supplementation with 180 µg/day or 240 µg/day (selenomethionine) and 200 µg/day (Sodium Selenite), significantly decreased lipid hydroperoxide levels and increased GPx in plasma, erythrocyte, and muscle. No significant effects were observed on athletic performance, testosterone hormone levels, creatine kinase activity, and exercise training-induced adaptations on oxidative enzyme activities or on muscle fiber type myosin heavy chain expression. In addition, Se supplementation showed to have a dampening effect on the mitochondria changes in chronic and acute exercise. In summary, the use of Se supplementation has no benefits on aerobic or anaerobic athletic performance but it may prevent Se deficiencies among athletes with high-intensity and high-volume training. Optimal Se plasma levels may be important to minimize chronic exercise-induced oxidative effects and modulate the exercise effect on mitochondrial changes. Full article
(This article belongs to the Special Issue Dietary Intake and Physical Activity for Human Health)
Show Figures

Figure 1

9 pages, 876 KB  
Article
Effects of Artificial Light at Night (ALAN) on European Hedgehog Activity at Supplementary Feeding Stations
by Domhnall Finch, Bethany R. Smith, Charlotte Marshall, Frazer G. Coomber, Laura M. Kubasiewicz, Max Anderson, Patrick G. R. Wright and Fiona Mathews
Animals 2020, 10(5), 768; https://doi.org/10.3390/ani10050768 - 28 Apr 2020
Cited by 13 | Viewed by 7679
Abstract
Artificial light at night (ALAN) can have negative consequences for a wide range of taxa. However, the effects on nocturnal mammals other than bats are poorly understood. A citizen science camera trapping experiment was therefore used to assess the effect of ALAN on [...] Read more.
Artificial light at night (ALAN) can have negative consequences for a wide range of taxa. However, the effects on nocturnal mammals other than bats are poorly understood. A citizen science camera trapping experiment was therefore used to assess the effect of ALAN on the activity of European hedgehogs (Erinaceus europaeus) at supplementary feeding stations in UK gardens. A crossover design was implemented at 33 gardens with two treatments—artificial light and darkness—each of which lasted for one week. The order of treatment depended on the existing lighting regime at the feeding station: dark treatments were applied first at dark feeding stations, whereas light treatments were used first where the station was already illuminated. Although temporal changes in activity patterns in response to the treatments were noted in some individuals, the direction of the effects was not consistent. Similarly, there was no overall impact of ALAN on the presence or feeding activities of hedgehogs in gardens where supplementary feeding stations were present. These findings are somewhat reassuring insofar as they demonstrate no net negative effect on a species thought to be in decline, in scenarios where the animals are already habituated to supplementary feeding. However, further research is needed to examine long-term effects and the effects of lighting on hedgehog prey, reproductive success and predation risk. Full article
(This article belongs to the Special Issue Applied Hedgehog Conservation Research)
Show Figures

Figure 1

Back to TopTop