Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (989)

Search Parameters:
Keywords = active tectonics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 19543 KB  
Article
Detrital Zircon U-Pb Age Data and Geochemistry of Clastic Rocks in the Xiahe–Hezuo Area: Implications for the Late Paleozoic–Mesozoic Tectonic Evolution of the West Qinling Orogen
by Hang Li, Kang Yan, Kangning Li, Ke Yang, Baocheng Fan, Zhongkai Xue, Li Chen and Haomin Guo
Geosciences 2025, 15(10), 384; https://doi.org/10.3390/geosciences15100384 - 3 Oct 2025
Abstract
The West Qinling Orogenic Belt (WQOB) contains a sedimentary succession that is approximately 15 km thick, spanning from the Carboniferous to the Jurassic period. This succession offers critical insights into the tectonic evolution of the Paleo-Tethys Ocean. While previous models have suggested various [...] Read more.
The West Qinling Orogenic Belt (WQOB) contains a sedimentary succession that is approximately 15 km thick, spanning from the Carboniferous to the Jurassic period. This succession offers critical insights into the tectonic evolution of the Paleo-Tethys Ocean. While previous models have suggested various depositional environments, the late Paleozoic to Mesozoic tectonic evolution of the WQOB is still not fully understood. In this study, we incorporate new detrital zircon U-Pb age data and whole-rock geochemical analyses from six stratigraphic units, dating back to the Carboniferous to Triassic periods in the Xiahe–Hezuo region, alongside existing datasets. The detrital zircon age spectra from the WQOB reveal three distinct groups: Devonian–Carboniferous strata exhibit dominant Neoproterozoic (~800–900 Ma) zircon populations, whereas Permian–Triassic rock samples show prominent Paleoproterozoic (1840–1880 Ma) and Archean (2450–2500 Ma) peaks. A minor Neoproterozoic component in Permian spectra disappears by the Triassic, while Jurassic–Cretaceous assemblages lack Precambrian grains. These trends reflect evolving source terranes linked to Paleo-Tethyan subduction dynamics. Furthermore, the geochemical signatures of the Devonian–Triassic clastic rocks align with the composition of upper continental crust, indicating a tectonic relationship with continental island arcs and active continental margins. By synthesizing these findings with established detrital zircon ages, magmatic records, and geophysical data, we propose that the WQOB underwent pre-Triassic tectonic evolution that was marked by pre-Triassic subduction and localized extension during the process of continental underthrusting. Full article
(This article belongs to the Special Issue Detrital Minerals Geochronology and Sedimentary Provenance)
Show Figures

Figure 1

32 pages, 3829 KB  
Article
Summary Results of Radon-222 Activity Monitoring in Karst Caves in Bulgaria
by Petar Stefanov, Karel Turek and Ludmil Tsankov
Geosciences 2025, 15(10), 378; https://doi.org/10.3390/geosciences15100378 - 1 Oct 2025
Abstract
Cave systems are a kind of natural laboratory for interdisciplinary research on karstogenesis in the context of global changes. In this study, we investigate the concentration of 222Rn at 65 points in 37 representative caves of Bulgarian karst through continuous monitoring with [...] Read more.
Cave systems are a kind of natural laboratory for interdisciplinary research on karstogenesis in the context of global changes. In this study, we investigate the concentration of 222Rn at 65 points in 37 representative caves of Bulgarian karst through continuous monitoring with passive and active detectors with a duration of 1 to 13 years. The concentration changes strongly both in the long term and seasonally, with values from 0.1 to 13 kBq m−3. These variations are analyzed from different perspectives (location and morphological features of the cave system, cave climate, ventilation regime, etc.). The seasonal change in the direction and intensity of ventilation is a leading factor determining the gas composition of the cave atmosphere during the year. Parallel measurements of 222Rn and CO2 concentrations in the cave air show that both gases have a similar seasonal fluctuation. Cases of coincidences of an anomalous increase in the concentration of 222Rn with manifestations of seismic activity and micro-displacements along tectonic cracks in the caves have also been registered. The dependencies between the 222Rn concentration in the caves and in the soil above them are also discussed, as well as the possible connections between global trends in climate change and trends in 222Rn emissions. Special attention is paid to the risks of radiation exposure in show caves. A calculation procedure has been developed to achieve the realistic assessment of the effective dose of cave guides. It is based on information about the annual course of the 222Rn concentration in the respective cave and the time schedule of the guides’ stay in it. The calculation showed that the effective dose may exceed the permitted limits, and it is thus necessary to control it. Full article
Show Figures

Figure 1

15 pages, 14032 KB  
Article
Preliminary Study on the Activity of the Rupture Zone in the Eastern Segment of the Ba Co Fault in Ngari Prefecture, Tibet
by Yunsheng Yao, Yanxiu Shao and Bo Zhang
Geosciences 2025, 15(10), 377; https://doi.org/10.3390/geosciences15100377 - 1 Oct 2025
Abstract
The lack of research on the slip behavior of the NW-trending faults in the central Tibetan Plateau constrains our understanding of the deformation models for this region. The Ba Co Fault, located in the central Tibetan Plateau, is a NW–SE-trending right-lateral strike-slip fault. [...] Read more.
The lack of research on the slip behavior of the NW-trending faults in the central Tibetan Plateau constrains our understanding of the deformation models for this region. The Ba Co Fault, located in the central Tibetan Plateau, is a NW–SE-trending right-lateral strike-slip fault. Its eastern section has been active in the Holocene and plays an important accommodating role in the northward compression and east–west extension of the Tibetan Plateau. This study presents a detailed analysis of the geomorphic features of the eastern section of the Ba Co Fault in the Ngari Prefecture of Tibet, precisely measuring the newly discovered surface rupture zone on its eastern side and preliminarily discussing the activity of the fault based on the optically stimulated luminescence (OSL) dating results. The results reveal that the eastern segment of the Ba Co Fault displays geomorphic evidence of offset, including displaced Holocene alluvial–fluvial fans at the mountain front and partially offset ridges. A series of pressure ridges, trenches, counter-slope scarps, and shutter ridge ponds have developed along the fault trace. Some gullies exhibit a cumulative dextral displacement of approximately 16–52 m. The newly discovered co-seismic surface rupture zone extends for a total length of ~21 km, with a width ranging from 30 to 102 m. Pressure ridges within the rupture zone reach heights of 0.3–5.5 m, while trenches exhibit depths of 0.6–15 m. Optically stimulated luminescence (OSL) dating constrains the timing of the surface-rupturing earthquake to after 5.73 ± 0.17 ka. The eastern segment of the Ba Co Fault experienced a NW-trending compressional deformation regime during the Holocene, manifesting as a transpressional dextral strike-slip fault. Magnitude estimation indicates that this segment possesses the potential to generate earthquakes of M ≥ 6. The regional tectonic analysis indicates that the activity of the eastern section of the Ba Co Fault is related to the shear model of the conjugate strike-slip fault zone in the central Tibetan Plateau and may play a boundary role between different shear zones. Full article
Show Figures

Figure 1

21 pages, 10167 KB  
Article
Influence of Landslide Activity Characteristics on Landslide Susceptibility Assessment: A Case Study in the Upper Jinsha River
by Zhihua Yang, Ruian Wu, Weiwei Shao, Changbao Guo, Xiying Wang and Haiyan Yang
Remote Sens. 2025, 17(19), 3335; https://doi.org/10.3390/rs17193335 - 29 Sep 2025
Abstract
The geological environment is characterized by continuous dynamic changes. Landslide activity characteristics can reflect the geological environmental background that affects the landslide development in different historical periods. A comprehensive methodology framework for landslide susceptibility assessment based on landslide activity is proposed. The core [...] Read more.
The geological environment is characterized by continuous dynamic changes. Landslide activity characteristics can reflect the geological environmental background that affects the landslide development in different historical periods. A comprehensive methodology framework for landslide susceptibility assessment based on landslide activity is proposed. The core concept involves classifying landslide samples into active and inactive categories. Focusing on the Baiyu–Batang section of the upper Jinsha River in the Qinghai–Tibet Plateau, the influence of landslide activity characteristics on landslide susceptibility assessment is investigated. Both ancient and recent landslides are widely distributed. A total of 366 landslides are identified, which are categorized into three subsets: Dataset A (190 active landslides), Dataset B (190 active and 176 inactive landslides), and Dataset C (176 inactive landslides). Eight disaster-causing factors are selected, and the weighted information value model is utilized to perform the landslide susceptibility assessment. Results show that regions exhibiting very high and high landslide susceptibility are mainly situated along riverbanks such as the Jinsha River, Baqu River, and Ouqu River, exhibiting a distinct linear distribution pattern aligned with the river systems. The landslide susceptibility based on Dataset A demonstrates the highest accuracy, suggesting that incorporating landslide activity significantly enhances the reliability of landslide susceptibility assessment in the current geological environment. Full article
Show Figures

Figure 1

25 pages, 11727 KB  
Article
An Interpretable Ensemble Learning Framework Based on Remote Sensing for Ecological–Geological Environment Evaluation: The Case of Laos
by Zhengyao Wang, Yunhui Kong, Keyan Xiao, Changjie Cao, Yunhe Li, Yixiao Wu, Miao Xie, Rui Tang, Cheng Li and Chengjie Gong
Remote Sens. 2025, 17(18), 3240; https://doi.org/10.3390/rs17183240 - 19 Sep 2025
Viewed by 321
Abstract
As a critical ecological security barrier in the Indo-China Peninsula, the Lao People’s Democratic Republic (Lao PDR) is increasingly threatened by forest degradation, frequent geological hazards, and intensified anthropogenic disturbances. To address the urgent need for a scientific evaluation of eco-geological environmental quality, [...] Read more.
As a critical ecological security barrier in the Indo-China Peninsula, the Lao People’s Democratic Republic (Lao PDR) is increasingly threatened by forest degradation, frequent geological hazards, and intensified anthropogenic disturbances. To address the urgent need for a scientific evaluation of eco-geological environmental quality, this study develops a comprehensive assessment framework integrating multi-source remote sensing imagery, geological maps, and socio-economic datasets. A total of ten indicators were selected across four dimensions—geology, topography, ecology, and human activity. A stacking ensemble learning model was constructed by combining seven heterogeneous base classifiers—AdaBoost, KNN, Gradient Boosting, Random Forest, SVC, MLP, and XGBoost—with a logistic regression meta-learner. Model interpretability was enhanced using SHAP values to quantify the contribution of each input variable. The stacking model outperformed all individual models, achieving an accuracy of 91.14%, an F1 score of 93.62%, and an AUC of 95.05%. NDVI, GDP, and slope were identified as the most influential factors: vegetation coverage showed a strong positive relationship with environmental quality, while economic development intensity and steep terrain were associated with degradation. Spatial zoning results indicate that high-quality eco-geological zones are concentrated in the low-disturbance plains of the northeast and southeast, whereas vulnerable areas are primarily distributed around the Vientiane metropolitan region and tectonically active mountainous zones. This study offers a robust and interpretable methodological approach to support ecological diagnosis, zonal management, and sustainable development in tropical mountainous regions. Full article
Show Figures

Figure 1

25 pages, 46515 KB  
Article
Parental Affinities and Environments of Bauxite Genesis in the Salt Range, Northwestern Himalayas, Pakistan
by Muhammad Khubab, Michael Wagreich, Andrea Mindszenty, Shahid Iqbal, Katerina Schöpfer and Matee Ullah
Minerals 2025, 15(9), 993; https://doi.org/10.3390/min15090993 - 19 Sep 2025
Viewed by 342
Abstract
As the residual products of severe chemical weathering, bauxite deposits serve both as essential economic Al-Fe resources and geochemical archives that reveal information about the parent rocks’ composition, paleoenvironments and paleoclimates, and the tectonic settings responsible for their genesis. The well-developed Early Paleocene [...] Read more.
As the residual products of severe chemical weathering, bauxite deposits serve both as essential economic Al-Fe resources and geochemical archives that reveal information about the parent rocks’ composition, paleoenvironments and paleoclimates, and the tectonic settings responsible for their genesis. The well-developed Early Paleocene bauxite deposits of the Salt Range, Pakistan, provide an opportunity for deciphering their ore genesis and parental affinities. The deposits occur as lenticular bodies and are typically composed of three consecutive stratigraphic facies from base to top: (1) massive dark-red facies (L-1), (2) composite conglomeratic–pisolitic facies (L-2), and (3) Kaolinite-rich clayey facies (L-3). Results from optical microscopy, X-ray powder diffraction (XRPD), and scanning electron microscopy with Energy-Dispersive X-Ray Spectroscopy (SEM-EDS) reveal that facies L-1 contains kaolinite, hematite, and goethite as major minerals, with minor amounts of muscovite, quartz, anatase, and rutile. In contrast, facies L-2 primarily consists of kaolinite, boehmite, hematite, gibbsite, goethite, alunite/natroalunite, and zaherite, with anatase, rutile, and quartz as minor constituents. L-3 is dominated by kaolinite, quartz, and anatase, while hematite and goethite exist in minor concentrations. Geochemical analysis reveals elevated concentrations of Al2O3, Fe2O3, SiO2, and TiO2. Trace elements, including Th, U, Ga, Y, Zr, Nb, Hf, V, and Cr, exhibit a positive trend across all sections when normalized to Upper Continental Crust (UCC) values. Field observations and analytical data suggest a polygenetic origin of these deposits. L-1 suggests in situ lateritization of some sort of precursor materials, with enrichment in stable and ultra-stable heavy minerals such as zircon, tourmaline, rutile, and monazite. This facies is mineralogically mature with bauxitic components, but lacks the typical bauxitic textures. In contrast, L-2 is texturally and mineralogically mature, characterized by various-sized pisoids and ooids within a microgranular-to-microclastic matrix. The L-3 mineralogy and texture suggest that the conditions were still favorable for bauxite formation. However, the ongoing tectonic activities and wet–dry climate cycles post-depositionally disrupted the bauxitization process. The accumulation of highly stable detrital minerals, such as zircon, rutile, tourmaline, and monazite, indicates prolonged weathering and multiple cycles of sedimentary reworking. These deposits have parental affinity with acidic-to-intermediate/-argillaceous rocks, resulting from the weathering of sediments derived from UCC sources, including cratonic sandstone and shale. Full article
Show Figures

Graphical abstract

16 pages, 9887 KB  
Article
Differences in Mesozoic–Cenozoic Structural Deformation Between the Northern and Southern Parts of the East China Sea Shelf Basin and Their Dynamic Mechanisms
by Chuansheng Yang, Junlan Song, Yanqiu Yang, Luning Shang, Jing Liao and Yamei Zhou
J. Mar. Sci. Eng. 2025, 13(9), 1809; https://doi.org/10.3390/jmse13091809 - 18 Sep 2025
Viewed by 230
Abstract
The East China Sea Shelf Basin (ECSSB) and its adjacent areas, as key regions of the ocean–continent transition zone, have been affected by multiple complex plate collisions, subduction, and back-arc tension since the Mesozoic Era. The structural deformation provides a large amount of [...] Read more.
The East China Sea Shelf Basin (ECSSB) and its adjacent areas, as key regions of the ocean–continent transition zone, have been affected by multiple complex plate collisions, subduction, and back-arc tension since the Mesozoic Era. The structural deformation provides a large amount of geological information on the ocean–continent transition zone. There are significant spatiotemporal differences in the structural deformation within the basin. However, the research remains insufficient and understanding is inconsistent, especially regarding the systematic study of the differences and dynamic mechanisms of north–south structural deformation, which is relatively lacking. This study is based on two-dimensional multi-channel deep reflection seismic profiles spanning the southern and northern basin. Through an integrated re-analysis of gravity, magnetic, and OBS data, the deformation characteristics and processes of the Meso-Cenozoic structures in the basin are analyzed. The differences in structural deformation between the southern and northern basin are summarized, and the controlling effects of deep crust–mantle activity and the influencing factors of shallow structural deformation are explored. Based on deep reflection seismic profiles, the structural deformation characteristics of the Yushan–Kume fault are revealed for the first time, and it is proposed that NW faults, represented by the Yushan–Kume fault, have important tuning effects on the north–south structural differential deformation in the ECSSB. The thermal subsidence of the lithosphere is the direct cause of the development of the Mesozoic ECSSB, while the subduction of the Paleo-Pacific plate is one of the important factors contributing to it. The combined effect of the two has led to significant differences between the northern and southern Mesozoic basin. During the Cenozoic Era, the alternating subduction and changes in the direction of subduction of the Pacific Plate led to spatiotemporal differences in structural deformation within the ECSSB. The development of NW faults was a key factor in the differences in structural deformation between the northern and southern basin. The study of structural deformation differences in the ECSSB not only deepens our understanding of the tectonic evolution in the East Asian continental margin region, but also has important significance for the exploration and evaluation of deep hydrocarbon resources in the ECSSB. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

23 pages, 15398 KB  
Article
Relative Uplift Rates Along the Central Mindoro Fault, Philippines
by Jeremy Rimando and Rolly Rimando
GeoHazards 2025, 6(3), 57; https://doi.org/10.3390/geohazards6030057 - 15 Sep 2025
Viewed by 330
Abstract
The Central Mindoro Fault (CMF) is a major active oblique, sinistral strike-slip fault within the Philippine archipelago that accommodates the oblique convergence between the Philippine Sea Plate (PSP) and the Sunda Plate (SP). This study focused on assessing the spatial distribution of relative [...] Read more.
The Central Mindoro Fault (CMF) is a major active oblique, sinistral strike-slip fault within the Philippine archipelago that accommodates the oblique convergence between the Philippine Sea Plate (PSP) and the Sunda Plate (SP). This study focused on assessing the spatial distribution of relative uplift rates along the CMF by calculating multiple geomorphic indices (elongation ratio, volume-to-area-ratio, valley floor width-to-height ratio, hypsometric integral, and normalized steepness index) and interpreting these values in the context of any along-strike variations in geology and climate, as well as the context of the CMF’s kinematics. We observed 2 characteristics of spatial distributions of relative uplift rates: (1) at least 20–30 km-long high uplift rate sections in the northwestern end of the CMF-bound mountain range (CMF segment I), and (2) at most, CMF-wide moderate to high uplift rates. This trend matches the geomorphic-based cumulative fault offset measurements distribution, possibly indicating consistent kinematics and an overall nearly-uniform stress-field since at least the Pleistocene. Based on the spatial distribution of areas with high relative uplift rates highlighted by this study, future efforts to assess the CMF’s seismogenic capability should focus on segments I and III. Full article
Show Figures

Figure 1

22 pages, 53569 KB  
Article
Unveiling Lithological Diversity and Active Tectonic Processes of the Nabitah Fault Zone, Saudi Arabia: A Remote Sensing and Drainage Analysis Approach to Environmental Sustainability
by Abdullah M. Alanazi and Bashar Bashir
Appl. Sci. 2025, 15(18), 10069; https://doi.org/10.3390/app151810069 - 15 Sep 2025
Viewed by 241
Abstract
Active tectonics in the Arabian Shield region has substantially influenced the drainage system and geomorphic expressions. The Nabitah Fault Zone (NFZ), located in the southern portion of the Arabian Nubian Shield, is an intra-arc suture that traces the boundary between two young Neoproterozoic [...] Read more.
Active tectonics in the Arabian Shield region has substantially influenced the drainage system and geomorphic expressions. The Nabitah Fault Zone (NFZ), located in the southern portion of the Arabian Nubian Shield, is an intra-arc suture that traces the boundary between two young Neoproterozoic intra-oceanic arc terranes: the Tathlith–Malahah terrane and the Al Qarah terrane. In this study, an active tectonic model was assessed and developed to evaluate the level and distributions of the tectonic activity related to the NFZ in Saudi Arabia. To achieve that, a digital elevation model-derived drainage system and a series of geomorphic indices were used, including mountain front sinuosity, valley floor width-to-valley height ratio, basin shape, hypsometric integral, and basin asymmetry. The average value of each geomorphic index was calculated and assigned. The results extracted were integrated to obtain the Tectonic Activity index (TA). Three classes were defined in this study to indicate the tectonic activity degree: low tectonic activity (class 3; TA > 2.5), moderate tectonic activity (class 2; 1.75 < TA ≤ 2.5), and high tectonic activity (class 1; 0 < TA < 1.75). Based on the results, this paper deduced that the highly deformed regions associated with active tectonics can be recognized and evaluated using this effective integration technique. Therefore, this can be applied to other significant fault zones elsewhere, particularly those whose tectonic activity has not yet been evaluated. Full article
(This article belongs to the Special Issue Risk Assessment for Hazards in Infrastructures)
Show Figures

Figure 1

31 pages, 75797 KB  
Article
Gravity Rate of Change Due to Slow Tectonics: Insights from Numerical Modeling
by Anna Maria Marotta, Valeria Fedeli, Alessandro Regorda and Roberto Sabadini
Geosciences 2025, 15(9), 359; https://doi.org/10.3390/geosciences15090359 - 13 Sep 2025
Viewed by 247
Abstract
Gravity anomalies caused by tectonics are commonly assumed to be static, based on the argument that the motions are slow enough for the induced mass changes over time to be negligible. We exploit this concept in the context of rifting and subduction by [...] Read more.
Gravity anomalies caused by tectonics are commonly assumed to be static, based on the argument that the motions are slow enough for the induced mass changes over time to be negligible. We exploit this concept in the context of rifting and subduction by showing that the horizontal motions of density contrasts occurring at active and passive margins are responsible for sizable amounts of gravity rate of change. These findings are obtained via 2D finite element modeling of the two tectonic mechanisms in a vertical cross-section perpendicular to the ocean–continent transition as well as through evaluating the time-dependent gravity disturbance at a reference height caused by mass readjustment underneath. This disturbance originates from deep-seated changing density anomalies and dynamic topography with respect to a reference normal Earth. The gravity rate of change is proven to scale linearly with extensional and trench migration velocity; the peak-to-peak values between the largest maxima and minima are 0.08 μGal/yr and 0.21 μGal/yr, for a velocity of 1 cm/yr. For both tectonic mechanisms, the dominant positive rate of change is due to the horizontal motion of a density contrast of about 300–400 kg/m3. We also consider the role of dynamic topography in comparison to that of deep-seated changing density anomalies. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

30 pages, 16948 KB  
Article
Dolomitization and Silicification in Syn-Rift Lacustrine Carbonates: Evidence from the Late Oligocene–Early Miocene Duwi Basin, Red Sea, Egypt
by Tawfiq Mahran, Reham Y. Abu Elwafa, Alaa Ahmed, Osman Abdelghany and Khaled M. Abdelfadil
Geosciences 2025, 15(9), 356; https://doi.org/10.3390/geosciences15090356 - 11 Sep 2025
Viewed by 498
Abstract
Studies of early syn-rift successions in the Duwi Basin have revealed repetitive lacustrine carbonate deposits exhibiting regressive sequences and early diagenetic processes. Two main informal stratigraphic units (Units 1 and 2), spanning the Late Oligocene to Early Miocene, have been identified in the [...] Read more.
Studies of early syn-rift successions in the Duwi Basin have revealed repetitive lacustrine carbonate deposits exhibiting regressive sequences and early diagenetic processes. Two main informal stratigraphic units (Units 1 and 2), spanning the Late Oligocene to Early Miocene, have been identified in the area. Unit 1 primarily consists of lacustrine limestone and calcrete deposits that formed in a palustrine environment, whereas Unit 2 is composed of dolomites and cherts, which developed during times of lake evaporation and desiccation under arid climatic conditions. A wide variety of pedogenic features, including brecciation, nodulization, rhizocretions, fissuring, microkarsts, and circumgranular cracks, dominate the carbonate sequence, indicating deposition in a marginal lacustrine setting. Integrated petrographic, mineralogical, geochemical, and isotopic studies of carbonate facies reveal two distinct evolutionary stages in the Duwi Basin, with dolomitization and silicification characterizing the late stage. Their isotopic compositions show a wide range of δ13C and δ18O values, ranging from −9.00‰ to −7.98‰ and from −10.03‰ to −0.68‰, respectively. Dolomite beds exhibit more negative δ13C and δ18O values, whereas palustrine limestones display higher (less negative) values. The upward trend of δ18O enrichment in carbonates suggests that the lake became hydrologically closed. Trace element concentrations serve as potential markers for distinguishing carbonate facies, aiding with paleoenvironmental and diagenetic interpretations. Our findings indicate that the studied dolomites and cherts formed under both biogenic and abiogenic conditions in an evaporative, alkaline-saline lake system. Biogenic dolomite and silica likely resulted from microbial activity, whereas abiogenic formation was driven by physicochemical conditions, including decreasing pH values and the presence of smectite clays. Tectonics, local climate, and provenance played crucial roles in controlling the overall diagenetic patterns and evolutionary history of the lake basin system during the Late Oligocene to Early Miocene. Full article
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)
Show Figures

Figure 1

22 pages, 4003 KB  
Article
Numerical Modelling of Rock Fragmentation in Landslide Propagation: A Test Case
by Claudia Zito, Massimo Mangifesta, Mirko Francioni, Luigi Guerriero, Diego Di Martire, Domenico Calcaterra, Corrado Cencetti, Antonio Pasculli and Nicola Sciarra
Geosciences 2025, 15(9), 354; https://doi.org/10.3390/geosciences15090354 - 7 Sep 2025
Viewed by 411
Abstract
Landslides and rockfalls can negatively impact human activities and cause radical changes to the surrounding environment. For example, they can destroy entire buildings and roadway infrastructure, block waterways and create sudden dams, resulting in upstream flooding and increased flood risk downstream. In extreme [...] Read more.
Landslides and rockfalls can negatively impact human activities and cause radical changes to the surrounding environment. For example, they can destroy entire buildings and roadway infrastructure, block waterways and create sudden dams, resulting in upstream flooding and increased flood risk downstream. In extreme cases, they can even cause loss of life. External factors such as weathering, vegetation and mechanical stress alterations play a decisive role in their evolution. These actions can reduce strength, which can have an adverse impact on the slope’s ability to withstand failure. For rockfalls, this process also affects fragmentation, creating variations in the size, shape and volume of detached blocks, which influences propagation and impact on the slope. In this context, the Morino-Rendinara landslide is a clear example of rockfall propagation influenced by fragmentation. In this case, fragmentation results from tectonic stresses acting on the materials as well as specific climatic conditions affecting rock mass properties. This study explores how different fragmentation scales influence both velocity and landslide propagation along the slope. Using numerical models, based on lumped mass approach and stochastic analyses, various scenarios of rock material fracturing were examined and their impact on runout was assessed. Different scenarios were defined, varying only the fragmentation degree and different random seed sets at the beginning of simulations, carried out using the Rock-GIS tool. The results suggest that rock masses with high fracturing show reduced cohesion along joints and cracks, which significantly lowers their shear strength and makes them more prone to failure. Increased fragmentation further decreases the bonding between rock blocks, thereby accelerating landslide propagation. Conversely, less fragmented rocks retain higher resistance, which limits the extent of movement. These processes are influenced by uncertainties related to the distribution and impact of different alteration grades, resulting from variable tectonic stresses and/or atmospheric weathering. Therefore, a stochastic distribution model was developed to integrate the results of all simulations and to reconstruct both the landslide propagation and the evolution of its deposits. This study emphasizes the critical role of fragmentation and the volume involved in rockfalls and their runout behaviour. Furthermore, the method provides a framework for enhancing risk assessment in complex geological environments and for developing mitigation strategies, particularly regarding runout distance and block size. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

27 pages, 29215 KB  
Article
Morphological and Magnetic Analysis of Nieuwerkerk Volcano, Banda Sea, Indonesia: Preliminary Hazard Assessment and Geological Interpretation
by Aditya Pratama, Muhammad Aufaristama, Alutsyah Luthfian, Muhammad Zain Tuakia, Ratika Benita Nareswari, Putu Billy Suryanata, Gabriela Nogo Retnaningtyas Bunga Naen, Affan Fadhilah and Nurhidayat
Geosciences 2025, 15(9), 353; https://doi.org/10.3390/geosciences15090353 - 6 Sep 2025
Viewed by 788
Abstract
Nieuwerkerk Volcano, located in the Banda Sea, Indonesia, is a submarine volcano whose entire edifice lies beneath sea level. Its proximity to several inhabited islands raises significant concerns regarding potential impacts from future volcanic hazards. Despite historical unrest recorded in 1925 and 1927, [...] Read more.
Nieuwerkerk Volcano, located in the Banda Sea, Indonesia, is a submarine volcano whose entire edifice lies beneath sea level. Its proximity to several inhabited islands raises significant concerns regarding potential impacts from future volcanic hazards. Despite historical unrest recorded in 1925 and 1927, a comprehensive geological and geophysical understanding of Nieuwerkerk remains notably limited, with the last research expedition being in 1930. This study seeks to advance our understanding of the geomorphological structure and subsurface characteristics of the region, contributing to a preliminary hazard assessment and delineating key directions for future geoscientific investigation. The data were obtained during our most recent expedition conducted in 2022. High-resolution multibeam bathymetry data were analyzed to delineate the volcano’s morphology, while marine magnetic survey data were processed to interpret magnetic anomalies associated with its structure beneath volcano. Our updated morphological analysis reveals the following: (1) Nieuwerkerk Volcano is among the largest submarine volcanic edifices in the Banda Sea (length = 80 km, width = 30 km, height = 3460 m); (2) there is the presence of twin peaks (depth~300m); (3) there are indications of sector collapse (diameter = 10–12 km); (4) there are significant fault lineaments; and (5) there are landslide deposits, suggesting a complex volcanic edifice shaped by various constructive and destructive processes. The magnetic data show a low magnetic anomaly beneath the surface, where one of the indications is the presence of active magma. These findings significantly enhance our understanding of Nieuwerkerk’s current condition and volcanic evolution for an initial assessment of potential hazards, including future eruptions, edifice collapse, and landslides, which could subsequently trigger tsunamis. Further investigation, including comprehensive geophysical surveys covering the entire Nieuwerkerk area, rock sample analysis, visual seafloor observation, and seawater characterization, is crucial for a comprehensive understanding of its magmatic system and a more robust hazard assessment. This research highlights the critical need for detailed investigations of active submarine volcanoes, particularly those with sparse historical records and close proximity to populated areas, within tectonically complex settings such as the Banda Sea. Full article
Show Figures

Figure 1

20 pages, 9968 KB  
Article
Intuitive and Participatory Tool for Project Constraints in Co-Creation with Vulnerable Groups in the Brazilian Semi-Arid Region
by Alessio Perticarati Dionisi and Heitor de Andrade Silva
Buildings 2025, 15(17), 3215; https://doi.org/10.3390/buildings15173215 - 5 Sep 2025
Viewed by 412
Abstract
This article aims to report and analyze the main findings of a study on how constraints affect the engagement and creativity of non-designers in co-creation activities. It focuses particularly on identifying the limits and potentials of using a physical interface to address tectonic [...] Read more.
This article aims to report and analyze the main findings of a study on how constraints affect the engagement and creativity of non-designers in co-creation activities. It focuses particularly on identifying the limits and potentials of using a physical interface to address tectonic and renewable energy aspects within the design process. To explore these issues, this study adopted a qualitative case study approach, combining co-design charrettes mediated by a physical interface with a mapping process used as the primary analytical and evaluative framework. The interface allows users to anticipate the structural behavior and construction aspects of small roundwood structures from the Brazilian Caatinga biome, as well as the operation of solar energy systems—all without prior technical training. Despite its limitations, this study offers three main contributions: (a) it demonstrates that interfaces and charrettes can include non-designers in technical design processes; (b) it highlights the pedagogical, technical, and political potential of these tools in democratizing architectural decisions; and (c) it emphasizes the value of constraints as generative elements in creative processes—a topic still underexplored in the co-design literature. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

11 pages, 2267 KB  
Article
Earthquake Swarm Activity in the Tokara Islands (2025): Statistical Analysis Indicates Low Probability of Major Seismic Event
by Tomokazu Konishi
GeoHazards 2025, 6(3), 52; https://doi.org/10.3390/geohazards6030052 - 5 Sep 2025
Viewed by 864
Abstract
The Tokara Islands, a volcanic archipelago located south of Japan’s main islands, experienced earthquake swarm activity in 2025. Public concern has emerged regarding the potential triggering of the anticipated Nankai Trough earthquake, which the Japan Meteorological Agency has dismissed; however, the underlying mechanisms [...] Read more.
The Tokara Islands, a volcanic archipelago located south of Japan’s main islands, experienced earthquake swarm activity in 2025. Public concern has emerged regarding the potential triggering of the anticipated Nankai Trough earthquake, which the Japan Meteorological Agency has dismissed; however, the underlying mechanisms of this seismic activity remain inadequately explained. This study employs Exploratory Data Analysis (EDA) to characterise the statistical properties of the swarm and compare them with historical patterns. Earthquake intervals followed exponential distributions, but swarm events exhibited distinctive short intervals that clearly distinguished them from background seismicity. Similarly, whilst earthquake magnitudes conformed to normal distributions, swarm events demonstrated low mean values and reduced variability, characteristics markedly different from regional background activity. The frequency and magnitude distributions of the 2025 swarm demonstrate remarkable similarity to two previous swarms that occurred in 2021. All the episodes coincided with volcanic activity at Suwanose Island, located approximately 10 km from the epicentral region, suggesting a causal relationship between magmatic processes and seismic activity. Statistical analysis reveals that the earthquake swarm exhibits exceptionally low magnitude scale, characteristics consistent with magma-driven seismicity rather than tectonic stress accumulation. The parameter contrasted markedly with pre-seismic conditions observed before the 2011 Tohoku earthquake, where it was substantially elevated. Our findings indicate that the current seismic activity represents localised volcanic-related processes rather than precursory behaviour associated with major tectonic earthquakes. These results demonstrate the utility of statistical seismology in distinguishing between volcanic and tectonic seismic processes for hazard assessment purposes. Full article
Show Figures

Figure 1

Back to TopTop