Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (196)

Search Parameters:
Keywords = adaptive cruise control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4646 KB  
Article
Analysis on Characteristics of Mixed Traffic Flow with Intelligent Connected Vehicles at Airport Two-Lane Curbside Based on Traffic Characteristics
by Xin Chang, Weiping Yang, Yao Tang, Zhe Liu and Zheng Liu
Aerospace 2025, 12(8), 738; https://doi.org/10.3390/aerospace12080738 - 19 Aug 2025
Viewed by 154
Abstract
With the growing adoption of connected and autonomous vehicles (CAVs), their market penetration is expected to rise. This study investigates the mixed traffic flow dynamics of human-driven vehicles (HDVs) and CAVs at airport terminal curbsides. A two-lane parking simulation model is developed, integrating [...] Read more.
With the growing adoption of connected and autonomous vehicles (CAVs), their market penetration is expected to rise. This study investigates the mixed traffic flow dynamics of human-driven vehicles (HDVs) and CAVs at airport terminal curbsides. A two-lane parking simulation model is developed, integrating the intelligent driver model, PATH-calibrated cooperative adaptive cruise control, and a degraded adaptive cruise control model to capture different driving behaviors. The model accounts for varying time headways among HDV drivers based on their information acceptance levels and imposes departure constraints to enhance safety. Simulation results show that the addition of CAVs can significantly increase the average speed of vehicles and reduce the average delay time. Two metrics are inversely proportional. Specifically, as illustrated by a curbside length of 400 m and a parking demand of 1300 pcph, when the CAV penetration rate p is 10%, 30%, 50%, 70%, and 100%, respectively, compared to p = 0, the average traffic flow speed increases by 1.7%, 6.4%, 15.0%, 27.2%, and 48.7%, respectively. The average delay time decreases by 2.8%, 6.4%, 10.5%, 13.5%, and 20.0%, respectively. Meanwhile, CAVs and HDVs exhibit consistent patterns in terms of parking space utilization: the first stage (0–30% of parking spaces) showed a stable and concentrated trend; the second stage (30–70% of parking spaces) showed a slow downward trend but remained at a high level; the third stage (70–100% of parking spaces) showed a rapid decline at a steady rate. Full article
(This article belongs to the Section Air Traffic and Transportation)
Show Figures

Figure 1

31 pages, 3210 KB  
Systematic Review
The Mind-Wandering Phenomenon While Driving: A Systematic Review
by Gheorghe-Daniel Voinea, Florin Gîrbacia, Răzvan Gabriel Boboc and Cristian-Cezar Postelnicu
Information 2025, 16(8), 681; https://doi.org/10.3390/info16080681 - 8 Aug 2025
Viewed by 446
Abstract
Mind wandering (MW) is a significant safety risk in driving, yet research on its scope, underlying mechanisms, and mitigation strategies remains fragmented across disciplines. In this review guided by the PRISMA framework, we analyze findings from 64 empirical studies to address these factors. [...] Read more.
Mind wandering (MW) is a significant safety risk in driving, yet research on its scope, underlying mechanisms, and mitigation strategies remains fragmented across disciplines. In this review guided by the PRISMA framework, we analyze findings from 64 empirical studies to address these factors. The presented study quantifies the prevalence of MW in naturalistic and simulated driving environments and shows its impact on driving behaviors. We document its negative effects on braking reaction times and lane-keeping consistency, and we assess recent advancements in objective detection methods, including EEG signatures, eye-tracking metrics, and physiological markers. We also identify key cognitive and contextual risk factors, including high perceived risk, route familiarity, and driver fatigue, which increase MW episodes. Also, we survey emergent countermeasures, such as haptic steering wheel alerts and adaptive cruise control perturbations, designed to sustain driver engagement. Despite these advancements, the MW research shows persistent challenges, including methodological heterogeneity that limits cross-study comparisons, a lack of real-world validation of detection algorithms, and a scarcity of long-term field trials of interventions. Our integrated synthesis, therefore, outlines a research agenda prioritizing harmonized measurement protocols, on-road algorithm deployment, and rigorous evaluation of countermeasures under naturalistic driving conditions. Full article
(This article belongs to the Section Information and Communications Technology)
Show Figures

Figure 1

19 pages, 3090 KB  
Article
Motion Sickness Suppression Strategy Based on Dynamic Coordination Control of Active Suspension and ACC
by Fang Zhou, Dengfeng Zhao, Yudong Zhong, Pengpeng Wang, Junjie Jiang, Zhenwei Wang and Zhijun Fu
Machines 2025, 13(8), 650; https://doi.org/10.3390/machines13080650 - 24 Jul 2025
Viewed by 282
Abstract
With the development of electrification and intelligent technologies in vehicles, ride comfort issues represented by motion sickness have become a key constraint on the performance of autonomous driving. The occurrence of motion sickness is influenced by the comprehensive movement of the vehicle in [...] Read more.
With the development of electrification and intelligent technologies in vehicles, ride comfort issues represented by motion sickness have become a key constraint on the performance of autonomous driving. The occurrence of motion sickness is influenced by the comprehensive movement of the vehicle in the longitudinal, lateral, and vertical directions, involving ACC, LKA, active suspension, etc. Existing motion sickness control method focuses on optimizing the longitudinal, lateral, and vertical directions separately, or coordinating the optimization control of the longitudinal and lateral directions, while there is relatively little research on the coupling effect and coupled optimization of the longitudinal and vertical directions. This study proposes a coupled framework of ACC and active suspension control system based on MPC. By adding pitch angle changes caused by longitudinal acceleration to the suspension model, a coupled state equation of half-car vertical dynamics and ACC longitudinal dynamics is constructed to achieve integrated optimization of ACC and suspension for motion suppression. The suspension active forces and vehicle acceleration are regulated coordinately to optimize vehicle vertical, longitudinal, and pitch dynamics simultaneously. Simulation experiments show that compared to decoupled control of ACC and suspension, the integrated control framework can be more effective. The research results confirm that the dynamic coordination between the suspension and ACC system can effectively suppress the motion sickness, providing a new idea for solving the comfort conflict in the human vehicle environment coupling system. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

36 pages, 9024 KB  
Article
Energy Optimal Trajectory Planning for the Morphing Solar-Powered Unmanned Aerial Vehicle Based on Hierarchical Reinforcement Learning
by Tichao Xu, Wenyue Meng and Jian Zhang
Drones 2025, 9(7), 498; https://doi.org/10.3390/drones9070498 - 15 Jul 2025
Viewed by 490
Abstract
Trajectory planning is crucial for solar aircraft endurance. The multi-wing morphing solar aircraft can enhance solar energy acquisition through wing deflection, which simultaneously incurs aerodynamic losses, complicating energy coupling and challenging existing planning methods in efficiency and long-term optimization. This study presents an [...] Read more.
Trajectory planning is crucial for solar aircraft endurance. The multi-wing morphing solar aircraft can enhance solar energy acquisition through wing deflection, which simultaneously incurs aerodynamic losses, complicating energy coupling and challenging existing planning methods in efficiency and long-term optimization. This study presents an energy-optimal trajectory planning method based on Hierarchical Reinforcement Learning for morphing solar-powered Unmanned Aerial Vehicles (UAVs), exemplified by a Λ-shaped aircraft. This method aims to train a hierarchical policy to autonomously track energy peaks. It features a top-level decision policy selecting appropriate bottom-level policies based on energy factors, which generate control commands such as thrust, attitude angles, and wing deflection angles. Shaped properly by reward functions and training conditions, the hierarchical policy can enable the UAV to adapt to changing flight conditions and achieve autonomous flight with energy maximization. Evaluated through 24 h simulation flights on the summer solstice, the results demonstrate that the hierarchical policy can appropriately switch its bottom-level policies during daytime and generate real-time control commands that satisfy optimal energy power requirements. Compared with the minimum energy consumption benchmark case, the proposed hierarchical policy achieved 0.98 h more of full-charge high-altitude cruise duration and 1.92% more remaining battery energy after 24 h, demonstrating superior energy optimization capabilities. In addition, the strong adaptability of the hierarchical policy to different quarterly dates was demonstrated through generalization ability testing. Full article
Show Figures

Figure 1

12 pages, 1393 KB  
Article
A Proactive Collision Avoidance Model for Connected and Autonomous Vehicles in Mixed Traffic Flow
by Guojing Hu, Kun Li, Weike Lu, Ouchan Chen, Chuan Sun and Yuanqi Zhao
World Electr. Veh. J. 2025, 16(7), 394; https://doi.org/10.3390/wevj16070394 - 14 Jul 2025
Viewed by 325
Abstract
Collision avoidance between vehicles is a great challenge, especially in the context of mixed driving of connected and autonomous vehicles (CAVs) and human-driven vehicles (HVs). Advances in automation and connectivity technologies provide opportunities for CAVs to drive cooperatively. This paper proposes a proactive [...] Read more.
Collision avoidance between vehicles is a great challenge, especially in the context of mixed driving of connected and autonomous vehicles (CAVs) and human-driven vehicles (HVs). Advances in automation and connectivity technologies provide opportunities for CAVs to drive cooperatively. This paper proposes a proactive collision avoidance model, aiming to avoid collisions by controlling the speed and lane-changing behavior of CAVs. In the model, the subject vehicle first collects information about surrounding lanes and judges the traffic conditions; it then chooses to decelerate or change lanes to avoid collisions. The subject vehicle also searches for the optimal vehicle in the surrounding lanes for cooperation. The effectiveness of the proposed collision avoidance model is verified through the Python-SUMO platform. The experimental results show that the performance of the collision avoidance model is better than that of the cooperative adaptive cruise control (CACC) model in terms of average speed, lost time and the number of vehicle conflicts, proving the advantages of the proposed model in safety and efficiency. Full article
(This article belongs to the Special Issue Modeling for Intelligent Vehicles)
Show Figures

Figure 1

20 pages, 13323 KB  
Article
Dynamic Weight Model Predictive Control for Longitudinal Adaptive Cruise Systems in Electric Vehicles
by Wentian Wei, Lan Li, Qiyuan Li, Song Zhang, Chaoqun Fan and Lizhe Liang
Appl. Sci. 2025, 15(12), 6715; https://doi.org/10.3390/app15126715 - 16 Jun 2025
Cited by 1 | Viewed by 685
Abstract
This paper proposes a dynamic weight model predictive control (DWMPC) strategy for adaptive cruise control (ACC) in pure electric vehicles, aiming to enhance robustness, energy efficiency, and ride comfort under complex traffic conditions. Unlike conventional MPC with static weights, the proposed method integrates [...] Read more.
This paper proposes a dynamic weight model predictive control (DWMPC) strategy for adaptive cruise control (ACC) in pure electric vehicles, aiming to enhance robustness, energy efficiency, and ride comfort under complex traffic conditions. Unlike conventional MPC with static weights, the proposed method integrates a fuzzy inference system that evaluates driving urgency based on real-time spacing and velocity errors. The resulting emergency coefficient is mapped through a nonlinear function to dynamically adjust the velocity tracking weight in the MPC cost function. Additionally, a four-mode coordination mechanism adaptively modifies acceleration and jerk penalties according to risk levels, enabling balanced responses between safety and comfort. A composite performance evaluation index (PEI) is formulated to quantitatively assess energy consumption, ride comfort, spacing accuracy, and emergency responsiveness. Simulation results under WLTC and typical urban driving scenarios demonstrate that DWMPC outperforms fixed-weight MPC and PI controllers, reducing energy consumption by 6.5%, jerk by 42.9%, and response time by 41.8% while improving coordination in speed tracking, inter-vehicle distance regulation, and energy-efficient control. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

21 pages, 1028 KB  
Article
String Stability Analysis and Design Guidelines for PD Controllers in Adaptive Cruise Control Systems
by Kangjun Lee and Chanhwa Lee
Sensors 2025, 25(11), 3518; https://doi.org/10.3390/s25113518 - 3 Jun 2025
Viewed by 604
Abstract
This paper proposes a practical design guideline for selecting control parameters in adaptive cruise control (ACC) systems to ensure both individual vehicle stability and string stability in vehicle following systems with homogeneous longitudinal dynamics. The primary control objective is to regulate spacing errors [...] Read more.
This paper proposes a practical design guideline for selecting control parameters in adaptive cruise control (ACC) systems to ensure both individual vehicle stability and string stability in vehicle following systems with homogeneous longitudinal dynamics. The primary control objective is to regulate spacing errors under a constant time-gap policy, which is commonly adopted in ACC applications. By employing a simple proportional-derivative (PD) controller, we present a clear methodology for tuning the proportional and derivative gains. The proposed approach demonstrates that string stability can be effectively achieved using this straightforward control structure, making it highly applicable for assisting practitioners in selecting appropriate parameters for real-world platooning scenarios. We provide a rigorous analysis of the necessary and sufficient conditions for selecting PD gains, along with practical guidelines for implementation. The effectiveness of the design guideline is further validated through simulations conducted in realistic driving scenarios. Full article
Show Figures

Figure 1

11 pages, 1427 KB  
Article
Double-Regulated Active Cruise Control for a Car Model with Nonlinear Powertrain Design
by Szymon Kozłowski, Kinga Szost, Bogumił Chiliński and Adrian Połaniecki
Electronics 2025, 14(11), 2257; https://doi.org/10.3390/electronics14112257 - 31 May 2025
Viewed by 444
Abstract
The need for autonomous vehicles has started rising rapidly. Many autonomous technologies, such as Cruise Control, the self-parking system, and the emergency braking system, are implemented in contemporary cars. These systems do not make the car fully autonomous; however, they allow people to [...] Read more.
The need for autonomous vehicles has started rising rapidly. Many autonomous technologies, such as Cruise Control, the self-parking system, and the emergency braking system, are implemented in contemporary cars. These systems do not make the car fully autonomous; however, they allow people to get used to the idea of self-driving cars. Due to a surge of interest in autonomous systems, the development of these technologies has begun. This paper presents a model of Adaptive Cruise Control with a control system, which consists of two PID regulators. Using two PID regulators provides the possibility of more advanced regulation characteristics than using the classical one-PID regulation system. One of them regulates the powertrain model, the other the braking system model. The simulations are carried out using a vehicle dynamic system, whose thrust is determined by a real engine maximum torque curve that is approximated by combinations of polynomial functions. Due to the non-linearity, caused by the motor’s curve and the use of two regulators, the PID tuning algorithm has been created. The algorithm provides satisfying results, followed by a marginal difference between the requested safe distance and actual distance value. The Active Cruise Control system has been tested using normalized driving cycles, which simulate the real behaviour of a car. The simulation results prove double-PID-regulated ACC’s accuracy and speed of response in different states of motion. Full article
(This article belongs to the Special Issue Autonomous Vehicles Technological Trends, 2nd Edition)
Show Figures

Figure 1

30 pages, 11900 KB  
Article
Enhancing Mixed Traffic Stability with TD3-Driven Bilateral Control in Autonomous Vehicle Chains
by Kan Liu, Pengpeng Jiao, Weiqi Hong and Yue Chen
Sustainability 2025, 17(11), 4790; https://doi.org/10.3390/su17114790 - 23 May 2025
Viewed by 694
Abstract
This study presents a TD3-driven Bilateral Control Model (TD3-BCM) aimed at improving the stability of mixed traffic flows in autonomous vehicle (AV) chains. By integrating deep reinforcement learning, TD3-BCM optimizes control strategies to reduce traffic oscillations, smooth speed and acceleration fluctuations, and enhance [...] Read more.
This study presents a TD3-driven Bilateral Control Model (TD3-BCM) aimed at improving the stability of mixed traffic flows in autonomous vehicle (AV) chains. By integrating deep reinforcement learning, TD3-BCM optimizes control strategies to reduce traffic oscillations, smooth speed and acceleration fluctuations, and enhance overall system performance. Stability analysis shows that TD3-BCM effectively suppresses traffic fluctuations, with system stability improving from 1.132 to 1.182 as AV penetration increases. At an AV penetration rate of 40%, TD3-BCM surpasses both Cooperative Adaptive Cruise Control (CACC) and traditional Bilateral Control Model (BCM) approaches in terms of traffic efficiency, safety, and energy use—raising trailing vehicle speed by 12.6%, shortening average headway by 19.0%, increasing Time-to-Collision (TTC) by 87.3%, and lowering fuel consumption by 14.8%. When AV penetration reaches 70%, fuel savings rise to 19.7%, accompanied by further improvements in both traffic stability and safety. TD3-BCM provides a scalable and sustainable solution for intelligent transportation systems, particularly in high-penetration AV environments, by significantly enhancing stability, operational efficiency, and road safety. Full article
Show Figures

Figure 1

34 pages, 723 KB  
Review
Comprehensive Review of Hybrid Energy Systems: Challenges, Applications, and Optimization Strategies
by Aqib Khan, Mathieu Bressel, Arnaud Davigny, Dhaker Abbes and Belkacem Ould Bouamama
Energies 2025, 18(10), 2612; https://doi.org/10.3390/en18102612 - 19 May 2025
Cited by 4 | Viewed by 3535
Abstract
This paper provides a comprehensive review of hybrid energy systems (HESs), focusing on their challenges, optimization techniques, and control strategies to enhance performance, reliability, and sustainability across various applications, such as microgrids (MGs), commercial buildings, healthcare facilities, and cruise ships. The integration of [...] Read more.
This paper provides a comprehensive review of hybrid energy systems (HESs), focusing on their challenges, optimization techniques, and control strategies to enhance performance, reliability, and sustainability across various applications, such as microgrids (MGs), commercial buildings, healthcare facilities, and cruise ships. The integration of renewable energy sources (RESs), including solar photovoltaics (PVs), with enabling technologies such as fuel cells (FCs), batteries (BTs), and energy storage systems (ESSs) plays a critical role in improving energy management, reducing emissions, and increasing economic viability. This review highlights advancements in multi-objective optimization techniques, real-time energy management, and sophisticated control strategies that have significantly contributed to reducing fuel consumption, operational costs, and environmental impact. However, key challenges remain, including the scalability of optimization techniques, sensitivity to system parameter variations, and limited incorporation of user behavior, grid dynamics, and life cycle carbon emissions. The review underlines the need for robust, adaptable control strategies capable of accommodating rapidly changing energy environments, as well as the importance of life cycle assessments to ensure the long-term sustainability of RES technologies. Future research directions emphasize the integration of variable RESs, advanced scheduling, and the application of emerging technologies such as artificial intelligence and blockchain to improve system resilience and efficiency. This paper introduces a novel classification framework, distinct from existing taxonomies, addressing gaps in prior reviews by incorporating emerging technologies and focusing on the dynamic nature of energy management in hybrid systems. It also advocates for bridging the gap between theoretical advancements and real-world implementation to promote the development of more sustainable and reliable HESs. Full article
Show Figures

Figure 1

20 pages, 7161 KB  
Article
Trajectory Tracking Method of Four-Wheeled Independent Drive and Steering AGV Based on LSTM-MPC and Fuzzy PID Cooperative Control
by Ziheng Wan, Chaobin Xu, Bazhou Li, Yang Li and Fangping Ye
Electronics 2025, 14(10), 2000; https://doi.org/10.3390/electronics14102000 - 14 May 2025
Cited by 3 | Viewed by 847
Abstract
With the ongoing advancements in automation technology, four-wheeled independent drive and steering (4WID-4WIS) automated guided vehicles (AGVs) are increasingly employed in intelligent logistics and warehousing systems. To enhance the performance of path tracking accuracy and cruising stability of AGVs, an automatic cruising methodology [...] Read more.
With the ongoing advancements in automation technology, four-wheeled independent drive and steering (4WID-4WIS) automated guided vehicles (AGVs) are increasingly employed in intelligent logistics and warehousing systems. To enhance the performance of path tracking accuracy and cruising stability of AGVs, an automatic cruising methodology is proposed operating in complex environments. The approach integrates lateral control through model predictive control (MPC), which is optimized by a Long Short-Term Memory (LSTM) network, alongside fuzzy PID control for longitudinal management. By utilizing the LSTM network for trajectory prediction, the system can anticipate future vehicle states and outputs, thereby facilitating proactive adjustments that enhance the performance of the MPC lateral controller and improve both trajectory tracking accuracy and response speed. Concurrently, the fuzzy PID control strategy for longitudinal management increases the system’s adaptability to dynamic environments. The proposed methodology has been demonstrated in a physical prototype operating in real practical environments. Comparative results demonstrate that the LSTM-MPC significantly outperforms conventional MPC in lateral control accuracy. Additionally, the fuzzy PID controller yields superior longitudinal performance compared to traditional dual-PID and constant-speed strategies. This advantage is particularly evident in curved path segments, where the proposed fuzzy PID–LSTM–MPC framework achieves significantly higher lateral and longitudinal tracking accuracy compared to other control strategies. Full article
Show Figures

Figure 1

29 pages, 10730 KB  
Article
Connected and Automated Vehicle Trajectory Control in Stochastic Heterogeneous Traffic Flow with Human-Driven Vehicles Under Communication Delay and Disturbances
by Meiqi Liu, Yang Chen and Ruochen Hao
Actuators 2025, 14(5), 246; https://doi.org/10.3390/act14050246 - 13 May 2025
Viewed by 594
Abstract
In this paper, we study the stability of the stochastically heterogeneous traffic flow involving connected and automated vehicles (CAVs) and human-driven vehicles (HDVs). Taking the stochasticity of vehicle arrivals and behaviors into account, a general robust H platoon controller is proposed to [...] Read more.
In this paper, we study the stability of the stochastically heterogeneous traffic flow involving connected and automated vehicles (CAVs) and human-driven vehicles (HDVs). Taking the stochasticity of vehicle arrivals and behaviors into account, a general robust H platoon controller is proposed to address the communication delay and unexpected disturbances such as prediction or perception errors on HDV motions. To simplify the problem complexity from a stochastically heterogeneous traffic flow to multiple long vehicle control problems, three types of sub-platoons are identified according to the CAV arrivals, and each sub-platoon can be treated as a long vehicle. The car-following behaviors of HDVs and CAVs are simulated using the optimal velocity model (OVM) and the cooperative adaptive cruise control (CACC) system, respectively. Later, the robust H platoon controller is designed for a pair of a CAV long vehicle and an HDV long vehicle. The time-lagged system and the closed-loop system are formulated and the H state feedback controller is designed. The robust stability and string stability of the heterogeneous platoon system are analyzed using the H norm of the closed-loop transfer function and the time-lagged bounded real lemma, respectively. Simulation experiments are conducted considering various settings of platoon sizes, communication delays, disturbances, and CAV penetration rates. The results show that the proposed H controller is robust and effective in stabilizing disturbances in the stochastically heterogeneous traffic flow and is scalable to arbitrary sub-platoons in various CAV penetration rates in the heterogeneous traffic flow of road vehicles. The advantages of the proposed method in stabilizing heterogeneous traffic flow are verified in comparison with a typical car-following model and the linear quadratic regulator. Full article
(This article belongs to the Special Issue Motion Planning, Trajectory Prediction, and Control for Robotics)
Show Figures

Figure 1

28 pages, 8059 KB  
Article
Research on Online Energy Management Strategy for Hybrid Energy Storage Electric Vehicles Under Adaptive Cruising Conditions
by Zhiwen Zhang, Jie Tang, Jiyuan Zhang, Tianyu Li and Hao Chen
Sustainability 2025, 17(7), 3232; https://doi.org/10.3390/su17073232 - 4 Apr 2025
Viewed by 558
Abstract
To address the critical challenge of high energy consumption in single-source electric vehicles, this study proposes a hybrid energy storage system (HESS)-integrated energy management strategy (EMS). Firstly, the car-following and HESS models are constructed. Secondly, a multi-objective optimization framework balancing adaptive cruise control [...] Read more.
To address the critical challenge of high energy consumption in single-source electric vehicles, this study proposes a hybrid energy storage system (HESS)-integrated energy management strategy (EMS). Firstly, the car-following and HESS models are constructed. Secondly, a multi-objective optimization framework balancing adaptive cruise control (ACC) optimal tracking quality and energy economy is developed, where the fast, non-dominated sorting genetic algorithm (NSGA-II) resolves dynamic power demands. Thirdly, the third-order Haar wavelet enables online rolling decomposition of power profiles. The high-frequency transient power is matched by a supercapacitor, while the low-frequency steady-state power is utilized as an input variable to the optimization controller. Then, a fuzzy logic controller dynamically optimizes HESS’s energy distribution based on state-of-charge (SOC) and load conditions. Finally, the cruise simulation model has been constructed utilizing the MATLAB/Simulink platform. Comparative analysis under the Urban Dynamometer Driving Schedule (UDDS) demonstrates a 3.71% reduction in the total power demand of the ego vehicle compared to the front vehicle. Compared to single-source configurations, the HESS ensures smoother SOC dynamics in lithium-ion batteries. After employing the third-order Haar wavelet for online rolling decomposition of the demand power, the high-frequency transient power matched by the lithium-ion battery is substantially reduced. Comparative analysis of three control strategies demonstrates that the wavelet-fuzzy logic approach exhibits superior comprehensive performance. Consequently, the proposed strategy effectively mitigates high-frequency transient peak charge/discharge currents in the lithium-ion battery and the energy consumption of the entire vehicle. This study provides a novel solution for energy storage systems in hybrid energy storage electric vehicles (HESEV) under ACC scenarios. Full article
(This article belongs to the Special Issue Renewable Energy and Sustainable Energy Systems—2nd Edition)
Show Figures

Figure 1

14 pages, 3109 KB  
Article
Research on Energy Management Strategy Based on Adaptive Equivalent Fuel Consumption Minimum for Hydrogen Hybrid Energy Systems
by Zhaoxuan Zhu, Zhiwei Yin and Kaiyu Qin
Energies 2025, 18(7), 1691; https://doi.org/10.3390/en18071691 - 28 Mar 2025
Viewed by 414
Abstract
Hydrogen has attracted widespread attention due to its zero emissions and high energy density, and hydrogen-fueled power systems are gradually emerging. This paper combines the advantages of the high conversion efficiency of fuel cells and strong engine power to propose a hydrogen hybrid [...] Read more.
Hydrogen has attracted widespread attention due to its zero emissions and high energy density, and hydrogen-fueled power systems are gradually emerging. This paper combines the advantages of the high conversion efficiency of fuel cells and strong engine power to propose a hydrogen hybrid energy system architecture based on a mixture of fuel cells and engines in order to improve the conversion efficiency of the energy system and reduce its fuel consumption rate. Firstly, according to the topology of the hydrogen hybrid energy system and the circuit model of its core components, a state-space model of the hydrogen hybrid energy system is established using the Kirchhoff node current principle, laying the foundation for the control and management of hydrogen hybrid energy systems. Then, based on the state-space model of the hydrogen hybrid system and Pontryagin’s minimum principle, a hydrogen hybrid system management strategy based on adaptive equivalent fuel consumption minimum strategy (A-ECMS) is proposed. Finally, a hydrogen hybrid power system model is established using the AVL Cruise simulation platform and a control strategy is developed using matlab 2021b/Simulink to analyze the output power and fuel economy of the hybrid energy system. The results show that, compared with the equivalent fuel consumption minimum strategy (ECMS), the overall fuel economy of A-ECMS could improve by 10%. Meanwhile, the fuel consumption of the hydrogen hybrid energy system is less than half of that of traditional engines. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

14 pages, 1881 KB  
Article
Optimization of Adaptive Cruise Control Strategies Based on the Responsibility-Sensitive Safety Model
by Tengwei Yu, Yubin Tang, Renxiang Chen and Shuen Zhao
Vehicles 2025, 7(2), 28; https://doi.org/10.3390/vehicles7020028 - 26 Mar 2025
Viewed by 1008
Abstract
The collision avoidance capability of autonomous vehicles in extreme traffic conditions remains a focal point of research. This paper introduces an Adaptive Cruise Control (ACC) strategy based on Model Predictive Control (MPC) and Responsibility-Sensitive Safety (RSS) models. Simulations were conducted in the CARLA [...] Read more.
The collision avoidance capability of autonomous vehicles in extreme traffic conditions remains a focal point of research. This paper introduces an Adaptive Cruise Control (ACC) strategy based on Model Predictive Control (MPC) and Responsibility-Sensitive Safety (RSS) models. Simulations were conducted in the CARLA environment, where the lead vehicle underwent various rapid deceleration scenarios to optimize the following vehicle’s braking strategy. By integrating the multi-step predictive optimization capabilities of MPC with the dynamic safety assessment mechanisms of RSS, the proposed strategy ensures safe following distances while achieving rapid and precise speed adjustments, thereby enhancing the system’s responsiveness and safety. The model also incorporates a secondary optimization to balance comfort and stability, thereby improving the overall performance of autonomous vehicles. The use of multi-dimensional assessment metrics, such as Time to Collision (TTC), Time Exposed TTC (TET), and Time Integrated TTC (TIT), addresses the limitations of using TTC alone, which only reflects instantaneous collision risk. The optimization of the model in this paper aims to improve the safety and comfort of the following vehicle in scenarios with various gap distances, and it has been validated through the SSM multi-indicator approach. Experimental results demonstrate that the improved ACC model significantly enhances vehicle safety and comfort in scenarios involving large gaps and short-distance emergency braking by the lead vehicle, validating the method’s effectiveness in various extreme traffic scenarios. Full article
(This article belongs to the Special Issue AI-Empowered Assisted and Autonomous Driving)
Show Figures

Figure 1

Back to TopTop