Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (207)

Search Parameters:
Keywords = adaptive graph convolutional networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1421 KB  
Article
Queue-Theoretic Priors Meet Explainable Graph Convolutional Learning: A Risk-Aware Scheduling Framework for Flexible Manufacturing Systems
by Raul Ionuț Riti, Călin Ciprian Oțel and Laura Bacali
Machines 2025, 13(9), 796; https://doi.org/10.3390/machines13090796 - 2 Sep 2025
Viewed by 141
Abstract
For the first time, this study presents a cyber–physical framework that reconciles the long-standing conflict between transparent queue analytics and adaptive machine learning in flexible manufacturing systems. Deterministic indicators, utilization, expected queue length, waiting time, and idle probability, are fused with topological embeddings [...] Read more.
For the first time, this study presents a cyber–physical framework that reconciles the long-standing conflict between transparent queue analytics and adaptive machine learning in flexible manufacturing systems. Deterministic indicators, utilization, expected queue length, waiting time, and idle probability, are fused with topological embeddings of the routing graph and ingested by a graph convolutional network that predicts station congestion with calibrated confidence intervals. Shapley additive explanations decompose every forecast into causal contributions, and these vectors, together with a percentile-based risk metric, steer a mixed-integer genetic optimizer toward schedules that lift throughput without breaching statistical congestion limits. A cloud dashboard streams forecasts, risk bands, and color-coded explanations, allowing supervisors to accept or modify suggestions; each manual correction is logged and injected into nightly retraining, closing a socio-technical feedback loop. Experiments on an 8704-cycle production census demonstrate a 38 percent reduction in average queue length and a 12 percent rise in throughput while preserving full audit traceability, enabling one-minute rescheduling on volatile shop floors. The results confirm that transparency and adaptivity can coexist when analytical priors, explainable learning, and risk-aware search are unified in a single containerized control stack. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

18 pages, 1710 KB  
Article
Three-Way Decision-Driven Adaptive Graph Convolution for Deep Clustering
by Wei Liang, Dong Li, Chuanpeng Wang, Kai Chen and Suijie Song
Appl. Sci. 2025, 15(17), 9391; https://doi.org/10.3390/app15179391 - 27 Aug 2025
Viewed by 274
Abstract
Graph clustering is an efficient method for deep clustering that utilizes graph convolution. Graph convolution effectively combines structure and content information, and lots of recent graph convolution-based methods have shown promising results in clustering performance on actual attribution networks. However, the established methods [...] Read more.
Graph clustering is an efficient method for deep clustering that utilizes graph convolution. Graph convolution effectively combines structure and content information, and lots of recent graph convolution-based methods have shown promising results in clustering performance on actual attribution networks. However, the established methods mainly employ a fixed graph convolution order, and limited studies have focused on the flexible choice of k-order graph convolution. When utilizing graph convolution with a fixed low order, only considering a few hops per node or neighbors within a set range of hops fails to maximize node relationships or account for the variations within the graphs. In this paper, we propose an adaptive method for graph clustering using a three-way decision idea. Our method enables the adaptive selection of k-order graph convolution for different graphs by searching for the k-order convolution kernel that best suits the subsequent clustering task. Additionally, our approach uses higher-order graph convolution to capture the global clustering structure. We assess the effectiveness of our approach through theoretical analysis and extensive experiments on benchmark datasets. Empirical evidence indicates that our method surpasses state-of-the-art techniques. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

16 pages, 306 KB  
Article
Adaptive Cross-Scale Graph Fusion with Spatio-Temporal Attention for Traffic Prediction
by Zihao Zhao, Xingzheng Zhu and Ziyun Ye
Electronics 2025, 14(17), 3399; https://doi.org/10.3390/electronics14173399 - 26 Aug 2025
Viewed by 333
Abstract
Traffic flow prediction is a critical component of intelligent transportation systems, playing a vital role in alleviating congestion, improving road resource utilization, and supporting traffic management decisions. Although deep learning methods have made remarkable progress in this field in recent years, current studies [...] Read more.
Traffic flow prediction is a critical component of intelligent transportation systems, playing a vital role in alleviating congestion, improving road resource utilization, and supporting traffic management decisions. Although deep learning methods have made remarkable progress in this field in recent years, current studies still face challenges in modeling complex spatio-temporal dependencies, adapting to anomalous events, and generalizing to large-scale real-world scenarios. To address these issues, this paper proposes a novel traffic flow prediction model. The proposed approach simultaneously leverages temporal and frequency domain information and introduces adaptive graph convolutional layers to replace traditional graph convolutions, enabling dynamic capture of traffic network structural features. Furthermore, we design a frequency–temporal multi-head attention mechanism for effective multi-scale spatio-temporal feature extraction and develop a cross-multi-scale graph fusion strategy to enhance predictive performance. Extensive experiments on real-world datasets, PeMS and Beijing, demonstrate that our method significantly outperforms state-of-the-art (SOTA) baselines. For example, on the PeMS20 dataset, our model achieves a 53.6% lower MAE, a 12.3% lower NRMSE, and a 3.2% lower MAPE than the best existing method (STFGNN). Moreover, the proposed model achieves competitive computational efficiency and inference speed, making it well-suited for practical deployment. Full article
(This article belongs to the Special Issue Graph-Based Learning Methods in Intelligent Transportation Systems)
Show Figures

Figure 1

19 pages, 738 KB  
Article
Short-Term Multi-Energy Load Forecasting Method Based on Transformer Spatio-Temporal Graph Neural Network
by Heng Zhou, Qing Ai and Ruiting Li
Energies 2025, 18(17), 4466; https://doi.org/10.3390/en18174466 - 22 Aug 2025
Viewed by 573
Abstract
To tackle the limitations in simultaneously modeling long-term dependencies in the time dimension and nonlinear interactions in the feature dimension, as well as their inability to fully reflect the impact of real-time load changes on spatial dependencies, a short-term multi-energy load forecasting method [...] Read more.
To tackle the limitations in simultaneously modeling long-term dependencies in the time dimension and nonlinear interactions in the feature dimension, as well as their inability to fully reflect the impact of real-time load changes on spatial dependencies, a short-term multi-energy load forecasting method based on Transformer Spatio-Temporal Graph neural network (TSTG) is proposed. This method employs a multi-head spatio-temporal attention module to model long-term dependencies in the time dimension and nonlinear interactions in the feature dimension in parallel across multiple subspaces. Additionally, a dynamic adaptive graph convolution module is designed to construct adaptive adjacency matrices by combining physical topology and feature similarity, dynamically adjusting node connection weights based on real-time load characteristics to more accurately characterize the spatial dynamics of multi-energy interactions. Furthermore, TSTG adopts an end-to-end spatio-temporal joint optimization framework, achieving synchronous extraction and fusion of spatio-temporal features through an encoder–decoder architecture. Experimental results show that TSTG significantly outperforms existing methods in short-term load forecasting tasks, providing an effective solution for refined forecasting in integrated energy systems. Full article
Show Figures

Figure 1

20 pages, 1331 KB  
Article
Distribution Network Situational Awareness Prediction Based on Spatio-Temporal Attention Dynamic Graph Neural Network
by Xixi Qiu, Yuteng Huang, Guojin Liu, Jiaxiang Yan and Shan Chen
Energies 2025, 18(16), 4402; https://doi.org/10.3390/en18164402 - 18 Aug 2025
Viewed by 408
Abstract
Distribution network situational awareness prediction is a key technology for ensuring the safe and stable operation of distribution networks. However, most existing methods suffer from spatio-temporal dynamic correlation and dynamic topology, resulting in unsatisfactory performance. To address these issues, we propose a distribution [...] Read more.
Distribution network situational awareness prediction is a key technology for ensuring the safe and stable operation of distribution networks. However, most existing methods suffer from spatio-temporal dynamic correlation and dynamic topology, resulting in unsatisfactory performance. To address these issues, we propose a distribution network situational awareness prediction method based on a spatio-temporal attention dynamic graph neural network model that realizes the decoupling of spatio-temporal features of the distribution network data by adopting the alternating stacking of the multi-head self-attention mechanism with temporal dynamic perception and the spatial dynamic graph convolution module. Furthermore, the dynamic correlation matrix is introduced to adaptively adjust the node interaction weights to effectively handle the network dynamic topology information. Through extensive experiments, the proposed method outperforms eight baseline models. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

33 pages, 3040 KB  
Article
A Physical-Enhanced Spatio-Temporal Graph Convolutional Network for River Flow Prediction
by Ruixi Huang, Yin Long and Tehseen Zia
Appl. Sci. 2025, 15(16), 9054; https://doi.org/10.3390/app15169054 - 17 Aug 2025
Viewed by 479
Abstract
River flow forecasting remains a critical yet challenging task in hydrological science, owing to the inherent trade-offs between physics-based models and data-driven methods. While physics-based models offer interpretability and process-based insights, they often struggle with real-world complexity and adaptability. Conversely, purely data-driven models, [...] Read more.
River flow forecasting remains a critical yet challenging task in hydrological science, owing to the inherent trade-offs between physics-based models and data-driven methods. While physics-based models offer interpretability and process-based insights, they often struggle with real-world complexity and adaptability. Conversely, purely data-driven models, though powerful in capturing data patterns, lack physical grounding and often underperform in extreme scenarios. To address this gap, we propose PESTGCN, a Physical-Enhanced Spatio-Temporal Graph Convolutional Network that integrates hydrological domain knowledge with the flexibility of graph-based learning. PESTGCN models the watershed system as a Heterogeneous Information Network (HIN), capturing various physical entities (e.g., gauge stations, rainfall stations, reservoirs) and their diverse interactions (e.g., spatial proximity, rainfall influence, and regulation effects) within a unified graph structure. To better capture the latent semantics, meta-path-based encoding is employed to model higher-order relationships. Furthermore, a hybrid attention mechanism incorporating both local temporal features and global spatial dependencies enables comprehensive sequence learning. Importantly, key variables from the HEC-HMS hydrological model are embedded into the framework to improve physical interpretability and generalization. Experimental results on four real-world benchmark watersheds demonstrate that PESTGCN achieves statistically significant improvements over existing state-of-the-art models, with relative reductions in MAE ranging from 5.3% to 13.6% across different forecast horizons. These results validate the effectiveness of combining physical priors with graph-based temporal modeling. Full article
Show Figures

Figure 1

22 pages, 894 KB  
Article
Adaptive Knowledge Assessment via Symmetric Hierarchical Bayesian Neural Networks with Graph Symmetry-Aware Concept Dependencies
by Wenyang Cao, Nhu Tam Mai and Wenhe Liu
Symmetry 2025, 17(8), 1332; https://doi.org/10.3390/sym17081332 - 15 Aug 2025
Cited by 3 | Viewed by 449
Abstract
Traditional educational assessment systems suffer from inefficient question selection strategies that fail to optimally probe student knowledge while requiring extensive testing time. We present a novel hierarchical probabilistic neural framework that integrates Bayesian inference with symmetric deep neural architectures to enable adaptive, efficient [...] Read more.
Traditional educational assessment systems suffer from inefficient question selection strategies that fail to optimally probe student knowledge while requiring extensive testing time. We present a novel hierarchical probabilistic neural framework that integrates Bayesian inference with symmetric deep neural architectures to enable adaptive, efficient knowledge assessment. Our method models student knowledge as latent representations within a graph-structured concept dependency network, where probabilistic mastery states, updated through variational inference, are encoded by symmetric graph properties and symmetric concept representations that preserve structural equivalences across similar knowledge configurations. The system employs a symmetric dual-network architecture: a concept embedding network that learns scale-invariant hierarchical knowledge representations from assessment data and a question selection network that optimizes symmetric information gain through deep reinforcement learning with symmetric reward structures. We introduce a novel uncertainty-aware objective function that leverages symmetric uncertainty measures to balance exploration of uncertain knowledge regions with exploitation of informative question patterns. The hierarchical structure captures both fine-grained concept mastery and broader domain understanding through multi-scale graph convolutions that preserve local graph symmetries and global structural invariances. Our symmetric information-theoretic method ensures balanced assessment strategies that maintain diagnostic equivalence across isomorphic concept subgraphs. Experimental validation on large-scale educational datasets demonstrates that our method achieves 76.3% diagnostic accuracy while reducing the question count by 35.1% compared to traditional assessments. The learned concept embeddings reveal interpretable knowledge structures with symmetric dependency patterns that align with pedagogical theory. Our work generalizes across domains and student populations through symmetric transfer learning mechanisms, providing a principled framework for intelligent tutoring systems and adaptive testing platforms. The integration of probabilistic reasoning with symmetric neural pattern recognition offers a robust solution to the fundamental trade-off between assessment efficiency and diagnostic precision in educational technology. Full article
(This article belongs to the Special Issue Advances in Graph Theory Ⅱ)
Show Figures

Figure 1

22 pages, 2284 KB  
Article
PAGCN: Structural Semantic Relationship and Attention Mechanism for Rumor Detection
by Xiaoyang Liu and Donghai Wang
Appl. Sci. 2025, 15(16), 8984; https://doi.org/10.3390/app15168984 - 14 Aug 2025
Viewed by 316
Abstract
Traditional GCN based methods capture the propagation structure between posts, but do not fully model dynamic semantic information, such as the role of specific users on the propagation path and the context of post content that changes over time, leading to a decrease [...] Read more.
Traditional GCN based methods capture the propagation structure between posts, but do not fully model dynamic semantic information, such as the role of specific users on the propagation path and the context of post content that changes over time, leading to a decrease in the accuracy of rumor detection. Therefore, we propose an innovative path attention graph convolution network (PAGCN) framework, which effectively solves this limitation by integrating propagation structure and semantic representation learning. PAGCN first uses the graph neural network (GNN) to model the information transmission path, focusing on the differences between rumor and fact information in communication behavior, such as the differences between depth first and breadth first dissemination modes. Then, in order to enhance the ability of semantic understanding, we design a multi head attention mechanism based on convolutional neural network (CNN), which extracts deep contextual relationships from text content. Furthermore, by introducing the comparative learning technology, PAGCN can adaptively optimize the representation of structural and semantic features, dynamically focus on the most discriminative features, and significantly improve the sensitivity to subtle patterns in rumor propagation. The experimental verification on three benchmark datasets of twitter15, twitter16, and Weibo, shows that the proposed PAGCN performs best among the 17 comparison models, and the accuracy rates on twitter15 and Weibo datasets are 90.9% and 93.9%, respectively, which confirms the effectiveness of the framework in capturing propagation structure and semantic information at the same time. Full article
Show Figures

Figure 1

22 pages, 3920 KB  
Article
Integrating Cortical Source Reconstruction and Adversarial Learning for EEG Classification
by Yue Guo, Yan Pei, Rong Yao, Yueming Yan, Meirong Song and Haifang Li
Sensors 2025, 25(16), 4989; https://doi.org/10.3390/s25164989 - 12 Aug 2025
Viewed by 452
Abstract
Existing methods for diagnosing depression rely heavily on subjective evaluations, whereas electroencephalography (EEG) emerges as a promising approach for objective diagnosis due to its non-invasiveness, low cost, and high temporal resolution. However, current EEG analysis methods are constrained by volume conduction effect and [...] Read more.
Existing methods for diagnosing depression rely heavily on subjective evaluations, whereas electroencephalography (EEG) emerges as a promising approach for objective diagnosis due to its non-invasiveness, low cost, and high temporal resolution. However, current EEG analysis methods are constrained by volume conduction effect and class imbalance, both of which adversely affect classification performance. To address these issues, this paper proposes a multi-stage deep learning model for EEG-based depression classification, integrating a cortical feature extraction strategy (CFE), a feature attention module (FA), a graph convolutional network (GCN), and a focal adversarial domain adaptation module (FADA). Specifically, the CFE strategy reconstructs brain cortical signals using the standardized low-resolution brain electromagnetic tomography (sLORETA) algorithm and extracts both linear and nonlinear features that capture cortical activity variations. The FA module enhances feature representation through a multi-head self-attention mechanism, effectively capturing spatiotemporal relationships across distinct brain regions. Subsequently, the GCN further extracts spatiotemporal EEG features by modeling functional connectivity between brain regions. The FADA module employs Focal Loss and Gradient Reversal Layer (GRL) mechanisms to suppress domain-specific information, alleviate class imbalance, and enhance intra-class sample aggregation. Experimental validation on the publicly available PRED+CT dataset demonstrates that the proposed model achieves a classification accuracy of 85.33%, outperforming current state-of-the-art methods by 2.16%. These results suggest that the proposed model holds strong potential for improving the accuracy and reliability of EEG-based depression classification. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

22 pages, 9411 KB  
Article
A Spatiotemporal Multi-Model Ensemble Framework for Urban Multimodal Traffic Flow Prediction
by Zhenkai Wang and Lujin Hu
ISPRS Int. J. Geo-Inf. 2025, 14(8), 308; https://doi.org/10.3390/ijgi14080308 - 10 Aug 2025
Viewed by 793
Abstract
Urban multimodal travel trajectory prediction is a core challenge in Intelligent Transportation Systems (ITSs). It requires modeling both spatiotemporal dependencies and dynamic interactions among different travel modes such as taxi, bike-sharing, and buses. To address the limitations of existing methods in capturing these [...] Read more.
Urban multimodal travel trajectory prediction is a core challenge in Intelligent Transportation Systems (ITSs). It requires modeling both spatiotemporal dependencies and dynamic interactions among different travel modes such as taxi, bike-sharing, and buses. To address the limitations of existing methods in capturing these diverse trajectory characteristics, we propose a spatiotemporal multi-model ensemble framework, which is an ensemble model called GLEN (GCN and LSTM Ensemble Network). Firstly, the trajectory feature adaptive driven model selection mechanism classifies trajectories into dynamic travel and fixed-route scenarios. Secondly, we use a Graph Convolutional Network (GCN) to capture dynamic travel patterns and Long Short-Term Memory (LSTM) network to model fixed-route patterns. Subsequently the outputs of these models are dynamically weighted, integrated, and fused over a spatiotemporal grid to produce accurate forecasts of urban total traffic flow at multiple future time steps. Finally, experimental validation using Beijing’s Chaoyang district datasets demonstrates that our framework effectively captures spatiotemporal and interactive characteristics between multimodal travel trajectories and outperforms mainstream baselines, thereby offering robust support for urban traffic management and planning. Full article
Show Figures

Figure 1

12 pages, 2368 KB  
Article
Uncertainty-Aware Continual Reinforcement Learning via PPO with Graph Representation Learning
by Dongjae Kim
Mathematics 2025, 13(16), 2542; https://doi.org/10.3390/math13162542 - 8 Aug 2025
Viewed by 491
Abstract
Continual reinforcement learning (CRL) agents face significant challenges when encountering distributional shifts. This paper formalizes these shifts into two key scenarios, namely virtual drift (domain switches), where object semantics change (e.g., walls becoming lava), and concept drift (task switches), where the environment’s structure [...] Read more.
Continual reinforcement learning (CRL) agents face significant challenges when encountering distributional shifts. This paper formalizes these shifts into two key scenarios, namely virtual drift (domain switches), where object semantics change (e.g., walls becoming lava), and concept drift (task switches), where the environment’s structure is reconfigured (e.g., moving from object navigation to a door key puzzle). This paper demonstrates that while conventional convolutional neural networks (CNNs) struggle to preserve relational knowledge during these transitions, graph convolutional networks (GCNs) can inherently mitigate catastrophic forgetting by encoding object interactions through explicit topological reasoning. A unified framework is proposed that integrates GCN-based state representation learning with a proximal policy optimization (PPO) agent. The GCN’s message-passing mechanism preserves invariant relational structures, which diminishes performance degradation during abrupt domain switches. Experiments conducted in procedurally generated MiniGrid environments show that the method significantly reduces catastrophic forgetting in domain switch scenarios. While showing comparable mean performance in task switch scenarios, our method demonstrates substantially lower performance variance (Levene’s test, p<1.0×1010), indicating superior learning stability compared to CNN-based methods. By bridging graph representation learning with robust policy optimization in CRL, this research advances the stability of decision-making in dynamic environments and establishes GCNs as a principled alternative to CNNs for applications requiring stable, continual learning. Full article
(This article belongs to the Special Issue Decision Making under Uncertainty in Soft Computing)
Show Figures

Figure 1

18 pages, 3407 KB  
Article
Graph Convolutional Network with Multi-View Topology for Lightweight Skeleton-Based Action Recognition
by Liangliang Wang, Xu Zhang and Chuang Zhang
Symmetry 2025, 17(8), 1235; https://doi.org/10.3390/sym17081235 - 4 Aug 2025
Viewed by 556
Abstract
Skeleton-based action recognition is an important subject in deep learning. Graph Convolutional Networks (GCNs) have demonstrated strong performance by modeling the human skeleton as a natural topological graph, representing the connections between joints. However, most existing methods rely on non-adaptive topologies or insufficiently [...] Read more.
Skeleton-based action recognition is an important subject in deep learning. Graph Convolutional Networks (GCNs) have demonstrated strong performance by modeling the human skeleton as a natural topological graph, representing the connections between joints. However, most existing methods rely on non-adaptive topologies or insufficiently expressive representations. To address these limitations, we propose a Multi-view Topology Refinement Graph Convolutional Network (MTR-GCN), which is efficient, lightweight, and delivers high performance. Specifically: (1) We propose a new spatial topology modeling approach that incorporates two views. A dynamic view fuses joint information from dual streams in a pairwise manner, while a static view encodes the shortest static paths between joints, preserving the original connectivity relationships. (2) We propose a new MultiScale Temporal Convolutional Network (MSTC), which is efficient and lightweight. (3) Furthermore, we introduce a new temporal topology strategy by modeling temporal frames as a graph, which strengthens the extraction of temporal features. By modeling the human skeleton as both a spatial and a temporal graph, we reveal a topological symmetry between space and time within the unified spatio-temporal framework. The proposed model achieves state-of-the-art performance on several benchmark datasets, including NTU RGB + D (XSub: 92.8%, XView: 96.8%), NTU RGB + D 120 (XSub: 89.6%, XSet: 90.8%), and NW-UCLA (95.7%), demonstrating the effectiveness of our GCN module, TCN module, and overall architecture. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

30 pages, 2928 KB  
Article
Unsupervised Multimodal Community Detection Algorithm in Complex Network Based on Fractal Iteration
by Hui Deng, Yanchao Huang, Jian Wang, Yanmei Hu and Biao Cai
Fractal Fract. 2025, 9(8), 507; https://doi.org/10.3390/fractalfract9080507 - 2 Aug 2025
Viewed by 456
Abstract
Community detection in complex networks plays a pivotal role in modern scientific research, including in social network analysis and protein structure analysis. Traditional community detection methods face challenges in integrating heterogeneous multi-source information, capturing global semantic relationships, and adapting to dynamic network evolution. [...] Read more.
Community detection in complex networks plays a pivotal role in modern scientific research, including in social network analysis and protein structure analysis. Traditional community detection methods face challenges in integrating heterogeneous multi-source information, capturing global semantic relationships, and adapting to dynamic network evolution. This paper proposes a novel unsupervised multimodal community detection algorithm (UMM) based on fractal iteration. The core idea is to design a dual-channel encoder that comprehensively considers node semantic features and network topological structures. Initially, node representation vectors are derived from structural information (using feature vectors when available, or singular value decomposition to obtain feature vectors for nodes without attributes). Subsequently, a parameter-free graph convolutional encoder (PFGC) is developed based on fractal iteration principles to extract high-order semantic representations from structural encodings without requiring any training process. Furthermore, a semantic–structural dual-channel encoder (DC-SSE) is designed, which integrates semantic encodings—reduced in dimensionality via UMAP—with structural features extracted by PFGC to obtain the final node embeddings. These embeddings are then clustered using the K-means algorithm to achieve community partitioning. Experimental results demonstrate that the UMM outperforms existing methods on multiple real-world network datasets. Full article
Show Figures

Figure 1

20 pages, 2779 KB  
Article
Complex Network Analytics for Structural–Functional Decoding of Neural Networks
by Jiarui Zhang, Dongxiao Zhang, Hu Lou, Yueer Li, Taijiao Du and Yinjun Gao
Appl. Sci. 2025, 15(15), 8576; https://doi.org/10.3390/app15158576 - 1 Aug 2025
Viewed by 370
Abstract
Neural networks (NNs) achieve breakthroughs in computer vision and natural language processing, yet their “black box” nature persists. Traditional methods prioritise parameter optimisation and loss design, overlooking NNs’ fundamental structure as topologically organised nonlinear computational systems. This work proposes a complex network theory [...] Read more.
Neural networks (NNs) achieve breakthroughs in computer vision and natural language processing, yet their “black box” nature persists. Traditional methods prioritise parameter optimisation and loss design, overlooking NNs’ fundamental structure as topologically organised nonlinear computational systems. This work proposes a complex network theory framework decoding structure–function coupling by mapping convolutional layers, fully connected layers, and Dropout modules into graph representations. To overcome limitations of heuristic compression techniques, we develop a topology-sensitive adaptive pruning algorithm that evaluates critical paths via node strength centrality, preserving structural–functional integrity. On CIFAR-10, our method achieves 55.5% parameter reduction with only 7.8% accuracy degradation—significantly outperforming traditional approaches. Crucially, retrained pruned networks exceed original model accuracy by up to 2.63%, demonstrating that topology optimisation unlocks latent model potential. This research establishes a paradigm shift from empirical to topologically rationalised neural architecture design, providing theoretical foundations for deep learning optimisation dynamics. Full article
(This article belongs to the Special Issue Artificial Intelligence in Complex Networks (2nd Edition))
Show Figures

Figure 1

24 pages, 5286 KB  
Article
Graph Neural Network-Enhanced Multi-Agent Reinforcement Learning for Intelligent UAV Confrontation
by Kunhao Hu, Hao Pan, Chunlei Han, Jianjun Sun, Dou An and Shuanglin Li
Aerospace 2025, 12(8), 687; https://doi.org/10.3390/aerospace12080687 - 31 Jul 2025
Viewed by 630
Abstract
Unmanned aerial vehicles (UAVs) are widely used in surveillance and combat for their efficiency and autonomy, whilst complex, dynamic environments challenge the modeling of inter-agent relations and information transmission. This research proposes a novel UAV tactical choice-making algorithm utilizing graph neural networks to [...] Read more.
Unmanned aerial vehicles (UAVs) are widely used in surveillance and combat for their efficiency and autonomy, whilst complex, dynamic environments challenge the modeling of inter-agent relations and information transmission. This research proposes a novel UAV tactical choice-making algorithm utilizing graph neural networks to tackle these challenges. The proposed algorithm employs a graph neural network to process the observed state information, the convolved output of which is then fed into a reconstructed critic network incorporating a Laplacian convolution kernel. This research first enhances the accuracy of obtaining unstable state information in hostile environments. The proposed algorithm uses this information to train a more precise critic network. In turn, this improved critic network guides the actor network to make decisions that better meet the needs of the battlefield. Coupled with a policy transfer mechanism, this architecture significantly enhances the decision-making efficiency and environmental adaptability within the multi-agent system. Results from the experiments show that the average effectiveness of the proposed algorithm across the six planned scenarios is 97.4%, surpassing the baseline by 23.4%. In addition, the integration of transfer learning makes the network convergence speed three times faster than that of the baseline algorithm. This algorithm effectively improves the information transmission efficiency between the environment and the UAV and provides strong support for UAV formation combat. Full article
(This article belongs to the Special Issue New Perspective on Flight Guidance, Control and Dynamics)
Show Figures

Figure 1

Back to TopTop