Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (138)

Search Parameters:
Keywords = adaptive inertia weight

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 8922 KB  
Article
Research on Parameter Prediction Model of S-Shaped Inlet Based on FCM-NDAPSO-RBF Neural Network
by Ye Wei, Lingfei Xiao, Xiaole Zhang, Junyuan Hu and Jie Li
Aerospace 2025, 12(8), 748; https://doi.org/10.3390/aerospace12080748 - 21 Aug 2025
Viewed by 251
Abstract
To address the inefficiencies of traditional numerical simulations and the high cost of experimental validation in the aerodynamic–stealth integrated design of S-shaped inlets for aero-engines, this study proposes a novel parameter prediction model based on a fuzzy C-means (FCM) clustering and nonlinear dynamic [...] Read more.
To address the inefficiencies of traditional numerical simulations and the high cost of experimental validation in the aerodynamic–stealth integrated design of S-shaped inlets for aero-engines, this study proposes a novel parameter prediction model based on a fuzzy C-means (FCM) clustering and nonlinear dynamic adaptive particle swarm optimization-enhanced radial basis function neural network (NDAPSO-RBFNN). The FCM algorithm is applied to reduce the feature dimensionality of aerodynamic parameters and determine the optimal hidden layer structure of the RBF network using clustering validity indices. Meanwhile, the NDAPSO algorithm introduces a three-stage adaptive inertia weight mechanism to balance global exploration and local exploitation effectively. Simulation results demonstrate that the proposed model significantly improves training efficiency and generalization capability. Specifically, the model achieves a root mean square error (RMSE) of 3.81×108 on the training set and 8.26×108 on the test set, demonstrating robust predictive accuracy. Furthermore, 98.3% of the predicted values fall within the y=x±3β confidence interval (β=1.2×107). Compared with traditional PSO-RBF models, the number of iterations of NDAPSO-RBF network is lower, the single prediction time of NDAPSO-RBF network is shorter, and the number of calls to the standard deviation of the NDAPSO-RBF network is lower. These results indicate that the proposed model not only provides a reliable and efficient surrogate modeling method for complex inlet flow fields but also offers a promising approach for real-time multi-objective aerodynamic–stealth optimization in aerospace applications. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

21 pages, 3373 KB  
Article
RBF Neural Network-Based Anti-Disturbance Trajectory Tracking Control for Wafer Transfer Robot Under Variable Payload Conditions
by Bo Xu, Luyao Yuan and Hao Yu
Appl. Sci. 2025, 15(16), 9193; https://doi.org/10.3390/app15169193 - 21 Aug 2025
Viewed by 377
Abstract
Variations in the drive motor’s load inertia during wafer transfer robot arm motion critically degrade end-effector trajectory accuracy. To address this challenge, this study proposes an anti-disturbance control strategy integrating Radial Basis Function Neural Network (RBFNN) and event-triggered mechanisms. Firstly, dynamic simulations reveal [...] Read more.
Variations in the drive motor’s load inertia during wafer transfer robot arm motion critically degrade end-effector trajectory accuracy. To address this challenge, this study proposes an anti-disturbance control strategy integrating Radial Basis Function Neural Network (RBFNN) and event-triggered mechanisms. Firstly, dynamic simulations reveal that nonlinear load inertia growth increases joint reaction forces and diminishes trajectory precision. The RBFNN dynamically approximates system nonlinearities, while an adaptive law updates its weights online to compensate for load variations and external disturbances. Secondly, an event-triggered mechanism is introduced, updating the controller only when specific conditions are met, thereby reducing communication burden and actuator wear. Subsequently, Lyapunov stability analysis proves the closed-loop system is Uniformly Ultimately Bounded (UUB) and prevents Zeno behavior. Finally, simulations on a planar 2-DOF manipulator demonstrate significantly enhanced trajectory tracking accuracy under variable loads. Critically, the adaptive neural network control method reduces trajectory tracking error by 50% and decreases controller update frequency by 84.7%. This work thus provides both theoretical foundations and engineering references for high-precision wafer transfer robot control. Full article
Show Figures

Figure 1

28 pages, 1465 KB  
Article
A Three-Layer Coordinated Planning Model for Source–Grid–Load–Storage Considering Electricity–Carbon Coupling and Flexibility Supply–Demand Balance
by Zequn Wang, Haobin Chen, Haoyang Tang, Lin Zheng, Jianfeng Zheng, Zhilu Liu and Zhijian Hu
Sustainability 2025, 17(16), 7290; https://doi.org/10.3390/su17167290 - 12 Aug 2025
Viewed by 517
Abstract
With the deep integration of electricity and carbon trading markets, distribution networks are facing growing operational stress and a shortage of flexible resources under high penetration of renewable energy. This paper proposes a three-layer coordinated planning model for Source–Grid–Load–Storage (SGLS) systems, considering electricity–carbon [...] Read more.
With the deep integration of electricity and carbon trading markets, distribution networks are facing growing operational stress and a shortage of flexible resources under high penetration of renewable energy. This paper proposes a three-layer coordinated planning model for Source–Grid–Load–Storage (SGLS) systems, considering electricity–carbon coupling and flexibility supply–demand balance. The model incorporates a dynamic pricing mechanism that links carbon pricing and time-of-use electricity tariffs, and integrates multi-source flexible resources—such as wind, photovoltaic (PV), conventional generators, energy storage systems (ESS), and controllable loads—to quantify the system’s flexibility capacity. A hierarchical structure encompassing “decision–planning–operation” is designed to achieve coordinated optimization of resource allocation, cost minimization, and operational efficiency. To improve the model’s computational efficiency and convergence performance, an improved adaptive particle swarm optimization (IAPSO) algorithm is developed which integrates dynamic inertia weight adjustment, adaptive acceleration factors, and Gaussian mutation. Simulation studies conducted on the IEEE 33-bus distribution system demonstrate that the proposed model outperforms conventional approaches in terms of operational economy, carbon emission reduction, system flexibility, and renewable energy accommodation. The approach provides effective support for the coordinated deployment of diverse resources in next-generation power systems. Full article
Show Figures

Figure 1

17 pages, 1576 KB  
Article
Research on the Optimization Method of Injection Molding Process Parameters Based on the Improved Particle Swarm Optimization Algorithm
by Zhenfa Yang, Xiaoping Lu, Lin Wang, Lucheng Chen and Yu Wang
Processes 2025, 13(8), 2491; https://doi.org/10.3390/pr13082491 - 7 Aug 2025
Viewed by 359
Abstract
Optimization of injection molding process parameters is essential for improving product quality and production efficiency. Traditional methods, which rely heavily on operator experience, often result in inconsistencies, high time consumption, high defect rates, and suboptimal energy consumption. In this study, an improved particle [...] Read more.
Optimization of injection molding process parameters is essential for improving product quality and production efficiency. Traditional methods, which rely heavily on operator experience, often result in inconsistencies, high time consumption, high defect rates, and suboptimal energy consumption. In this study, an improved particle swarm optimization (IPSO) algorithm was proposed, integrating dynamic inertia weight adjustment, adaptive acceleration coefficients, and position constraints to address the issue of premature convergence and enhance global search capabilities. A dual-model architecture was implemented: a constraint validation mechanism based on support vector machine (SVM) was enforced per iteration cycle to ensure stepwise quality compliance, while a fitness function derived by extreme gradient boosting (XGBoost) was formulated to minimize cycle time as the optimization objective. The results demonstrated that the average injection cycle time was reduced by 9.41% while ensuring that the product was qualified. The SVM and XGBoost models achieved high performance metrics (accuracy: 0.92; R2: 0.93; RMSE: 1.05), confirming their robustness in quality classification and cycle time prediction. This method provides a systematic and data-driven solution for multi-objective optimization in injection molding, significantly improving production efficiency and energy utilization. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

15 pages, 997 KB  
Article
Reactive Power Optimization Control Method for Distribution Network with Hydropower Based on Improved Discrete Particle Swarm Optimization Algorithm
by Tao Liu, Bin Jia, Shuangxiang Luo, Xiangcong Kong, Yong Zhou and Hongbo Zou
Processes 2025, 13(8), 2455; https://doi.org/10.3390/pr13082455 - 3 Aug 2025
Viewed by 371
Abstract
With the rapid development of renewable energy, the proportion of small hydropower as a clean energy in the distribution network (DN) is increasing. However, the randomness and intermittence of small hydropower has brought new challenges to the operation of DN; especially, the problems [...] Read more.
With the rapid development of renewable energy, the proportion of small hydropower as a clean energy in the distribution network (DN) is increasing. However, the randomness and intermittence of small hydropower has brought new challenges to the operation of DN; especially, the problems of increasing network loss and reactive voltage exceeding the limit have become increasingly prominent. Aiming at the above problems, this paper proposes a reactive power optimization control method for DN with hydropower based on an improved discrete particle swarm optimization (PSO) algorithm. Firstly, this paper analyzes the specific characteristics of small hydropower and establishes its mathematical model. Secondly, considering the constraints of bus voltage and generator RP output, an extended minimum objective function for system power loss is established, with bus voltage violation serving as the penalty function. Then, in order to solve the following problems: that the traditional discrete PSO algorithm is easy to fall into local optimization and slow convergence, this paper proposes an improved discrete PSO algorithm, which improves the global search ability and convergence speed by introducing adaptive inertia weight. Finally, based on the IEEE-33 buses distribution system as an example, the simulation analysis shows that compared with GA optimization, the line loss can be reduced by 3.4% in the wet season and 13.6% in the dry season. Therefore, the proposed method can effectively reduce the network loss and improve the voltage quality, which verifies the effectiveness and superiority of the proposed method. Full article
Show Figures

Figure 1

21 pages, 1800 KB  
Article
GAPSO: Cloud-Edge-End Collaborative Task Offloading Based on Genetic Particle Swarm Optimization
by Wu Wen, Yibin Huang, Zhong Xiao, Lizhuang Tan and Peiying Zhang
Symmetry 2025, 17(8), 1225; https://doi.org/10.3390/sym17081225 - 3 Aug 2025
Viewed by 416
Abstract
In the 6G era, the proliferation of smart devices has led to explosive growth in data volume. The traditional cloud computing can no longer meet the demand for efficient processing of large amounts of data. Edge computing can solve the energy loss problems [...] Read more.
In the 6G era, the proliferation of smart devices has led to explosive growth in data volume. The traditional cloud computing can no longer meet the demand for efficient processing of large amounts of data. Edge computing can solve the energy loss problems caused by transmission delay and multi-level forwarding in cloud computing by processing data close to the data source. In this paper, we propose a cloud–edge–end collaborative task offloading strategy with task response time and execution energy consumption as the optimization targets under a limited resource environment. The tasks generated by smart devices can be processed using three kinds of computing nodes, including user devices, edge servers, and cloud servers. The computing nodes are constrained by bandwidth and computing resources. For the target optimization problem, a genetic particle swarm optimization algorithm considering three layers of computing nodes is designed. The task offloading optimization is performed by introducing (1) opposition-based learning algorithm, (2) adaptive inertia weights, and (3) adjustive acceleration coefficients. All metaheuristic algorithms adopt a symmetric training method to ensure fairness and consistency in evaluation. Through experimental simulation, compared with the classic evolutionary algorithm, our algorithm reduces the objective function value by about 6–12% and has higher algorithm convergence speed, accuracy, and stability. Full article
Show Figures

Figure 1

21 pages, 3663 KB  
Article
Enhanced Cuckoo Search Optimization with Opposition-Based Learning for the Optimal Placement of Sensor Nodes and Enhanced Network Coverage in Wireless Sensor Networks
by Mandli Rami Reddy, M. L. Ravi Chandra and Ravilla Dilli
Appl. Sci. 2025, 15(15), 8575; https://doi.org/10.3390/app15158575 - 1 Aug 2025
Viewed by 239
Abstract
Network connectivity and area coverage are the most important aspects in the applications of wireless sensor networks (WSNs). The resource and energy constraints of sensor nodes, operational conditions, and network size pose challenges to the optimal coverage of targets in the region of [...] Read more.
Network connectivity and area coverage are the most important aspects in the applications of wireless sensor networks (WSNs). The resource and energy constraints of sensor nodes, operational conditions, and network size pose challenges to the optimal coverage of targets in the region of interest (ROI). The main idea is to achieve maximum area coverage and connectivity with strategic deployment and the minimal number of sensor nodes. This work addresses the problem of network area coverage in randomly distributed WSNs and provides an efficient deployment strategy using an enhanced version of cuckoo search optimization (ECSO). The “sequential update evaluation” mechanism is used to mitigate the dependency among dimensions and provide highly accurate solutions, particularly during the local search phase. During the preference random walk phase of conventional CSO, particle swarm optimization (PSO) with adaptive inertia weights is defined to accelerate the local search capabilities. The “opposition-based learning (OBL)” strategy is applied to ensure high-quality initial solutions that help to enhance the balance between exploration and exploitation. By considering the opposite of current solutions to expand the search space, we achieve higher convergence speed and population diversity. The performance of ECSO-OBL is evaluated using eight benchmark functions, and the results of three cases are compared with the existing methods. The proposed method enhances network coverage with a non-uniform distribution of sensor nodes and attempts to cover the whole ROI with a minimal number of sensor nodes. In a WSN with a 100 m2 area, we achieved a maximum coverage rate of 98.45% and algorithm convergence in 143 iterations, and the execution time was limited to 2.85 s. The simulation results of various cases prove the higher efficiency of the ECSO-OBL method in terms of network coverage and connectivity in WSNs compared with existing state-of-the-art works. Full article
Show Figures

Figure 1

17 pages, 5417 KB  
Article
Constrained Adaptive Weighted Particle Swarm Optimization (C-AWPSO) Algorithm for Dipping Fault Parameter Inversion
by Shiquan Su, Juntao Liang, Chuang Xu, Feiyu Zhang and Hangtao Yu
Appl. Sci. 2025, 15(15), 8382; https://doi.org/10.3390/app15158382 - 28 Jul 2025
Viewed by 343
Abstract
To overcome the limitations of gravity inversion methods in fault inversion, this paper proposed a constrained adaptive weighted particle swarm optimization algorithm. Simulation experiments demonstrate that the proposed method exhibits stronger noise resistance compared to traditional optimization methods. In practical cases, the inversion [...] Read more.
To overcome the limitations of gravity inversion methods in fault inversion, this paper proposed a constrained adaptive weighted particle swarm optimization algorithm. Simulation experiments demonstrate that the proposed method exhibits stronger noise resistance compared to traditional optimization methods. In practical cases, the inversion accuracy of this method is improved by at least 64.4%, and the predicted gravity anomaly curve is closer to the observed data. The research findings are as follows: (1) The linearly decreasing inertia weight strategy performs best in terms of convergence efficiency and global search capability; (2) among the fault parameters, the top-layer center depth z and bottom-layer center depth w show higher sensitivity, and the inversion results for these parameters are more stable, which is beneficial for determining the depth information of faults; (3) introducing L2 regularization and penalty terms as constraints significantly improves the inversion stability, and among these, z and w have a particularly notable impact on the error. Full article
Show Figures

Figure 1

29 pages, 5542 KB  
Article
SVRG-AALR: Stochastic Variance-Reduced Gradient Method with Adaptive Alternating Learning Rate for Training Deep Neural Networks
by Shiyun Zou, Hua Qin, Guolin Yang and Pengfei Wang
Electronics 2025, 14(15), 2979; https://doi.org/10.3390/electronics14152979 - 25 Jul 2025
Viewed by 301
Abstract
The stochastic variance-reduced gradient (SVRG) theory is particularly well-suited for addressing gradient variance in deep neural network (DNN) training; however, its direct application to DNN training is hindered by adaptation challenges. To tackle this issue, the present paper proposes a series of strategies [...] Read more.
The stochastic variance-reduced gradient (SVRG) theory is particularly well-suited for addressing gradient variance in deep neural network (DNN) training; however, its direct application to DNN training is hindered by adaptation challenges. To tackle this issue, the present paper proposes a series of strategies focused on adaptive alternating learning rates to effectively adapt SVRG for DNN training. Firstly, within the outer loop of SVRG, both the full gradient and the learning rate specific to DNN training are computed. For two distinct formulas used for calculating the learning rate, an alternating strategy is introduced that employs them alternately across iterations. This approach allows for simultaneous provision of diverse guidance information regarding parameter change rates and gradient change rates during DNN weight updates. Additionally, a threshold method is utilized to correct the learning rate into an appropriate range, thereby accelerating convergence. Secondly, in the inner loop of SVRG, DNN weights are updated using mini-batch average gradient along with the proposed learning rate. Concurrently, mini-batch average gradients from each iteration within the inner loop are refined and aggregated into a single gradient exhibiting reduced variance through an inertia strategy. This refined gradient is then relayed back to the outer loop to recalculate the new learning rate. The efficacy of the proposed algorithm has been validated on models including LeNet, VGG11, ResNet34, and DenseNet121 while being compared against several classic and advanced optimizers. Experimental results demonstrate that the proposed algorithm exhibits remarkable training robustness across DNN models with diverse characteristics. In terms of training convergence, the proposed algorithm demonstrates competitiveness with state-of-the-art algorithms, such as Lion, developed by the Google Brain team. Full article
(This article belongs to the Special Issue Advances in Machine Learning for Image Classification)
Show Figures

Figure 1

14 pages, 5730 KB  
Article
Offline Magnetometer Calibration Using Enhanced Particle Swarm Optimization
by Lei Huang, Zhihui Chen, Jun Guan, Jian Huang and Wenjun Yi
Mathematics 2025, 13(15), 2349; https://doi.org/10.3390/math13152349 - 23 Jul 2025
Viewed by 215
Abstract
To address the decline in measurement accuracy of magnetometers due to process errors and environmental interference, as well as the insufficient robustness of traditional calibration algorithms under strong interference conditions, this paper proposes an ellipsoid fitting algorithm based on Dynamic Adaptive Elite Particle [...] Read more.
To address the decline in measurement accuracy of magnetometers due to process errors and environmental interference, as well as the insufficient robustness of traditional calibration algorithms under strong interference conditions, this paper proposes an ellipsoid fitting algorithm based on Dynamic Adaptive Elite Particle Swarm Optimization (DAEPSO). The proposed algorithm integrates three enhancement mechanisms: dynamic stratified elite guidance, adaptive inertia weight adjustment, and inferior particle relearning via Lévy flight, aiming to improve convergence speed, solution accuracy, and noise resistance. First, a magnetometer calibration model is established. Second, the DAEPSO algorithm is employed to fit the ellipsoid parameters. Finally, error calibration is performed based on the optimized ellipsoid parameters. Our simulation experiments demonstrate that compared with the traditional Least Squares Method (LSM) the proposed method reduces the standard deviation of the total magnetic field intensity by 54.73%, effectively improving calibration precision in the presence of outliers. Furthermore, when compared to PSO, TSLPSO, MPSO, and AWPSO, the sum of the absolute distances from the simulation data to the fitted ellipsoidal surface decreases by 53.60%, 41.96%, 53.01%, and 27.40%, respectively. The results from 60 independent experiments show that DAEPSO achieves lower median errors and smaller interquartile ranges than comparative algorithms. In summary, the DAEPSO-based ellipsoid fitting algorithm exhibits high fitting accuracy and strong robustness in environments with intense interference noise, providing reliable theoretical support for practical engineering applications. Full article
Show Figures

Figure 1

39 pages, 17182 KB  
Article
A Bi-Layer Collaborative Planning Framework for Multi-UAV Delivery Tasks in Multi-Depot Urban Logistics
by Junfu Wen, Fei Wang and Yebo Su
Drones 2025, 9(7), 512; https://doi.org/10.3390/drones9070512 - 21 Jul 2025
Viewed by 607
Abstract
To address the modeling complexity and multi-objective collaborative optimization challenges in multi-depot and multiple unmanned aerial vehicle (UAV) delivery task planning, this paper proposes a bi-layer planning framework, which comprehensively considers resource constraints, multi-depot coordination, and the coupling characteristics of path execution. The [...] Read more.
To address the modeling complexity and multi-objective collaborative optimization challenges in multi-depot and multiple unmanned aerial vehicle (UAV) delivery task planning, this paper proposes a bi-layer planning framework, which comprehensively considers resource constraints, multi-depot coordination, and the coupling characteristics of path execution. The novelty of this work lies in the seamless integration of an enhanced genetic algorithm and tailored swarm optimization within a unified two-tier architecture. The upper layer tackles the task assignment problem by formulating a multi-objective optimization model aimed at minimizing economic costs, delivery delays, and the number of UAVs deployed. The Enhanced Non-Dominated Sorting Genetic Algorithm II (ENSGA-II) is developed, incorporating heuristic initialization, goal-oriented search operators, an adaptive mutation mechanism, and a staged evolution control strategy to improve solution feasibility and distribution quality. The main contributions are threefold: (1) a novel ENSGA-II design for efficient and well-distributed task allocation; (2) an improved PSO-based path planner with chaotic initialization and adaptive parameters; and (3) comprehensive validation demonstrating substantial gains over baseline methods. The lower layer addresses the path planning problem by establishing a multi-objective model that considers path length, flight risk, and altitude variation. An improved particle swarm optimization (PSO) algorithm is proposed by integrating chaotic initialization, linearly adjusted acceleration coefficients and maximum velocity, a stochastic disturbance-based position update mechanism, and an adaptively tuned inertia weight to enhance algorithmic performance and path generation quality. Simulation results under typical task scenarios demonstrate that the proposed model achieves an average reduction of 47.8% in economic costs and 71.4% in UAV deployment quantity while significantly reducing delivery window violations. The framework exhibits excellent capability in multi-objective collaborative optimization. The ENSGA-II algorithm outperforms baseline algorithms significantly across performance metrics, achieving a hypervolume (HV) value of 1.0771 (improving by 72.35% to 109.82%) and an average inverted generational distance (IGD) of 0.0295, markedly better than those of comparison algorithms (ranging from 0.0893 to 0.2714). The algorithm also demonstrates overwhelming superiority in the C-metric, indicating outstanding global optimization capability in terms of distribution, convergence, and the diversity of the solution set. Moreover, the proposed framework and algorithm are both effective and feasible, offering a novel approach to low-altitude urban logistics delivery problems. Full article
(This article belongs to the Section Innovative Urban Mobility)
Show Figures

Figure 1

23 pages, 2859 KB  
Article
Air Quality Prediction Using Neural Networks with Improved Particle Swarm Optimization
by Juxiang Zhu, Zhaoliang Zhang, Wei Gu, Chen Zhang, Jinghua Xu and Peng Li
Atmosphere 2025, 16(7), 870; https://doi.org/10.3390/atmos16070870 - 17 Jul 2025
Viewed by 381
Abstract
Accurate prediction of Air Quality Index (AQI) concentrations remains a critical challenge in environmental monitoring and public health management due to the complex nonlinear relationships among multiple atmospheric factors. To address this challenge, we propose a novel prediction model that integrates an adaptive-weight [...] Read more.
Accurate prediction of Air Quality Index (AQI) concentrations remains a critical challenge in environmental monitoring and public health management due to the complex nonlinear relationships among multiple atmospheric factors. To address this challenge, we propose a novel prediction model that integrates an adaptive-weight particle swarm optimization (AWPSO) algorithm with a back propagation neural network (BPNN). First, the random forest (RF) algorithm is used to scree the influencing factors of AQI concentration. Second, the inertia weights and learning factors of the standard PSO are improved to ensure the global search ability exhibited by the algorithm in the early stage and the ability to rapidly obtain the optimal solution in the later stage; we also introduce an adaptive variation algorithm in the particle search process to prevent the particles from being caught in local optima. Finally, the BPNN is optimized using the AWPSO algorithm, and the final values of the optimized particle iterations serve as the connection weights and thresholds of the BPNN. The experimental results show that the RFAWPSO-BP model reduces the root mean square error and mean absolute error by 9.17 μg/m3, 5.7 μg/m3, 2.66 μg/m3; and 9.12 μg/m3, 5.7 μg/m3, 2.68 μg/m3 compared with the BP, PSO-BP, and AWPSO-BP models, respectively; furthermore, the goodness of fit of the proposed model was 14.8%, 6.1%, and 2.3% higher than that of the aforementioned models, respectively, demonstrating good prediction accuracy. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

24 pages, 4085 KB  
Article
A Joint Optimization Method for Power and Array of Multi-Point Sources System
by Zhihao Cai, Shiqi Xing, Xinyuan Su, Junpeng Wang, Weize Meng and Ziwen Xiao
Remote Sens. 2025, 17(14), 2445; https://doi.org/10.3390/rs17142445 - 14 Jul 2025
Cited by 1 | Viewed by 319
Abstract
In a multi-point source system, increasing the jamming power can expand the distribution area of the equivalent radiation center, but significantly increases the system exposure risk. Therefore, in order to achieve an optimal balance between the two, this paper proposes a joint optimization [...] Read more.
In a multi-point source system, increasing the jamming power can expand the distribution area of the equivalent radiation center, but significantly increases the system exposure risk. Therefore, in order to achieve an optimal balance between the two, this paper proposes a joint optimization method for jamming power and an array of multi-point source systems. First, based on determining the spatial geometric relationship between the triplet antenna and the target, the distribution law of the equivalent radiation center of the triplet antenna under the condition of the target echo is derived. Second, by introducing the angle factor, the jamming power and equivalent radiation center distribution area are combined to construct the joint optimization model of jamming power and array in omnidirectional and non-omnidirectional situations. Third, based on the non-dominated sorting whale optimization algorithm (NSWOA), an adaptive inertia weight based on the cosine function and logistic chaotic map is introduced to obtain the optimal arrangement. The experimental results show that in the omnidirectional case, when the average jamming-to-signal ratio is 13.83 dB, the equilateral triangle array can achieve the goal of protecting the target while avoiding the exposure of the triplet antenna position. In the non-omnidirectional case, when the average jamming-to-signal ratio is 13.90 dB, the equilateral triangle array can achieve the optimal balance between the jamming power and the area of the distribution area of the equivalent radiation center, and control the distribution of the equivalent radiation center to strictly meet the preset angular domain constraints. Furthermore, the optimal JSR value was reduced by an average of 1.14 dB compared with that of the conventional selection scheme. Full article
Show Figures

Figure 1

17 pages, 1016 KB  
Article
Design of Wideband Power Amplifier Using Improved Particle Swarm Optimization with Output Power and Efficiency Constraints
by Hanyue Wang, Yunqin Chen, Wa Kong, Jianwei Qi, Zhaowen Zheng and Jing Xia
Electronics 2025, 14(14), 2813; https://doi.org/10.3390/electronics14142813 - 12 Jul 2025
Viewed by 399
Abstract
In order to expand the bandwidth of the power amplifier (PA), this paper proposes a PA optimization design method based on improved particle swarm optimization (PSO) with output power and efficiency as optimization objectives. Simulated annealing strategy and adaptive inertia weight are introduced [...] Read more.
In order to expand the bandwidth of the power amplifier (PA), this paper proposes a PA optimization design method based on improved particle swarm optimization (PSO) with output power and efficiency as optimization objectives. Simulated annealing strategy and adaptive inertia weight are introduced to PSO to achieve the global optimum and accelerate the convergence speed. Considering performance metrics of PA, such as the efficiency and output power, a piecewise objective function is formulated for wideband PA optimization design. For validation, a wideband PA operating at 0.5–4.3 GHz (fractional bandwidth of 158.3%) was designed and fabricated. Measured results show a saturated output power ranging from 39.7 to 42.4 dBm and an efficiency between 60.5 and 68.8% within the operating bandwidth. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

19 pages, 3878 KB  
Article
An Enhanced Error-Adaptive Extended-State Kalman Filter Model Predictive Controller for Supercritical Power Plants
by Gang Chen, Shan Hua, Changhao Fan, Chun Wang, Shuchong Wang and Li Sun
Algorithms 2025, 18(7), 387; https://doi.org/10.3390/a18070387 - 26 Jun 2025
Viewed by 370
Abstract
This study introduces an Enhanced Error-Adaptive Extended-State Kalman Filter Model Predictive Control (EEA-ESKF-MPC) method to tackle strong coupling and inertia in supercritical power plants. By enhancing the ESKF-MPC framework with a mechanism that dynamically adjusts error weights based on real-time deviations and employs [...] Read more.
This study introduces an Enhanced Error-Adaptive Extended-State Kalman Filter Model Predictive Control (EEA-ESKF-MPC) method to tackle strong coupling and inertia in supercritical power plants. By enhancing the ESKF-MPC framework with a mechanism that dynamically adjusts error weights based on real-time deviations and employs exponential smoothing, alongside a BP neural network for thermal unit simulation, the approach achieves superior performance. Simulations show reductions in the Integrated Absolute Error (IAE) for load and temperature by 3.05% and 2.46%, respectively, with a modest 0.43% pressure IAE increase compared to ESKF-MPC. Command disturbance tests and real condition tracking experiments, utilizing data from a 350 MW supercritical unit, reinforce the method’s effectiveness, highlighting its exceptional dynamic performance and precise tracking of operational parameter changes under multivariable coupling conditions, offering a scalable solution for modern power systems. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

Back to TopTop