Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (161)

Search Parameters:
Keywords = adaptive laboratory evolution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2236 KB  
Article
Adaptive Evolution of Aurantiochytrium limacinum for Efficient Production of Docosahexaenoic Acid Under Acidic and High-Temperature Conditions
by Tanapawarin Rampai, Rujirek Nopgasorn, Kobkul Laoteng and Siwaporn Wannawilai
Microorganisms 2025, 13(9), 2022; https://doi.org/10.3390/microorganisms13092022 - 29 Aug 2025
Abstract
Acid- and heat-tolerant industrial microbial strains are crucial for biotechnological production because they minimize the risk of microbial contamination and reduce energy consumption associated with cooling requirements. Here, adaptive laboratory evolution (ALE) of Aurantiochytrium limacinum was performed to improve the capability of the [...] Read more.
Acid- and heat-tolerant industrial microbial strains are crucial for biotechnological production because they minimize the risk of microbial contamination and reduce energy consumption associated with cooling requirements. Here, adaptive laboratory evolution (ALE) of Aurantiochytrium limacinum was performed to improve the capability of the strain to produce docosahexaenoic acid (DHA) under acidic and high-temperature conditions. A stepwise increase from 30 to 38 °C was applied during cultivation at pH 4.5. After 30 cycles of high-temperature exposure (34 °C), an adaptive strain (BBF002) was obtained. Cell growth and DHA production of BBF002 were higher than those of the parental strain (BBF001) by 32.95 and 7.12%, respectively, at pH 4.5 and 30 °C. Based on the experimental data obtained using glucose as a carbon source, a kinetic model was developed to describe cell growth, biomass maintenance, and DHA, and we used other metabolite methods to produce the native, parental, and adaptive strains. The growth traits of the three strains could be adequately described through logistic modeling. DHA was found to be a mixed-growth product produced during exponential and stationary phases, according to the Luedeking–Piret equation. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

21 pages, 7223 KB  
Article
Microbial and Geochemical Diversity of Laguna Timone, an Extreme Hypersaline Crater Lake in Patagonia (52° S)
by Carolina Henríquez, José M. Pérez-Donoso, Nicolás Bruna, Mauricio Calderón, Leonardo Fadel Cury, Paulo Quezada, Gustavo Athayde, Poldie Oyarzún and Anelize Bahniuk
Microorganisms 2025, 13(8), 1957; https://doi.org/10.3390/microorganisms13081957 - 21 Aug 2025
Viewed by 381
Abstract
Extreme environments, such as hypersaline habitats, hot springs, deep-sea hydrothermal vents, glaciers, and permafrost, provide diverse ecological niches for studying microbial evolution. However, knowledge of microbial communities in extreme environments at high southern latitudes remains limited, aside from Antarctica. Laguna Timone is a [...] Read more.
Extreme environments, such as hypersaline habitats, hot springs, deep-sea hydrothermal vents, glaciers, and permafrost, provide diverse ecological niches for studying microbial evolution. However, knowledge of microbial communities in extreme environments at high southern latitudes remains limited, aside from Antarctica. Laguna Timone is a hypersaline crater lake located in a Pleistocene maar of the Pali Aike Volcanic Field, southern Patagonia; the lake was formed during basaltic eruptions in a periglacial setting. Here, we report the first integrative characterization of microbial communities from biofilms and microbial mats in this lake using high-throughput 16S rRNA and ITS gene sequencing, along with mineralogical and hydrochemical analyses of water, sediments, and carbonates. Bacterial communities were dominated by the genera Enterobacterales ASV1, Pseudomonas, Oscillatoria, Nodularia, and Belliella, with site-specific assemblages. Fungal communities included Laetinaevia, Ilyonectria, Thelebolus, Plectosphaerella, and Acrostalagmus, each showing distinct distribution patterns. These baseline data contribute to understanding microbial dynamics in hypersaline maar environments and support future investigations. This integrative approach highlights key microbe–mineral relationships and underscores the potential of Laguna Timone as a natural laboratory for exploring biosignature formation and microbial adaptation in chemically extreme environments, both on early Earth and potentially beyond. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

18 pages, 1136 KB  
Article
Advancing Drug Resistance Detection: Comparative Analysis Using Short-Read and Long-Read Next-Generation Sequencing Technologies
by Julie Martinez, Rezak Drali, Amira Doudou, Chalom Sayada, Ronan Boulmé, Dimitri Gonzalez, Laurent Deblir, Matthieu Barralon, Jérome Wautrin, Jonathan Porzio, Arnaud Reffay, Mohamed Errafyqy, Jonathan Kolsch, Jonathan Léonard, Giuseppina Zuco, Aitor Modol and Sofiane Mohamed
LabMed 2025, 2(3), 14; https://doi.org/10.3390/labmed2030014 - 20 Aug 2025
Viewed by 429
Abstract
In recent years, antiviral therapy has proved crucial in the treatment of infectious diseases, particularly infections by highly variable viruses such as human immunodeficiency virus, hepatitis B, hepatitis C, SARS-CoV-2 or bacteria such as Mycobacterium tuberculosis. Under the effect of selection pressure, [...] Read more.
In recent years, antiviral therapy has proved crucial in the treatment of infectious diseases, particularly infections by highly variable viruses such as human immunodeficiency virus, hepatitis B, hepatitis C, SARS-CoV-2 or bacteria such as Mycobacterium tuberculosis. Under the effect of selection pressure, this variability induces mutations that lead to resistance to antiviral and antibacterial drugs, and thus to escape from treatment. The use of Advanced Biological Laboratories (ABL) assays technology combined with next-generation sequencing (NGS) and automatized software to detect majority and minority variants involved in treatment resistance has become a mainstay for establishing therapeutic strategies. The present study demonstrated high concordance between majority and minority subtypes and mutations identified in 15 samples across four NGS platforms: ISeq100 (Illumina (San Diego, CA, USA)), MiSeq (Illumina), DNBSEQ-G400 (MGI (Santa Clara, CA, USA)) and Mk1C MinION (Oxford Nanopore (Oxford Science Park, UK)). However, nanopore technology showed a higher number of minority mutations (<20%). The analysis also validated the pooling of microbiological samples as a method for detecting mutations and genotypes in viral and bacterial organisms, using the easy-to-use DeepChek® bioinformatics software, compatible with all four sequencing platforms. This study underlines the constant evolution of microbiological diagnostic research and the need to adapt rapidly to improve patient care. Full article
(This article belongs to the Special Issue Rapid Diagnostic Methods for Infectious Diseases)
Show Figures

Figure 1

21 pages, 4028 KB  
Article
The Response Characteristics of One Saccharomyces cerevisiae Strain Under Continuous Passage in Artificial Culture Medium
by Tengyu Ma, Hongguang Zhu, Jiajia Yin, Yu Tian, Wenjing Yan and Haixin Sun
J. Fungi 2025, 11(7), 513; https://doi.org/10.3390/jof11070513 - 9 Jul 2025
Viewed by 637
Abstract
Saccharomyces cerevisiae often undergoes strain degeneration during industrial serial subculturing, though this phenomenon remains understudied. This study first conducted strain screening and biological characterization through TTC (2,3,5-triphenyltetrazolium chloride) colorimetric assays, Durham tube fermentation gas production tests, and WL medium (Wallerstein Laboratory medium) cultivation. [...] Read more.
Saccharomyces cerevisiae often undergoes strain degeneration during industrial serial subculturing, though this phenomenon remains understudied. This study first conducted strain screening and biological characterization through TTC (2,3,5-triphenyltetrazolium chloride) colorimetric assays, Durham tube fermentation gas production tests, and WL medium (Wallerstein Laboratory medium) cultivation. Subsequently, the changes in intergenerational biological traits after serial subculturing were investigated. Finally, transcriptomic analysis was employed to examine differential gene expression under high-glucose stress during continuous subculturing. The experimental results demonstrated that: (1) The S. cerevisiae QDSK310-Z-07 (GenBank: PP663884), isolated from farm soil, exhibited robust growth within a temperature range of 24–36 °C, with optimal growth observed at 28 °C. It thrived in a pH range of 4–5.5 and efficiently utilized various carbon and nitrogen sources; (2) After serial subculturing, the strain’s ethanol production capacity and fermentation rate partially declined and then stabilized, while maintaining strong tolerance to high ethanol concentrations and hyperosmotic stress; (3) Transcriptomic analysis revealed significant differential expression of genes related to lipid metabolism, amino acid metabolism, and other pathways under high-glucose stress following continuous subculturing. These findings elucidate the biological trait variations in S. cerevisiae during serial subculturing and provide key metabolic regulation candidate targets for its long-term adaptive evolution under high-glucose stress. Full article
Show Figures

Figure 1

19 pages, 2035 KB  
Article
Single Mutation in iolT1 in ptsG-Deficient Corynebacterium glutamicum Enables Growth Boost in Xylose-Containing Media
by Katharina Hofer, Lynn S. Schwardmann, Jung-Won Youn, Volker F. Wendisch and Ralf Takors
Microorganisms 2025, 13(7), 1606; https://doi.org/10.3390/microorganisms13071606 - 8 Jul 2025
Viewed by 605
Abstract
Efficient co-utilization of glucose and xylose from lignocellulosic biomass remains a critical bottleneck limiting the viability of sustainable biorefineries. While Corynebacterium glutamicum has emerged as a promising industrial host due to its robustness, further improvements in mixed-sugar co-utilization are needed. Here, we demonstrate [...] Read more.
Efficient co-utilization of glucose and xylose from lignocellulosic biomass remains a critical bottleneck limiting the viability of sustainable biorefineries. While Corynebacterium glutamicum has emerged as a promising industrial host due to its robustness, further improvements in mixed-sugar co-utilization are needed. Here, we demonstrate how a single amino acid substitution can dramatically transform cellular sugar transport capacity. By combining rational strain engineering with continuous adaptive laboratory evolution, we evolved a ptsG-deficient C. glutamicum strain in glucose–xylose mixtures for 600 h under consistent selection pressure. Whole-genome sequencing revealed a remarkable finding: a single point mutation; exchanging proline for alanine in the myo-inositol/proton symporter IolT1 was sufficient to boost glucose uptake by 83% and xylose uptake by 20%, while increasing the overall growth rate by 35%. This mutation, located in a highly conserved domain, likely disrupts an alpha helical structure, thus enhancing transport function. Reverse engineering confirmed that this single change alone reproduces the evolved phenotype, representing the first report of an engineered IolT1 variant in PTS-independent C. glutamicum that features significantly enhanced substrate uptake. These results both provide an immediately applicable engineering target for biorefinery applications and demonstrate the power of evolutionary approaches to identify non-intuitive solutions to complex metabolic engineering challenges. Full article
(This article belongs to the Special Issue Genetics and Physiology of Corynebacteria II)
Show Figures

Figure 1

21 pages, 1583 KB  
Review
3.0 Strategies for Yeast Genetic Improvement in Brewing and Winemaking
by Chiara Nasuti, Lisa Solieri and Kristoffer Krogerus
Beverages 2025, 11(4), 100; https://doi.org/10.3390/beverages11040100 - 1 Jul 2025
Viewed by 1257
Abstract
Yeast genetic improvement is entering a transformative phase, driven by the integration of artificial intelligence (AI), big data analytics, and synthetic microbial communities with conventional methods such as sexual breeding and random mutagenesis. These advancements have substantially expanded the potential for innovative re-engineering [...] Read more.
Yeast genetic improvement is entering a transformative phase, driven by the integration of artificial intelligence (AI), big data analytics, and synthetic microbial communities with conventional methods such as sexual breeding and random mutagenesis. These advancements have substantially expanded the potential for innovative re-engineering of yeast, ranging from single-strain cultures to complex polymicrobial consortia. This review compares traditional genetic manipulation techniques with cutting-edge approaches, highlighting recent breakthroughs in their application to beer and wine fermentation. Among the innovative strategies, adaptive laboratory evolution (ALE) stands out as a non-GMO method capable of rewiring complex fitness-related phenotypes through iterative selection. In contrast, GMO-based synthetic biology approaches, including the most recent developments in CRISPR/Cas9 technologies, enable efficient and scalable genome editing, including multiplexed modifications. These innovations are expected to accelerate product development, reduce costs, and enhance the environmental sustainability of brewing and winemaking. However, despite their technological potential, GMO-based strategies continue to face significant regulatory and market challenges, which limit their widespread adoption in the fermentation industry. Full article
(This article belongs to the Section Malting, Brewing and Beer)
Show Figures

Figure 1

21 pages, 2873 KB  
Article
Adaptive Evolution of Sporosarcina pasteurii Enhances Saline–Alkali Resistance for High-Performance Concrete Crack Repair via MICP
by Jieyu Liu, Huaihua Xu, Min Dong, Zilin Cheng, Chenkai Mi, Shuai Sun, Ruiying Zhu and Peipei Han
Microorganisms 2025, 13(7), 1526; https://doi.org/10.3390/microorganisms13071526 - 30 Jun 2025
Viewed by 661
Abstract
Microbially induced calcium carbonate precipitation (MICP) has emerged as a research focus in concrete crack remediation due to its environmental compatibility and efficient mineralization capacity. The hypersaline conditions of seawater (average 35 g/L NaCl) and alkaline environments (pH 12) within concrete cracks pose [...] Read more.
Microbially induced calcium carbonate precipitation (MICP) has emerged as a research focus in concrete crack remediation due to its environmental compatibility and efficient mineralization capacity. The hypersaline conditions of seawater (average 35 g/L NaCl) and alkaline environments (pH 12) within concrete cracks pose significant challenges to the survival of mineralization-capable microorganisms. To enhance microbial tolerance under these extreme conditions, this study employed a laboratory adaptive evolution strategy to successfully develop a Sporosarcina pasteurii strain demonstrating tolerance to 35 g/L NaCl and pH 12. Comparative analysis of growth characteristics (OD600), pH variation, urease activity, and specific urease activity revealed that the evolved strain maintained growth kinetics under harsh conditions comparable to the parental strain under normal conditions. Subsequent evaluations demonstrated the evolved strain’s superior salt–alkali tolerance through enhanced enzymatic activity, precipitation yield, particle size distribution, crystal morphology, and microstructure characterization under various saline–alkaline conditions. Whole-genome sequencing identified five non-synonymous mutated genes associated with ribosomal stability, transmembrane transport, and osmoprotectant synthesis. Transcriptomic profiling revealed 1082 deferentially expressed genes (543 upregulated, 539 downregulated), predominantly involved in ribosomal biogenesis, porphyrin metabolism, oxidative phosphorylation, tricarboxylic acid (TCA) cycle, and amino acid metabolism. In concrete remediation experiments, the evolved strain achieved superior performance with 89.3% compressive strength recovery and 48% reduction in water absorption rate. This study elucidates the molecular mechanisms underlying S. pasteurii’s salt–alkali tolerance and validates its potential application in the remediation of marine engineering. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

19 pages, 1889 KB  
Article
Investigation of Avian Reovirus Evolution and Cross-Species Transmission in Turkey Hosts by Segment-Based Temporal Analysis
by Cheng-Shun Hsueh, Michael Zeller, Amro Hashish, Olufemi Fasina, Pablo Piñeyro, Ganwu Li, Jianqiang Zhang, Mohamed El-Gazzar and Yuko Sato
Viruses 2025, 17(7), 926; https://doi.org/10.3390/v17070926 - 28 Jun 2025
Viewed by 685
Abstract
Avian reovirus (ARV) has emerged as an important pathogen in turkeys, causing economic losses through tenosynovitis, necrotizing hepatitis, immunosuppression, and enteric disease. Despite its ubiquity, the evolutionary history of ARV cross-species transmission among chickens, turkeys, and wild birds remains poorly understood, hindering effective [...] Read more.
Avian reovirus (ARV) has emerged as an important pathogen in turkeys, causing economic losses through tenosynovitis, necrotizing hepatitis, immunosuppression, and enteric disease. Despite its ubiquity, the evolutionary history of ARV cross-species transmission among chickens, turkeys, and wild birds remains poorly understood, hindering effective control and surveillance. This study investigates ARV temporal phylogenetics with an emphasis on interspecies transmission in turkeys. Whole genome sequences (WGSs) from seventy-seven turkey cases and one quail case at the Iowa State University Veterinary Diagnostic Laboratory, along with 74–136 segment sequences per gene from GenBank (1970–2023), were analyzed. Temporal phylogenetic analyses identified chickens as the ancestral host, with spillover into turkeys beginning in the mid-20th century, followed by stable transmission within turkey populations. Migration analyses revealed predominantly unidirectional transmission from chickens to turkeys. WGS analyses showed high variability in the M2 and σC-encoding region of the S1 segment, suggesting selective pressure on outer capsid proteins. M2, S1 σC, and L3 had the highest substitution rates, implicating their role in adaptation and antigenic diversity. These findings highlight the complexity of ARV evolution across hosts and underscore the need for robust genotyping schemes and surveillance strategies to mitigate outbreaks in poultry. Full article
(This article belongs to the Special Issue Avian Reovirus)
Show Figures

Figure 1

17 pages, 2444 KB  
Article
Characterization of the Diversity in Host Range of an Extensively Drug-Resistant (XDR) Type IV Secretion System-Encoding Plasmid in Acinetobacter
by Kailey Martz, Dalya Alomar, Marisha Karim, Sara Knezevic and Vanessa M. D’Costa
Pathogens 2025, 14(6), 606; https://doi.org/10.3390/pathogens14060606 - 19 Jun 2025
Viewed by 574
Abstract
The World Health Organization (WHO) cites antimicrobial resistance as among the greatest threats to human health. The multidrug-resistant pathogen Acinetobacter baumannii, recognized as a priority pathogen for healthcare and research, is responsible for a diverse array of infections including respiratory tract, soft [...] Read more.
The World Health Organization (WHO) cites antimicrobial resistance as among the greatest threats to human health. The multidrug-resistant pathogen Acinetobacter baumannii, recognized as a priority pathogen for healthcare and research, is responsible for a diverse array of infections including respiratory tract, soft tissue and wound, and bloodstream infections. Despite this importance, the mechanisms of its pathogenesis remain poorly understood. Conjugation represents a central mechanism for bacterial adaptation and evolution and is responsible for the spread of genes that promote pathogen survival, antibiotic resistance, virulence, and biofilm formation. Our laboratory recently characterized a large group of almost 120 Type IV Secretion System (T4SS)-encoding plasmids in Acinetobacter, distributed globally across 20 countries spanning four continents, and demonstrated that an XDR A. baumannii plasmid from this family was transmissible to another A. baumannii strain. This research investigated the potential diversity of host strains for this representative member plasmid. Using the GC1 lineage strain A. baumannii AB5075-UW harbouring the XDR plasmid p1AB5075 and a series of previously characterized clinical and environmental Acinetobacter strains, conjugative analyses demonstrated transfer of the XDR plasmid to both A. baumannii strains of more genetically divergent sequence types and to non-baumannii Acinetobacter species both inside and outside the Acinetobacter calcoaceticus–baumannii (ACB) complex. Successful recipients included diverse strains of both clinical and environmental origin within the Acinetobacter genus. Collectively, this research could provide insights into an important genetic element for future surveillance. Full article
Show Figures

Figure 1

15 pages, 2577 KB  
Article
Adaptive Laboratory Evolution of a Microbial Consortium Enhancing Non-Protein Nitrogen Assimilation for Feed Protein Production
by Yi He, Shilei Wang, Yifan Mi, Mengyu Liu, Huimin Ren, Zhengxiang Guo, Zhen Chen, Yafan Cai, Jingliang Xu, Dong Liu, Chenjie Zhu, Zhi Wang and Hanjie Ying
Microorganisms 2025, 13(6), 1416; https://doi.org/10.3390/microorganisms13061416 - 18 Jun 2025
Viewed by 700
Abstract
The increasing global demand for protein underscores the necessity for sustainable alternatives to soybean-based animal feed, which poses a challenge to human food security. Thus, the search for sustainable, alternative protein sources is transforming the feed industry in its effort to sustainable operations. [...] Read more.
The increasing global demand for protein underscores the necessity for sustainable alternatives to soybean-based animal feed, which poses a challenge to human food security. Thus, the search for sustainable, alternative protein sources is transforming the feed industry in its effort to sustainable operations. In this study, a microbial consortium was subjected to adaptive laboratory evolution using non-protein nitrogen (NPN) and wheat straw as the sole carbon source. The evolved microbial consortium was subsequently utilized to perform solid-state fermentation on wheat straw and NPN to produce feed protein. After 20 generations, the microbial consortium demonstrated tolerance to 5 g/L NPN, including ammonium sulfate, ammonium chloride, and urea, which represents a fivefold increase compared to the original microbial consortium. Among the three NPNs tested, the evolved microbial consortium exhibited optimal growth performance with ammonium sulfate. Subsequently, the evolved microbial consortium was employed for the solid-state fermentation (SSF) of wheat straw, and the fermentation conditions were optimized. It was found that the true protein content of wheat straw could be increased from 2.74% to 10.42% under specific conditions: ammoniated wheat straw (15% w/w), non-sterilization of the substrate, an inoculation amount of 15% (v/w), nitrogen addition amount of 0.5% (w/w), an initial moisture content of 70%, a fermentation temperature of 30 °C, and a fermentation duration of 10 days. Finally, the SSF process for wheat straw was successfully scaled up from 0.04 to 2.5 kg, resulting in an increased true protein content of 9.84%. This study provides a promising approach for the production of feed protein from straw and NPN through microbial fermentation, addressing protein resource shortages in animal feed and improving the value of waste straw. Full article
(This article belongs to the Special Issue Microbial-Sourced Nutritional Supplements for Human and Animal)
Show Figures

Graphical abstract

20 pages, 1490 KB  
Review
Liposome-Based Drug Delivery Systems: From Laboratory Research to Industrial Production—Instruments and Challenges
by Suman Basak and Tushar Kanti Das
ChemEngineering 2025, 9(3), 56; https://doi.org/10.3390/chemengineering9030056 - 27 May 2025
Cited by 4 | Viewed by 3744
Abstract
Liposome-based drug delivery systems have revolutionized modern pharmaceutics, offering unparalleled versatility and precision in therapeutic delivery. These lipid vesicles, capable of encapsulating hydrophilic, hydrophobic, and amphiphilic drugs, have demonstrated significant potential in addressing pharmacokinetic challenges such as poor solubility, systemic toxicity, and rapid [...] Read more.
Liposome-based drug delivery systems have revolutionized modern pharmaceutics, offering unparalleled versatility and precision in therapeutic delivery. These lipid vesicles, capable of encapsulating hydrophilic, hydrophobic, and amphiphilic drugs, have demonstrated significant potential in addressing pharmacokinetic challenges such as poor solubility, systemic toxicity, and rapid clearance. This review provides a comprehensive exploration of the evolution of liposomes from laboratory models to clinically approved therapeutics, highlighting their structural adaptability, functional tunability, and transformative impact on modern medicine. We discuss pivotal laboratory-scale preparation techniques, including thin-film hydration, ethanol injection, and reverse-phase evaporation, along with their inherent advantages and limitations. The challenges of transitioning to industrial-scale production are examined, with emphasis on achieving batch-to-batch consistency, scalability, regulatory compliance, and cost-effectiveness. Innovative strategies, such as the incorporation of microfluidic systems and advanced process optimization, are explored to address these hurdles. The clinical success of Food and Drug Administration (FDA)-approved liposomal formulations such as Doxil® and AmBisome® underscores their efficacy in treating conditions ranging from cancer to fungal infections. Furthermore, this review delves into emerging trends, including stimuli-responsive and hybrid liposomes, as well as their integration with nanotechnology for enhanced therapeutic precision. As liposomes continue to expand their role in gene therapy, theranostics, and personalized medicine, this review highlights their potential to redefine pharmaceutical applications. Despite existing challenges, ongoing advancements in formulation techniques and scalability underscore the bright future of liposome-based therapeutics in addressing unmet medical needs. Full article
Show Figures

Figure 1

13 pages, 600 KB  
Article
Does Temperature Tolerance Increase in Long-Term Domesticated Frankliniella occidentalis Under Constant Temperature?
by Lin Shu, Hongbo Li, Yawen Chang and Yuzhou Du
Insects 2025, 16(6), 557; https://doi.org/10.3390/insects16060557 - 24 May 2025
Viewed by 693
Abstract
The wide distribution of Frankliniella occidentalis is largely due to its extreme temperature adaptability. In current studies, most scholars consider environmental changes to be the main factor affecting insect temperature adaptation. However, our previous studies have shown that the adaptability of F. occidentalis [...] Read more.
The wide distribution of Frankliniella occidentalis is largely due to its extreme temperature adaptability. In current studies, most scholars consider environmental changes to be the main factor affecting insect temperature adaptation. However, our previous studies have shown that the adaptability of F. occidentalis to extreme temperature conditions can be strengthened through domestication. In this study, the population of F. occidentalis raised in the laboratory for a long time (2008–2022) under relatively constant temperature and humidity conditions was used as the experimental material. Over 14 years, changes in temperature tolerance after the same high- and low-temperature stress were evaluated by comparing the survival data of the 2010 population, 2016 population (more than 100 generations), and 2022 population (more than 200 generations). The survival data and LT50 values demonstrated significant stage- and sex-specific differences in thermal tolerance: The cold tolerance of F. occidentalis improved significantly, with LT50 decreasing from −12.5 °C (P2010) to −13.4 °C (P2022) for females and −11.5 °C to −13.0 °C for males. Notably, male adults showed higher survival rates than females at −14 °C and −15 °C. Meanwhile, heat tolerance increased most markedly in 2nd instar larvae (ΔLT50 = +4.1 °C). These findings indicate an environment-independent evolutionary pathway within the population, providing a new research direction for insect population evolution. Full article
(This article belongs to the Special Issue Ecological Adaptation of Insect Pests)
Show Figures

Figure 1

30 pages, 3281 KB  
Review
The Bioengineering of Insect Cell Lines for Biotherapeutics and Vaccine Production: An Updated Review
by Michał Sułek and Agnieszka Szuster-Ciesielska
Vaccines 2025, 13(6), 556; https://doi.org/10.3390/vaccines13060556 - 23 May 2025
Cited by 1 | Viewed by 3113
Abstract
Insect cell lines are a cornerstone of recombinant protein production, providing a versatile platform for biopharmaceutical and research applications. In the early 20th century, scientists first attempted to culture insect cells in vitro, developing continuous cell lines to produce the first insect cell-derived [...] Read more.
Insect cell lines are a cornerstone of recombinant protein production, providing a versatile platform for biopharmaceutical and research applications. In the early 20th century, scientists first attempted to culture insect cells in vitro, developing continuous cell lines to produce the first insect cell-derived recombinant protein, IFN-β. Initial successes, along with advancements in the use of insect cells for recombinant protein manufacturing, primarily relied on baculovirus expression vector systems (BEVSs), which enable heterologous gene expression in infected cells. Today, growing attention is focused on baculovirus-free systems based on the transfection of insect cells with plasmid DNA. This approach simplifies the final product purification process and facilitates the development of stable monoclonal cell lines that produce recombinant proteins or protein complexes, particularly virus-like particles (VLPs). Thanks to advancements in genetic engineering and the application of adaptive laboratory evolution (ALE) methods, significant strides have been made in overcoming many limitations associated with insect cell BEVSs, ultimately enhancing the reliability, yield, and quality of the biomanufacturing process. Our manuscript discusses the history of developing insect cell lines, presents various recombinant protein production systems utilizing these cells, and summarizes modifications aimed at improving insect cell lines for recombinant protein biomanufacturing. Finally, we explore their implications in pharmaceutical production, particularly on Nuvaxovid®/Covovax, which is the latest approved vaccine developed using insect cell BEVSs for protection against SARS-CoV-2. Full article
Show Figures

Figure 1

13 pages, 2053 KB  
Article
Proteomic Analysis of Bifidobacterium animalis AR668 and AR668-R1 Under Aerobic Culture
by Yaping Liu, Xiaoxiao Zhao, Miao Yang, Xin Song, Guangqiang Wang, Yongjun Xia, Liang Zhao, Zhiqiang Xiong and Lianzhong Ai
Foods 2025, 14(10), 1766; https://doi.org/10.3390/foods14101766 - 16 May 2025
Viewed by 479
Abstract
Bifidobacterium animalis is a widely used probiotic with significant health benefits, but its application is limited by oxygen sensitivity. Our laboratory previously developed an oxygen-tolerant B. animalis AR668-R1 using adaptive laboratory evolution under aerobic culture, but the molecular mechanism remains unclear. In this [...] Read more.
Bifidobacterium animalis is a widely used probiotic with significant health benefits, but its application is limited by oxygen sensitivity. Our laboratory previously developed an oxygen-tolerant B. animalis AR668-R1 using adaptive laboratory evolution under aerobic culture, but the molecular mechanism remains unclear. In this work, compared to the wild-type parental strain B. animalis AR668, 212 upregulated and 390 downregulated proteins were identified in AR668-R1 under aerobic conditions through comparative proteomic analysis. Enrichment analysis of the differentially expressed proteins between AR668 and AR668-R1 identified the potential oxygen-tolerant related pathways, including the translation process, transmembrane transport system, and carbohydrate metabolism. Furthermore, five potential oxygen-tolerance proteins (DapE, Mth2, MutT, Eno, and MsrAB) were validated by RT-qPCR that may contribute to the aerobic growth of AR668-R1. Through gene overexpression validation, Mth2 (7,8-dihydro-8-oxoguanine triphosphatase) was found to enhance the growth of AR668-R1 by 19.8% compared to the empty plasmid control under aerobic conditions. Our finding provides valuable insights into the oxygen-tolerant mechanisms of B. animalis at the protein level. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

17 pages, 554 KB  
Article
MRSA Profiles Reveal Age- and Gender-Specificity in a Tertiary Care Hospital: High Burden in ICU Elderly and Emerging Community Patterns in Youth
by Kamaleldin B. Said, Khalid Alshammari, Ruba M. Elsaid Ahmed, Fawwaz Alshammari, Ahmed H. Jadani, Ihab Rakha, Salem A. Almijrad, Anwar E. Almallahi, Bader Alkharisi, Naif M. Altamimi, Tarig Mahmoud, Nada A. Abozaid and Amal D. Alshammari
Microorganisms 2025, 13(5), 1078; https://doi.org/10.3390/microorganisms13051078 - 6 May 2025
Viewed by 1161
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a devastating global health concern. Hypervirulent strains are on the rise, causing morbidities and mortalities worldwide. In tertiary care hospitals, critically ill patients, those undergoing invasive procedures, and pediatric and geriatric patients are at risk. It is not [...] Read more.
Methicillin-resistant Staphylococcus aureus (MRSA) is a devastating global health concern. Hypervirulent strains are on the rise, causing morbidities and mortalities worldwide. In tertiary care hospitals, critically ill patients, those undergoing invasive procedures, and pediatric and geriatric patients are at risk. It is not fully clear how strains adapt and specialize in humans and emerge despite the well-established commonality of the S. aureus genome from humans and animals. This study investigates the influence of age-, gender-, and source-specific profiles (clinical, intensive care unit (ICU vs. non-ICU)) on the evolution of hospital-associated (HA)-MRSA versus community-associated (CA)-MRSA lineages. A total of 253 non-duplicate S. aureus isolates were obtained from May 2023 to March 2025. The patients were stratified by age and gender in ICUs and non-ICUs. Standard microbiology methods and Clinical and Laboratory Standards Institute (CLSI) guidelines were used for identification and susceptibility testing, with cefoxitin and oxacillin disk diffusions and molecular diagnosis confirming MRSA. Mann–Whitney U and Chi-square tests assessed the demographic distributions, clinical specimen sources, and MRSA/methicillin-sensitive S. aureus (MSSA) prevalence. Of 253, 41.9% originated from ICUs (71% male; 29% female) and 58.1% from non-ICU wards (64% male; 36% female). In both settings, MRSA colonized the two extremes of age (10–29 and 70+) for males and females, with different mid-life peaks or declines by gender. However, the overall demographic distribution did not differ significantly between the ICU and non-ICU groups (p = 0.287). Respiratory specimens constituted 37% and had the highest MRSA rate (42%), followed by blood (24.5%) and wounds (10.3%). In contrast, MSSA dominated wounds (20.3%). Overall, 73.9% were resistant to cefoxitin and cefotaxime, whereas vancomycin, linezolid, daptomycin, and tigecycline remained highly effective. Younger non-ICU patients (10–29) had higher MSSA, whereas older ICU ones showed pronounced HA-MRSA profiles. By the virtue of methicillin resistance, all MRSA were classified as multidrug resistance. Thus, MRSA colonization of the two extremes of life mostly in ICU seniors and the dominance of invasive MSSA and CA-MRSA patterns in non-ICU youth imply early age- and gender-specific adaptations of the three lineages. MRSA colonizes both ICU and non-ICU populations at extremes of age and gender specifically. High β-lactam resistance underscores the importance of robust stewardship and age- and gender-specific targeting in screening. These findings also indicate host- and organ-specificity in the sequalae of MSSA, CA-MRSA, and HA-MRSA evolutionary dynamics, emphasizing the need for continued surveillance to mitigate MRSA transmission and optimize patient outcomes in tertiary care settings. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

Back to TopTop