Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (20,153)

Search Parameters:
Keywords = adhesion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 9010 KiB  
Article
Polycaprolactone/Doped Bioactive Glass Composite Scaffolds for Bone Regeneration
by Ana Sofia Pádua, Manuel Pedro Fernandes Graça and Jorge Carvalho Silva
J. Funct. Biomater. 2025, 16(6), 200; https://doi.org/10.3390/jfb16060200 (registering DOI) - 1 Jun 2025
Abstract
Critical-size bone defects do not heal spontaneously and require external support, making bone regeneration a central challenge in tissue engineering. Polymeric/ceramic composite scaffolds offer a promising approach to mimic the structural and biological properties of bone. In this study, we aimed to evaluate [...] Read more.
Critical-size bone defects do not heal spontaneously and require external support, making bone regeneration a central challenge in tissue engineering. Polymeric/ceramic composite scaffolds offer a promising approach to mimic the structural and biological properties of bone. In this study, we aimed to evaluate the effect of different doping oxides in bioactive glass (BG) on the performance of polycaprolactone (PCL)-based composite scaffolds for bone tissue engineering applications. Composite scaffolds were fabricated using solvent casting, hot pressing, and salt-leaching techniques, combining PCL with 25 wt% of BG or doped BG containing 4 mol% of tantalum, zinc, magnesium, or niobium oxides, and 1 mol% of copper oxide. The scaffolds were characterized in terms of morphology, mechanical properties, and in vitro biological performance. All scaffolds exhibited a highly porous, interconnected structure. Mechanical compression tests indicated that elastic modulus increased with ceramic content, while doping had no measurable effect. Cytotoxicity assays confirmed biocompatibility across all scaffolds. Among the tested materials, the Zn-doped BG/PCL scaffold uniquely supported cell adhesion and proliferation and significantly enhanced alkaline phosphatase (ALP) activity—an early marker of osteogenic differentiation—alongside the Nb-doped scaffold. These results highlight the Zn-doped BG/PCL composite as a promising candidate for bone regeneration applications. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Figure 1

13 pages, 4643 KiB  
Article
Optimizing Substrate Bias to Enhance the Microstructure and Wear Resistance of AlCrMoN Coatings via AIP
by Haoqiang Zhang, Jia Liu, Xiran Wang, Chengxu Wang, Haobin Sun, Hua Zhang, Tao Jiang, Hua Yu, Liujie Xu and Shizhong Wei
Coatings 2025, 15(6), 673; https://doi.org/10.3390/coatings15060673 (registering DOI) - 1 Jun 2025
Abstract
In this work, arc ion plating (AIP) was employed to deposit AlCrMoN coatings on cemented carbide substrates, and the effects of substrate bias voltages (10 V, −100 V, −120 V, and −140 V) on the microstructures, mechanical properties, and tribological behaviors of the [...] Read more.
In this work, arc ion plating (AIP) was employed to deposit AlCrMoN coatings on cemented carbide substrates, and the effects of substrate bias voltages (10 V, −100 V, −120 V, and −140 V) on the microstructures, mechanical properties, and tribological behaviors of the coatings were investigated. The results showed that all AlCrMoN coatings exhibited a single-phase face-centered cubic (FCC) structure with columnar crystal growth and excellent adhesion to the substrate. As the negative bias voltage increased, the grain size of the coatings first decreased and then increased, while the hardness and elastic modulus showed a trend of first increasing and then decreasing, with the maximum hardness reaching 36.2 ± 1.33 GPa. Room-temperature ball-on-disk wear tests revealed that all four coatings demonstrated favorable wear resistance. The coating deposited at −100 V exhibited the lowest average friction coefficient of 0.47 ± 0.02 and wear rate ((3.27 ± 0.10) × 10−8 mm3/(N∙m)), featuring a smooth wear track with minimal oxide debris. During the steady-state wear stage, the dominant wear mechanisms of the AlCrMoN coatings were identified as oxidative wear combined with abrasive wear. Full article
Show Figures

Figure 1

16 pages, 803 KiB  
Article
Virulence and Antibiotic Resistance of aEPEC/STEC Escherichia coli Pathotypes with Serotype Links to Shigella boydii 16 Isolated from Irrigation Water
by Yessica Enciso-Martínez, Edwin Barrios-Villa, Manuel G. Ballesteros-Monrreal, Armando Navarro-Ocaña, Dora Valencia, Gustavo A. González-Aguilar, Miguel A. Martínez-Téllez, Julián Javier Palomares-Navarro and Fernando Ayala-Zavala
Pathogens 2025, 14(6), 549; https://doi.org/10.3390/pathogens14060549 (registering DOI) - 1 Jun 2025
Abstract
Irrigation water can serve as a reservoir and transmission route for pathogenic Escherichia coli, posing a threat to food safety and public health. This study builds upon a previous survey conducted in Hermosillo, Sonora (Mexico), where 445 samples were collected from a [...] Read more.
Irrigation water can serve as a reservoir and transmission route for pathogenic Escherichia coli, posing a threat to food safety and public health. This study builds upon a previous survey conducted in Hermosillo, Sonora (Mexico), where 445 samples were collected from a local Honeydew melon farm and associated packing facilities. Among the 32 E. coli strains recovered, two strains, A34 and A51, were isolated from irrigation water and selected for further molecular characterization by PCR, due to their high pathogenic potential. Both strains were identified as hybrid aEPEC/STEC pathotypes carrying bfpA and stx1 virulence genes. Adhesion assays in HeLa cells revealed aggregative and diffuse patterns, suggesting enhanced colonization capacity. Phylogenetic analysis classified A34 within group B2 as associated with extraintestinal pathogenicity and antimicrobial resistance, while A51 was unassigned to any known phylogroup. Serotyping revealed somatic antigens shared with Shigella boydii 16, suggesting possible horizontal gene transfer or antigenic convergence. Antibiotic susceptibility testing showed resistance to multiple β-lactam antibiotics, including cephalosporins, linked to the presence of blaCTX-M-151 and blaCTX-M-9. Although no plasmid-mediated quinolone resistance genes were detected, resistance may involve efflux pumps or mutations in gyrA and parC. These findings are consistent with previous reports of E. coli adaptability in agricultural environments, suggesting potential genetic adaptability. While our data support the presence of virulence and resistance markers, further studies would be required to demonstrate mechanisms such as horizontal gene transfer or adaptive evolution. Full article
Show Figures

Figure 1

25 pages, 9407 KiB  
Article
Long-Term Behavior and Microstructure of High-Performance Concrete with Coal Slag
by Piotr Smarzewski
Materials 2025, 18(11), 2585; https://doi.org/10.3390/ma18112585 (registering DOI) - 1 Jun 2025
Abstract
Recycling in the construction industry is a necessity, not just a fashionable trend in scientific research. The use of coal slag aggregates in concrete means a significant reduction in environmental footprint and should be a priority. For these reasons, this study presents tests [...] Read more.
Recycling in the construction industry is a necessity, not just a fashionable trend in scientific research. The use of coal slag aggregates in concrete means a significant reduction in environmental footprint and should be a priority. For these reasons, this study presents tests of the physical and mechanical properties of high-performance concrete (HPC) with coal slag (CS) used as a replacement for natural coarse aggregate in the amounts of 10%, 20%, and 30% after a long curing time. The investigation determined the porosity, water absorption, density, compressive strength, flexural strength, tensile splitting strength, modulus of elasticity, and ultrasonic pulse velocity (UPV), and analyzed HPC microstructure at 28, 56 days, as well as 2 years of maturation. The use of coal slag resulted in significant increases in compressive strength, flexural strength, and tensile splitting strength compared to reference concrete. However, for HPC with CS, a slight decrease in the elastic modulus and UPV was obtained. The SEM analysis showed a very good adhesion of the cement paste to the slag aggregate. In general, research shows that it is possible to obtain durable high-performance concrete with a 30% replacement of natural aggregate by coal slag. Full article
Show Figures

Figure 1

23 pages, 2654 KiB  
Article
Functionalization of Stainless Steel with Hyperbranched Poly(Viologen) Brushes for Enhanced Antimicrobial, Antifouling and Anticorrosion
by Huaqiang He, Youquan Liu, Wei Yang, Siqi Liu, Jie Wang, Zicheng Peng and Shaojun Yuan
Molecules 2025, 30(11), 2427; https://doi.org/10.3390/molecules30112427 (registering DOI) - 31 May 2025
Abstract
To enhance the resistance of stainless steel (SS) against biofouling and biocorrosion, hyperbranched poly(viologen) brushes were covalently immobilized onto SS substrates. This study systematically evaluated the efficacy of the functionalized SS substrates in inhibiting microorganism adhesion, biofouling and biocorrosion. Enhanced antifouling and antimicrobial [...] Read more.
To enhance the resistance of stainless steel (SS) against biofouling and biocorrosion, hyperbranched poly(viologen) brushes were covalently immobilized onto SS substrates. This study systematically evaluated the efficacy of the functionalized SS substrates in inhibiting microorganism adhesion, biofouling and biocorrosion. Enhanced antifouling and antimicrobial properties were evidenced through assays involving the attachment of Amphora coffeaeformis, the settlement of Pseudomonas sp. bacteria and barnacle cyprids. Furthermore, the functionalized SS substrates demonstrated superior antifouling performance alongside excellent biocorrosion–inhibition properties. These findings suggest that the functionalized SS substrates, with their robust antimicrobial, antifouling and anticorrosion capabilities, hold significant potential for applications in aquatic environments Full article
(This article belongs to the Special Issue Applied Chemistry in Asia)
16 pages, 2940 KiB  
Article
Proteomics Analysis of Peripheral Blood Mononuclear Cells from Patients in Early Dengue Infection Reveals Potential Markers of Subsequent Fluid Leakage
by Nilanka Perera, Abhinav Kumar, Bevin Gangadharan, Diyanath Ranasinghe, Ananda Wijewickrama, Gathsaurie Neelika Malavige, Joanna L. Miller and Nicole Zitzmann
Viruses 2025, 17(6), 805; https://doi.org/10.3390/v17060805 (registering DOI) - 31 May 2025
Abstract
Infections caused by dengue virus (DENV) result in significant morbidity and mortality. A proportion of infected individuals develop dengue haemorrhagic fever (DHF) characterized by circulatory collapse and multiorgan failure. Early detection of individuals likely to develop DHF could lead to improved outcomes for [...] Read more.
Infections caused by dengue virus (DENV) result in significant morbidity and mortality. A proportion of infected individuals develop dengue haemorrhagic fever (DHF) characterized by circulatory collapse and multiorgan failure. Early detection of individuals likely to develop DHF could lead to improved outcomes for patients and help us use healthcare resources more efficiently. We identified proteins that are differentially regulated during early disease in peripheral blood mononuclear cells (PBMCs) of patients who subsequently developed DHF. Four dengue fever (DF), four DHF and two healthy control PBMCs were subjected to tandem mass tag mass spectrometry. Differentially regulated proteins were used to identify up- or down-regulated Gene Ontology pathways. One hundred and sixty proteins were differentially expressed in DENV-infected samples compared to healthy controls. PBMCs from DHF patients differentially expressed 90 proteins compared to DF; these were involved in down-regulation of platelet activation and aggregation, cell adhesion, and cytoskeleton arrangement pathways. Proteins involved in oxidative stress and p38 MAPK signalling were upregulated in DHF samples during early infection compared to DF. This study has identified 90 proteins differentially regulated in PBMCs that could potentially serve as biomarkers to identify patients at risk of developing DHF at an early disease stage. Full article
(This article belongs to the Special Issue Arboviruses and Global Health: A PanDengue Net Initiative)
Show Figures

Figure 1

11 pages, 984 KiB  
Article
Microbiological Analysis of Primary Molars Restored with Stainless Steel Crowns Compared to Healthy Molars
by Andrea Rubio, Tanya Pereira, Juan Ramón Boj and Teresa Vinuesa
Microorganisms 2025, 13(6), 1294; https://doi.org/10.3390/microorganisms13061294 (registering DOI) - 31 May 2025
Abstract
One of the best restorative treatment options for large carious lesions is the placement of stainless-steel crowns (SSC), but there are few studies evaluating if there is any change in the microbiota in teeth restored with SSCs. In order to asses if any [...] Read more.
One of the best restorative treatment options for large carious lesions is the placement of stainless-steel crowns (SSC), but there are few studies evaluating if there is any change in the microbiota in teeth restored with SSCs. In order to asses if any difference exists, 33 children between 4 and 10 years were studied. One primary molar restored with an SSC as well as one healthy primary molar were selected from each child. Subgingival plaque was collected with a curette and cultured on horse blood agar (Columbia) and selective and nonselective media. A quantitative analysis was performed by means of the counting of the colony-forming units per milliliter (cfu/mL) grown in the nonselective media and compared with the bacterial load measured by means of a 16S qPCR with bacterial universal primers. A descriptive statistical analysis was performed to evaluate the results. No significant differences were observed in the total 16S qPCR according to sample type. Streptococci were observed in all the studied children. Porphyromonas gingivalis was observed in 18% of patients and Prevotella intermedia in 42%. Campylobacter was observed in 81% and Neisseria in 88%. C. albicans was observed in only one patient. No significant differences were found between both groups. Part of the child population studied had anaerobic bacteria. There is no clear association between the presence of periodontopathogens and SSC. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

12 pages, 5568 KiB  
Article
Preparation of WC + NbC Particle-Reinforced Ni60-Based Composite Coating by Laser Cladding on Q235 Steel
by Aishan Aliye, Zhixuan Xiao, Chao Gao, Wenqing Shi and Jiang Huang
Coatings 2025, 15(6), 670; https://doi.org/10.3390/coatings15060670 (registering DOI) - 31 May 2025
Abstract
In this paper, the preparation of Ni60 + WC/NbC composite coating by laser cladding technology was studied. The coating properties were analyzed by a scanning electron microscope (SEM), an energy dispersion spectroscope (EDS), X-ray diffraction (XRD), a hardness tester, and a friction and [...] Read more.
In this paper, the preparation of Ni60 + WC/NbC composite coating by laser cladding technology was studied. The coating properties were analyzed by a scanning electron microscope (SEM), an energy dispersion spectroscope (EDS), X-ray diffraction (XRD), a hardness tester, and a friction and wear tester. The results show that WC and NbC, as two typical ceramic reinforcing phases, play a positive role in improving the wear resistance and hardness of the coating. Under the action of a high-temperature (about 2500 °C) laser beam, some complex compounds, such as Ni3Fe and M23C6 (M=Fe, Cr) are formed in the coating, which leads to the left deviation of XRD peak position. With the decrease in WC and the increase in Nb particles, the wear mechanism of the coating changes from abrasive wear to adhesive wear. When adding 10% WC, the microhardness of the coating reaches 809.5 HV, the coefficient of friction is 0.496, and the wear rate is 1.1804 × 10−7 mm3 N−1 • m−1, which shows the best wear resistance. Full article
(This article belongs to the Special Issue Surface Modification of Materials by Laser Processing)
14 pages, 1360 KiB  
Article
Fracture Mechanics-Based Modelling of Post-Installed Adhesive FRP Composite Anchors in Structural Concrete Applications
by Amir Mofidi and Mona Rajabifard
J. Compos. Sci. 2025, 9(6), 282; https://doi.org/10.3390/jcs9060282 (registering DOI) - 31 May 2025
Abstract
Adhesively bonded fibre-reinforced polymer (FRP) anchors have emerged as a progressive alternative to traditional steel anchors in concrete structures, owing to their superior corrosion resistance, high tensile strength, and light weight. Despite their increasing use, a robust mechanics-based bond model capable of accurately [...] Read more.
Adhesively bonded fibre-reinforced polymer (FRP) anchors have emerged as a progressive alternative to traditional steel anchors in concrete structures, owing to their superior corrosion resistance, high tensile strength, and light weight. Despite their increasing use, a robust mechanics-based bond model capable of accurately predicting the load transfer behaviour has not yet been developed. This study presents a fracture mechanics-based analytical bond model for post-installed adhesive FRP anchors embedded in concrete. The model formulation is derived from fundamental equilibrium and compatibility principles, incorporating a bilinear bond–slip law that captures both elastic and softening behaviours. A new expression for the effective bond length is also proposed. Validation of the model against a comprehensive database of direct pull-out tests reported in the literature shows excellent agreement between predicted and experimental pull-out forces (R2 = 0.980; CoV = 0.058). Future research should aim to extend the proposed model to account for confinement effects, long-term durability, the impact of adhesive type, and cyclic loading conditions. Full article
Show Figures

Figure 1

15 pages, 5606 KiB  
Article
Constructive Neuroengineering of Crossing Multi-Neurite Wiring Using Modifiable Agarose Gel Platforms
by Soya Hagiwara, Kazuhiro Tsuneishi, Naoya Takada and Kenji Yasuda
Gels 2025, 11(6), 419; https://doi.org/10.3390/gels11060419 (registering DOI) - 30 May 2025
Abstract
Constructing stable and flexible neuronal networks with multi-neurite wiring is essential for the in vitro modeling of brain function, connectivity, and neuroplasticity. However, most existing neuroengineering platforms rely on static microfabrication techniques, which limit the ability to dynamically control circuit architecture during cultivation. [...] Read more.
Constructing stable and flexible neuronal networks with multi-neurite wiring is essential for the in vitro modeling of brain function, connectivity, and neuroplasticity. However, most existing neuroengineering platforms rely on static microfabrication techniques, which limit the ability to dynamically control circuit architecture during cultivation. In this study, we developed a modifiable agarose gel-based platform that enables real-time microstructure fabrication using an infrared (IR) laser system under live-cell conditions. This approach allows for the stepwise construction of directional neurite paths, including sequential microchannel formation, cell chamber fabrication, and controlled neurite–neurite crossings. To support long-term neuronal health and network integrity in agarose microstructures, we incorporated direct glial co-culture into the system. A comparative analysis showed that co-culture significantly enhanced neuronal adhesion, neurite outgrowth, and survival over several weeks. The feeder layer configuration provided localized trophic support while maintaining a clear separation between glial and neuronal populations. Dynamic wiring experiments further confirmed the platform’s precision and compatibility. Neurites extended through newly fabricated channels and crossed pre-existing neurites without morphological damage, even when laser fabrication occurred after initial outgrowth. Time-lapse imaging showed a temporary growth cone stalling at crossing points, followed by successful elongation in all tested samples. Furthermore, the direct laser irradiation of extending neurites during microstructure modification did not visibly impair neurite elongation, suggesting minimal morphological damage under the applied conditions. However, potential effects on molecular signaling and electrophysiological function remain to be evaluated in future studies. Together, these findings establish a powerful, flexible system for constructive neuroengineering. The platform supports long-term culture, real-time modification, and multidirectional wiring, offering new opportunities for studying neural development, synaptic integration, and regeneration in vitro. Full article
(This article belongs to the Special Issue Gel Formation Processes and Materials for Functional Thin Films)
44 pages, 5593 KiB  
Review
Nanoscale Cross-Sectional Characterization of Thin Layers in Material Assemblies
by Frédéric Addiego, Rutuja Bhusari, Julien Bardon, Sascha Scholzen and Zainhia Kaidi
Nanomaterials 2025, 15(11), 840; https://doi.org/10.3390/nano15110840 (registering DOI) - 30 May 2025
Abstract
Thin-film assemblies containing an adhesion layer (AdL) or a release layer (RL) with nanoscale thickness are widely used in semiconductors, electrical circuit boards, optical and optoelectronic devices, photodiodes, and photonics applications. Current environmental concerns and technological demands necessitate continuous advancements in these nano-AdLs [...] Read more.
Thin-film assemblies containing an adhesion layer (AdL) or a release layer (RL) with nanoscale thickness are widely used in semiconductors, electrical circuit boards, optical and optoelectronic devices, photodiodes, and photonics applications. Current environmental concerns and technological demands necessitate continuous advancements in these nano-AdLs and nano-RLs in terms of formulation, design, functionality, and durability. Developing these nano-layers relies on understanding their structural properties, which is challenging because only characterization tools with nanoscale or sub-nanoscale lateral resolution can be employed. The aim of this review is to provide an overview of the current techniques and methods available for characterizing the structural properties of nano-layers in cross-section. Emphasis is placed on sample preparation methods, the fundamental principles, advantages, and limitations of various techniques, and examples from the existing literature. First, selecting the appropriate characterization technique depends on the required lateral resolution—it must be finer than the size of the structural feature of interest. A high lateral resolution relative to this structural feature translates to more accurate characterization, enabling effective profiling and mapping analysis. Subsequently, it is important to optimize sample preparation regarding shape, dimensions, and surface roughness, while minimizing artifacts. Combining techniques that offer complementary structural information—such as morphological, chemical, and nanomechanical data—is recommended to gain a comprehensive understanding of the nano-layer’s structure and properties. This is especially important when utilizing 3D characterization methods. It is worth noting that few examples of cross-sectional analysis for nano-AdLs and nano-RLs are available in the literature, highlighting the need for further nanoscale investigations. This review aims to serve as a practical guide for scientists, helping them identify suitable characterization procedures based on the specific structural information they seek to obtain. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

21 pages, 3077 KiB  
Article
Development of Iron-Modified Cotton Material: Surface Characterization, Biochemical Activity, and Cytotoxicity Assessment
by Marcin H. Kudzin, Zdzisława Mrozińska, Anna Kaczmarek, Jerzy J. Chruściel, Anna Pinar, Edyta Sulak, Syed Ali Raza Shah, Michał Juszczak, Katarzyna Woźniak and Michał B. Ponczek
Coatings 2025, 15(6), 663; https://doi.org/10.3390/coatings15060663 - 30 May 2025
Abstract
Cotton, commonly used in wound care, has limitations such as quick saturation and wound adhesion, prompting surface modifications. In our studies, iron, which promotes platelet aggregation and coagulation, was deposited onto cotton via direct current (DC) magnetron sputtering. Thus, the biochemical properties of [...] Read more.
Cotton, commonly used in wound care, has limitations such as quick saturation and wound adhesion, prompting surface modifications. In our studies, iron, which promotes platelet aggregation and coagulation, was deposited onto cotton via direct current (DC) magnetron sputtering. Thus, the biochemical properties of cotton fabrics were enhanced. Microscopic analyses revealed uniform iron coating on the fibers, and biochemical tests, such as activated partial thromboplastin time (aPTT) and prothrombin time (PT), showed that the modification did not affect the material’s coagulation activity. Measurements with the thiobarbituric acid (TBA) method (TBARS) showed that iron-modified cotton had antioxidant activity by lowering lipid peroxidation, which can be beneficial for better wound healing and lower infection risk. Moreover, our analysis showed the absence of cyto- and genotoxic properties against normal peripheral blood mononuclear cells (PBM cells). It was found that tested fabrics did not directly interact with DNA. Full article
23 pages, 1618 KiB  
Article
Experimental Study and ANN Development for Modeling Tensile and Surface Quality of Fiber-Reinforced Nylon Composites
by Osman Ulkir, Fatma Kuncan and Fatma Didem Alay
Polymers 2025, 17(11), 1528; https://doi.org/10.3390/polym17111528 - 30 May 2025
Abstract
Additive manufacturing (AM) is gaining widespread adoption in the manufacturing industry due to its capability to fabricate intricate and high-performance components. In parallel, the increasing emphasis on functional materials in AM has highlighted the critical need for accurate prediction of the mechanical behavior [...] Read more.
Additive manufacturing (AM) is gaining widespread adoption in the manufacturing industry due to its capability to fabricate intricate and high-performance components. In parallel, the increasing emphasis on functional materials in AM has highlighted the critical need for accurate prediction of the mechanical behavior of composite systems. This study experimentally investigates the tensile strength and surface quality of carbon fiber-reinforced nylon composites (PA12-CF) fabricated via fused deposition modeling (FDM) and models their behavior using artificial neural networks (ANNs). A Taguchi L27 orthogonal array was employed to design experiments involving five critical printing parameters: layer thickness (100, 200, and 300 µm), infill pattern (gyroid, honeycomb, and triangles), nozzle temperature (250, 270, and 290 °C), printing speed (50, 100, and 150 mm/s), and infill density (30, 60, and 90%). An analysis of variance (ANOVA) revealed that the infill density had the most significant influence on the resulting tensile strength, contributing 53.47% of the variation, with the strength increasing substantially at higher densities. In contrast, the layer thickness was the dominant factor in determining surface roughness, accounting for 53.84% of the variation, with thinner layers yielding smoother surfaces. Mechanistically, a higher infill density enhances the internal structural integrity of the parts, leading to an improved load-bearing capacity, while thinner layers improve the interlayer adhesion and surface finish. The highest tensile strength achieved was 69.65 MPa, and the lowest surface roughness recorded was 9.18 µm. An ANN model was developed to predict both the tensile strength and surface roughness based on the input parameters. Its performance was compared with that of three other machine learning (ML) algorithms: support vector regression (SVR), random forest regression (RFR), and XGBoost. The ANN model exhibited superior predictive accuracy, with a coefficient of determination (R2 > 0.9912) and a mean validation error below 0.41% for both outputs. These findings demonstrate the effectiveness of ANNs in modeling the complex relationships between FDM parameters and composite properties and highlight the significant potential of integrating ML and statistical analysis to optimize the design and manufacturing of high-performance AM fiber-reinforced composites. Full article
(This article belongs to the Special Issue Polymer Materials for Application in Additive Manufacturing)
Show Figures

Figure 1

13 pages, 2809 KiB  
Article
Initial Stages of Al-AM60-Modified Surface of Magnesium Alloy Activity Exposed to Simulated Marine Environment
by Gerardo Sánchez, Lucien Veleva and Eduardo Flores
Coatings 2025, 15(6), 661; https://doi.org/10.3390/coatings15060661 - 30 May 2025
Abstract
The surface of AM60 magnesium alloy was modified with Al-nanocoating ~65.62 nm, using DC magnetron sputtering to enhance its resistance to degradation under aggressive marine ambience. The sputtered Al film showed adhesion to the α-Mg matrix, covering the dispersed particles of the β [...] Read more.
The surface of AM60 magnesium alloy was modified with Al-nanocoating ~65.62 nm, using DC magnetron sputtering to enhance its resistance to degradation under aggressive marine ambience. The sputtered Al film showed adhesion to the α-Mg matrix, covering the dispersed particles of the β-Mg17Al12 secondary phase. The aluminum nanofilm was composed of (111) and (200) crystal planes of metallic aluminum (Al0) and Al2O3 (Al3+). After 30 days of immersion in a simulated marine environment (SME, pH 7.8), the Al-AM60 maintained a lower alkaline value (pH~8.13) of SME than that of uncoated AM60, attributed to α-Mg electrochemical oxidation to Al2O3 and its posterior dissolution, consuming OH ions. Consequently, the concentration of the released Mg2+ ions from the Al-AM60 surface was reduced ~2.3 times (~15 mg L−1). The Rp (polarization resistance), as inversely proportional to the corrosion current, was extracted from the EIS impedance data fitted to an equivalent electrical circuit. After 30 days in SME solution, the Rp value of the Al-AM60 modified surface was ~3.5 times higher than that of AM60 (~15.46 kΩ cm2), confirming that the sputtered aluminum nano-deposit layer can hinder the corrosion process. These reported findings indicated that sputtered Al nano-coatings can mitigate the surface degradation of Mg-Al alloys in saline aggressive marine environments. Full article
Show Figures

Figure 1

13 pages, 4277 KiB  
Article
Advancing Nanoscale Copper Deposition Through Ultrafast-Laser-Activated Surface Chemistry
by Modestas Sadauskas, Romualdas Trusovas, Evaldas Kvietkauskas, Viktorija Vrubliauskaitė, Ina Stankevičienė, Aldona Jagminienė, Tomas Murauskas, Dainius Balkauskas, Alexandr Belosludtsev and Karolis Ratautas
Nanomaterials 2025, 15(11), 830; https://doi.org/10.3390/nano15110830 - 30 May 2025
Abstract
Direct-writing submicron copper circuits on glass with laser precision—without lithography, vacuum deposition, or etching—represents a transformative step in next-generation microfabrication. We present a high-resolution, maskless method for metallizing glass using ultrashort pulse Bessel beam laser processing, followed by silver ion activation and electroless [...] Read more.
Direct-writing submicron copper circuits on glass with laser precision—without lithography, vacuum deposition, or etching—represents a transformative step in next-generation microfabrication. We present a high-resolution, maskless method for metallizing glass using ultrashort pulse Bessel beam laser processing, followed by silver ion activation and electroless copper plating. The laser-modified glass surface hosts nanoscale chemical defects that promote the in situ reduction of Ag+ to metallic Ag0 upon exposure to AgNO3 solution. These silver seeds act as robust catalytic and adhesion sites for subsequent copper growth. Using this approach, we demonstrate circuit traces as narrow as 0.7 µm, featuring excellent uniformity and adhesion. Compared to conventional redistribution-layer (RDL) and under-bump-metallization (UBM) techniques, this process eliminates multiple lithographic and vacuum-based steps, significantly reducing process complexity and production time. The method is scalable and adaptable for applications in transparent electronics, fan-out packaging, and high-density interconnects. Full article
Show Figures

Figure 1

Back to TopTop