Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (416)

Search Parameters:
Keywords = adoptive cell transfer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3841 KB  
Article
CD8+ T Cells Primed by Antigenic Peptide-Pulsed B Cells or Dendritic Cells Generate Similar Anti-Tumor Response
by Ichwaku Rastogi, Wanyi Guo, Jena E. Moseman and Douglas G. McNeel
Vaccines 2025, 13(9), 953; https://doi.org/10.3390/vaccines13090953 - 6 Sep 2025
Viewed by 191
Abstract
Background: Peptide-loaded antigen-presenting cell (APC)-based vaccines have been under investigation as a therapeutic approach for treating cancer. However, in general they have demonstrated limited efficacy in clinical trials. Dendritic cells (DCs) have been the primary choice for APC-based vaccines given their ability to [...] Read more.
Background: Peptide-loaded antigen-presenting cell (APC)-based vaccines have been under investigation as a therapeutic approach for treating cancer. However, in general they have demonstrated limited efficacy in clinical trials. Dendritic cells (DCs) have been the primary choice for APC-based vaccines given their ability to cross-present antigens. B cells have been less studied as APCs for vaccines. Here we compare the phenotype and anti-tumor activity of activated T cells that result from peptide-specific priming using either B cells or DCs. Methods: B cells and DCs were isolated from C57Bl/6 mice, and either treated or not treated with lipopolysaccharide (LPS) for maturation, and then either loaded or not loaded with SIINFEKL peptide to prime CD8+ T cells from OT-1 mice. Activated T cells were then analyzed for their phenotype and anti-tumor efficacy. Results: We report that both immature B cells and immature DCs were similarly capable of activating antigen-specific CD8+ T cells. However, LPS-matured DCs generated a stronger CD8+ T cell activation profile in vitro compared to LPS-matured B cells. Immature B cells, mature DCs and immature DCs all generated a similar anti-tumor response upon adoptive transfer of primed CD8+ T cells to tumor-bearing mice. Conclusions: Collectively, our data suggests that B cells and DCs are each capable of priming CD8+ T cells and generating anti-tumor responses. Given that B cells are relatively easier to culture and expand compared to DCs, our study suggests that, following further validation, B cells could be further investigated as APCs for peptide-based human cancer vaccines. Full article
(This article belongs to the Special Issue Dendritic Cells (DCs) and Cancer Immunotherapy)
Show Figures

Figure 1

16 pages, 1920 KB  
Article
Effects of CCL20/CCR6 Modulators in a T Cell Adoptive Transfer Model of Colitis
by Marika Allodi, Lisa Flammini, Carmine Giorgio, Maria Grazia Martina, Francesca Barbieri, Vigilio Ballabeni, Elisabetta Barocelli, Marco Radi and Simona Bertoni
Pharmaceuticals 2025, 18(9), 1327; https://doi.org/10.3390/ph18091327 - 4 Sep 2025
Viewed by 260
Abstract
Background/Objectives: IBDs are chronic relapsing inflammatory intestinal disorders whose precise etiology is still only poorly defined: critical for their pathogenesis is the CCL20/CCR6 axis, whose modulation by small molecules may represent an innovative therapeutic approach. The aim of the present work is [...] Read more.
Background/Objectives: IBDs are chronic relapsing inflammatory intestinal disorders whose precise etiology is still only poorly defined: critical for their pathogenesis is the CCL20/CCR6 axis, whose modulation by small molecules may represent an innovative therapeutic approach. The aim of the present work is to test the potential efficacy of two molecules, MR120, a small selective CCR6 antagonist, active in TNBS- and chronic DSS-induced murine models of intestinal inflammation, and its derivative MR452, a well-tolerated agent endowed with improved anti-chemotactic in vitro properties, in the adoptive transfer colitis model. To the best of our knowledge, this is the first attempt to use adoptive transfer colitis to test modulators of the CCL20/CCR6 axis. Methods and Results: The induction of colitis in immunocompromised mice receiving CD4+CD25 T cells i.p. resulted in a moderate inflammation and was met with limited protective responses following daily subcutaneous administration of MR120 or MR452 for 8 weeks. Both compounds significantly reduced colonic myeloperoxidase activity, and MR452 also lowered CCL20 levels in the gut, but they failed to prevent the increase in the Disease Activity Index, colon wall thickening, and macroscopic inflammation score. Conclusions: Our findings suggest that, despite the beneficial effects played by MR120 against subacute TNBS- and chronic DSS-induced colitis, the pharmacological targeting of the CCL20/CCR6 axis in the adoptive transfer model has a negligible effect in ameliorating the IBD-like phenotype driven by the altered intestinal immune homeostasis and by the disrupted function of immune-suppressive Treg cells. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

15 pages, 1929 KB  
Article
Direct oHSV Infection Induces DC Maturation and a Tumor Therapeutic Response
by Doyeon Kim, Michael Kelly, Jack Hedberg, Alexia K. Martin, Ilse Hernandez-Aguirre, Yeaseul Kim, Lily R. Cain, Ravi Dhital and Kevin A. Cassady
Viruses 2025, 17(8), 1134; https://doi.org/10.3390/v17081134 - 19 Aug 2025
Viewed by 748
Abstract
Oncolytic herpes simplex virus (oHSV) is a promising cancer immunotherapy that induces tumor cell lysis and stimulates anti-tumor immunity. Our previous single-cell RNA sequencing analysis of oHSV-treated medulloblastoma tumors revealed expansion and activation of tumor-infiltrating dendritic cells (DCs), and direct oHSV infection of [...] Read more.
Oncolytic herpes simplex virus (oHSV) is a promising cancer immunotherapy that induces tumor cell lysis and stimulates anti-tumor immunity. Our previous single-cell RNA sequencing analysis of oHSV-treated medulloblastoma tumors revealed expansion and activation of tumor-infiltrating dendritic cells (DCs), and direct oHSV infection of DCs within the brain. While the therapeutic effects of oHSVs have been primarily attributed to tumor cell infection, we hypothesize that direct infection of DCs also contributes to therapeutic efficacy by promoting DC maturation and immune activation. Although the oHSV infection in DCs was abortive, it led to increased expression of major histocompatibility complex (MHC) class I/II and co-stimulatory molecules. oHSV-infected DCs activated naïve CD4+ and CD8+ T cells, inducing expression of CD69 and CD25. These primed T cells exhibited enhanced cytotoxicity against CT-2A glioma cells. Adoptive transfer of oHSV-infected DCs via subcutaneous injection near inguinal lymph nodes delayed tumor growth in a syngeneic CT-2A glioma model, independent of tumor viral replication and lysis. Mechanistically, our in vitro studies demonstrate that oHSV can directly infect and functionally activate DCs, enabling them to prime effective anti-tumor T cell responses. This study highlights the anti-tumor potential of leveraging oHSV-infected DCs to augment viroimmunotherapy as a cancer therapeutic. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

20 pages, 5386 KB  
Review
γδ T Cells in Glioblastoma Multiforme: Novel Roles and Therapeutic Opportunities
by Costanza Dieli, Rosario Maugeri, Anna Maria Corsale, Marta Di Simone, Claudia Avellone, Francesco Dieli, Domenico Gerardo Iacopino, Lara Brunasso, Alessandra Cannarozzo, Roberta Costanzo, Silvana Tumbiolo and Serena Meraviglia
Cancers 2025, 17(16), 2660; https://doi.org/10.3390/cancers17162660 - 15 Aug 2025
Viewed by 703
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive cancers, with limited treatment options due to its highly immunosuppressive microenvironment and resistance to conventional therapies. γδ T cells, known for their potent antitumor activity and ability to recognize tumor antigens independently of HLA [...] Read more.
Glioblastoma multiforme (GBM) is one of the most aggressive cancers, with limited treatment options due to its highly immunosuppressive microenvironment and resistance to conventional therapies. γδ T cells, known for their potent antitumor activity and ability to recognize tumor antigens independently of HLA molecules, have emerged as a promising therapeutic strategy. This review explores the role of γδ T cells in glioblastoma, focusing on their functional plasticity, cytotoxic mechanisms, and interactions with components of the tumor microenvironment. We examine the factors that influence γδ T cell polarization toward pro- or anti-tumor phenotypes and analyze preclinical findings that support their application in GBM treatment. Furthermore, we discuss potential combinatory approaches—including immune checkpoint inhibitors, cytokine stimulation, and adoptive cell transfer techniques—to enhance the therapeutic effectiveness and persistence of γδ T cells. Understanding the dynamics between GBM and γδ T cells may pave the way for innovative immunotherapeutic strategies aimed at overcoming immune evasion and improving clinical outcomes. Full article
(This article belongs to the Special Issue Immunotherapy of Glioblastoma)
Show Figures

Figure 1

20 pages, 1155 KB  
Perspective
Historically Based Perspective on the Immunotherapy of Type 1 Diabetes: Where We Have Been, Where We Are, and Where We May Go
by Eugenio Cavalli, Giuseppe Rosario Pietro Nicoletti and Ferdinando Nicoletti
J. Clin. Med. 2025, 14(16), 5621; https://doi.org/10.3390/jcm14165621 - 8 Aug 2025
Viewed by 879
Abstract
Systematic Background/Objectives: Type 1 diabetes mellitus (T1DM) is an autoimmune condition in which pancreatic β-cells are selectively destroyed, predominantly by autoreactive T lymphocytes. Despite decades of research, the achievement of durable immune tolerance remains elusive. This review presents a historically grounded and forward-looking [...] Read more.
Systematic Background/Objectives: Type 1 diabetes mellitus (T1DM) is an autoimmune condition in which pancreatic β-cells are selectively destroyed, predominantly by autoreactive T lymphocytes. Despite decades of research, the achievement of durable immune tolerance remains elusive. This review presents a historically grounded and forward-looking perspective on the evolution of immunotherapy in T1DM, from early immunosuppressive interventions to advanced precision-based cellular approaches. Specifically, we focus on systemic immunosuppressants (e.g., corticosteroids, cyclosporine), monoclonal antibodies (e.g., anti-CD3, anti-IL-1, anti-TNF), regulatory cell-based approaches (e.g., Tregs, CAR-Tregs, MDSCs), and β-cell replacement strategies using stem cell-derived islets. Methods: We analyzed major clinical and translational milestones in immunotherapy for T1DM, with particular attention to the transition from broad immunosuppression to targeted modulation of immune pathways. Emerging data on cell-based therapies, artificial intelligence (AI)-driven stratification, and personalized intervention timing have been incorporated to provide a comprehensive overview of current and future directions. Results: Initial therapies such as corticosteroids and cyclosporine offered proof-of-concept for immune modulation, yet suffered from relapse and toxicity. The introduction of monoclonal antibodies (e.g., teplizumab) marked a shift toward immune-specific intervention, particularly in stage 2 preclinical T1DM. More recent approaches include low-dose IL-2, checkpoint modulation, and antigen-specific tolerance strategies. Cellular therapies such as Treg adoptive transfer, chimeric antigen receptor Tregs (CAR-Tregs), and stem cell-derived islet replacements (e.g., VX-880) have shown promise in preserving β-cell function and modulating autoimmunity. Myeloid-derived suppressor cells (MDSCs), although still preclinical, represent a complementary avenue for immune tolerance induction. Concurrently, AI-based models are emerging as tools to stratify risk and personalize immunotherapeutic timing, enhancing trial design and outcome prediction. Conclusions: In conclusion, the historical progression from broad immunosuppression to precision-driven strategies underscores the importance of stage-specific, mechanism-based interventions in T1DM. The convergence of targeted biologics, regenerative cell therapies, and β-cell replacement approaches, supported by AI-enabled patient stratification, offers a realistic path toward durable immune tolerance and functional β-cell preservation. Continued integration of these modalities, coupled with rigorous long-term evaluation, will be essential to transform these scientific advances into sustained clinical benefit. Full article
(This article belongs to the Section Immunology & Rheumatology)
Show Figures

Figure 1

18 pages, 3020 KB  
Article
JAK2/STAT3 Signaling in Myeloid Cells Contributes to Obesity-Induced Inflammation and Insulin Resistance
by Chunyan Zhang, Jieun Song, Wang Zhang, Rui Huang, Yi-Jia Li, Zhifang Zhang, Hong Xin, Qianqian Zhao, Wenzhao Li, Saul J. Priceman, Jiehui Deng, Yong Liu, David Ann, Victoria Seewaldt and Hua Yu
Cells 2025, 14(15), 1194; https://doi.org/10.3390/cells14151194 - 2 Aug 2025
Viewed by 806
Abstract
Adipose tissue inflammation contributes to obesity-induced insulin resistance. However, increasing evidence shows that high BMI (obesity) is not an accurate predictor of poor metabolic health in individuals. The molecular mechanisms regulating the metabolically activated M1 macrophage phenotype in the adipose tissues leading to [...] Read more.
Adipose tissue inflammation contributes to obesity-induced insulin resistance. However, increasing evidence shows that high BMI (obesity) is not an accurate predictor of poor metabolic health in individuals. The molecular mechanisms regulating the metabolically activated M1 macrophage phenotype in the adipose tissues leading to insulin resistance remain largely unknown. Although the Janus Kinase (Jak)/signal transducer and activator of transcription 3 (Stat3) signaling in myeloid cells are known to promote the M2 phenotype in tumors, we demonstrate here that the Jak2/Stat3 pathway amplifies M1-mediated adipose tissue inflammation and insulin resistance under metabolic challenges. Ablating Jak2 in the myeloid compartment reduces insulin resistance in obese mice, which is associated with a decrease in infiltration of adipose tissue macrophages (ATMs). We show that the adoptive transfer of Jak2-deficient myeloid cells improves insulin sensitivity in obese mice. Furthermore, the protection of obese mice with myeloid-specific Stat3 deficiency against insulin resistance is also associated with reduced tissue infiltration by macrophages. Jak2/Stat3 in the macrophage is required for the production of pro-inflammatory cytokines that promote M1 macrophage polarization in the adipose tissues of obese mice. Moreover, free fatty acids (FFAs) activate Stat3 in macrophages, leading to the induction of M1 cytokines. Silencing the myeloid cell Stat3 with an in vivo siRNA targeted delivery approach reduces metabolically activated pro-inflammatory ATMs, thereby alleviating obesity-induced insulin resistance. These results demonstrate Jak2/Stat3 in myeloid cells is required for obesity-induced insulin resistance and inflammation. Moreover, targeting Stat3 in myeloid cells may be a novel approach to ameliorate obesity-induced insulin resistance. Full article
Show Figures

Figure 1

14 pages, 2268 KB  
Article
CD1d-Restricted NKT Cells Promote Central Memory CD8+ T Cell Formation via an IL-15-pSTAT5-Eomes Axis in a Pathogen-Exposed Environment
by Yingyu Qin, Yilin Qian, Jingli Zhang and Shengqiu Liu
Int. J. Mol. Sci. 2025, 26(15), 7272; https://doi.org/10.3390/ijms26157272 - 28 Jul 2025
Viewed by 481
Abstract
The generation of memory CD8+ T cells is essential for establishing protective T cell immunity against pathogens and cancers. However, the cellular and molecular mechanisms underlying memory CD8+ T cell formation remain incompletely understood. Reliance on specific pathogen-free (SPF) models, characterized [...] Read more.
The generation of memory CD8+ T cells is essential for establishing protective T cell immunity against pathogens and cancers. However, the cellular and molecular mechanisms underlying memory CD8+ T cell formation remain incompletely understood. Reliance on specific pathogen-free (SPF) models, characterized by restricted microbial exposure, may limit our understanding of physiologically relevant immune memory development. This study reveals that CD1d-restricted NKT cells regulate central memory T cell (TCM) generation exclusively in a microbe-rich (“dirty”) environment. Under non-SPF housing, CD1d+/ and Ja18+/ mice exhibited enhanced TCM formation compared to NKT-deficient controls (CD1d//Ja18/), demonstrating that microbial experience is required for NKT-mediated TCM regulation. Mechanistically, CD1d-restricted NKT cells increased IL-15Rα expression on CD4+ T cells in CD1d+/ mice, potentiating IL-15 trans-presentation and thereby activating the IL-15/pSTAT5/Eomes axis critical for TCM maintenance. Functional validation through adoptive transfer of CFSE-labeled OT-1 memory cells revealed an NKT cell-dependent survival advantage in CD1d+/ hosts. This provides direct evidence that microbiota-experienced niches shape immune memory. Collectively, these findings establish CD1d-restricted NKT cells as physiological regulators of TCM generation and suggest their potential utility as vaccine adjuvants to enhance protective immunity. Full article
Show Figures

Figure 1

20 pages, 3249 KB  
Article
Granulocyte-Macrophage Colony-Stimulating Factor Inhibition Ameliorates Innate Immune Cell Activation, Inflammation, and Salt-Sensitive Hypertension
by Hannah L. Smith, Bethany L. Goodlett, Gabriella C. Peterson, Emily N. Zamora, Ava R. Gostomski and Brett M. Mitchell
Cells 2025, 14(15), 1144; https://doi.org/10.3390/cells14151144 - 24 Jul 2025
Viewed by 550
Abstract
Hypertension (HTN) is a major contributor to global morbidity and manifests in several variants, including salt-sensitive hypertension (SSHTN). SSHTN is defined by an increase in blood pressure (BP) in response to high dietary salt, and is associated with heightened cardiovascular risk, renal damage, [...] Read more.
Hypertension (HTN) is a major contributor to global morbidity and manifests in several variants, including salt-sensitive hypertension (SSHTN). SSHTN is defined by an increase in blood pressure (BP) in response to high dietary salt, and is associated with heightened cardiovascular risk, renal damage, and immune system activation. However, the role of granulocyte-macrophage colony-stimulating factor (GM-CSF) has not yet been explored in the context of SSHTN. Previously, we reported that GM-CSF is critical in priming bone marrow-derived (BMD)-macrophages (BMD-Macs) and BMD-dendritic cells (BMD-DCs) to become activated (CD38+) in response to salt. Further exploration revealed these cells differentiated into BMD-M1 Macs, CD38+ BMD-M1 Macs, BMD-type-2 conventional DCs (cDC2s), and CD38+ BMD-cDC2s. Additionally, BMD-monocytes (BMDMs) grown with GM-CSF and injected into SSHTN mice traffic to the kidneys and differentiate into Macs, CD38+ Macs, DCs, and CD38+ DCs. In the current study, we treated SSHTN mice with an anti-GM-CSF antibody (aGM) and found that preventive aGM treatment mitigated BP, prevented renal inflammation, and altered renal immune cells. In mice with established SSHTN, aGM treatment attenuated BP, reduced renal inflammation, and differentially affected renal immune cells. Adoptive transfer of aGM-treated BMDMs into SSHTN mice resulted in decreased renal trafficking. Additionally, aGM treatment of BMD-Macs, CD38+ BMD-M1 Macs, BMD-DCs, and CD38+ BMD-cDC2s led to decreased pro-inflammatory gene expression. These findings suggest that GM-CSF plays a role in SSHTN and may serve as a potential therapeutic target. Full article
Show Figures

Graphical abstract

22 pages, 2521 KB  
Article
Assessment of Feasibility of the M2 Macrophage-Based Adoptive Gene Transfer Strategy for Osteoarthritis with a Mouse Model
by Matilda H.-C. Sheng, David J. Baylink, Charles H. Rundle and Kin-Hing William Lau
Cells 2025, 14(14), 1067; https://doi.org/10.3390/cells14141067 - 11 Jul 2025
Viewed by 543
Abstract
Current osteoarthritis (OA) therapies fail to yield long-term clinical benefits, due in part to the lack of a mechanism for the targeted and confined delivery of therapeutics to OA joints. This study evaluates if M2 macrophages are effective cell vehicles for the targeted [...] Read more.
Current osteoarthritis (OA) therapies fail to yield long-term clinical benefits, due in part to the lack of a mechanism for the targeted and confined delivery of therapeutics to OA joints. This study evaluates if M2 macrophages are effective cell vehicles for the targeted and confined delivery of therapeutic genes to OA joints. CT bioluminescence in vivo cell tracing and fluorescent microscopy reveal that intraarticularly injected M2 macrophages were recruited to and retained at inflamed synovia. The feasibility of an M2 macrophage-based adoptive gene transfer strategy for OA was assessed using IL-1Ra as the therapeutic gene in a mouse tibial plateau injury model. Mouse M2 macrophages were transduced with lentiviral vectors expressing IL-1Ra or GFP. The transduced macrophages were intraarticularly injected into injured joints at 7 days post-injury and OA progression was monitored with plasma COMP and histology at 4 weeks. The IL-1Ra-expressing M2 macrophage treatment reduced plasma COMP, increased the area and width of the articular cartilage layer, decreased synovium thickness, and reduced the OARSI OA score without affecting the osteophyte maturity and meniscus scores when compared to the GFP-expressing M2 macrophage-treated or PBS-treated controls. When the treatment was given at 5 weeks post-injury, at which time OA should have developed, the IL-1Ra-M2 macrophage treatment also reduced plasma COMP, had a greater articular cartilage area and width, decreased synovial thickness, and reduced the OARSI OA score without an effect on the meniscus and osteophyte maturity scores at 8 weeks post-injury. In conclusion, the IL-1Ra-M2 macrophage treatment, given before or after OA was developed, delayed OA progression, indicating that the M2 macrophage-based adoptive gene transfer strategy for OA is tenable. Full article
(This article belongs to the Section Cell and Gene Therapy)
Show Figures

Figure 1

14 pages, 2340 KB  
Article
Oral Administration of 5-Aminolevulinic Acid Does Not Ameliorate Autoimmune Diabetes in NOD Mice
by Shinpei Nishikido, Satoru Akazawa, Tetsuro Niri, Shin-Ichi Inoue, Katsuya Matsuda, Taiki Aoshi, Masahiro Nakashima, Ai Haraguchi, Ichiro Horie, Masakazu Kobayashi, Minoru Okita, Atsushi Kawakami and Norio Abiru
Diabetology 2025, 6(7), 62; https://doi.org/10.3390/diabetology6070062 - 1 Jul 2025
Viewed by 443
Abstract
Background/Objectives: 5-Aminolevulinic acid (5-ALA) is a biosynthetic precursor of heme that induces heme oxygenase-1 (HO-1). Therapeutic induction of HO-1 has shown effectiveness in various autoimmune disease models, including type 1 diabetes (T1D). However, the efficacy of 5-ALA as an HO-1 inducer in [...] Read more.
Background/Objectives: 5-Aminolevulinic acid (5-ALA) is a biosynthetic precursor of heme that induces heme oxygenase-1 (HO-1). Therapeutic induction of HO-1 has shown effectiveness in various autoimmune disease models, including type 1 diabetes (T1D). However, the efficacy of 5-ALA as an HO-1 inducer in T1D models remains unexplored. This study aimed to investigate the therapeutic efficacy of oral 5-ALA administration in preventing autoimmune diabetes development in nonobese diabetic (NOD) mice. Methods: We evaluated diabetes incidence, levels of insulin autoantibody, and severity of insulitis in 5-ALA-treated and control NOD mice. HO-1 expression of dendritic cells in the pancreatic islets and spleen of 5-ALA-treated NOD mice was measured. The IFN-γ/IL-17 of islet-infiltrating T cells and IL-10/IL-12 productions of dendritic cells in the spleen of 5-ALA-treated NOD mice were assessed. We stimulated islet antigen-specific CD4+ T cells with islet antigen-pulsed dendritic cells in the presence of 5-ALA and examined the proliferation of the T cells. Finally, we adoptively transferred islet antigen-specific CD4+ T cells into 5-ALA-treated, immunodeficient NOD-Rag1 knockout mice, and diabetes incidence in recipients was determined. Results: Oral 5-ALA treatment did not significantly impact diabetes incidence, levels of insulin autoantibody, and insulitis. No significant difference was observed in HO-1 expression in dendritic cells and cytokine production of T cells and dendritic cells. Similarly, there was no significant difference in the proliferation of islet antigen-specific CD4+ T cells in vitro and diabetes induction in transfer experiments. Conclusions: Oral administration of 5-ALA has a limited effect on suppressing the development of autoimmune diabetes in NOD mice. Full article
Show Figures

Figure 1

12 pages, 668 KB  
Article
Xenogeneic Testicular Cell Vaccination Induces Long-Term Anti-Cancer Immunity in Mice
by Victor I. Seledtsov, Ayana B. Dorzhieva, Adas Darinskas, Alexei A. von Delwig, Elena A. Blinova and Galina V. Seledtsova
Curr. Issues Mol. Biol. 2025, 47(6), 443; https://doi.org/10.3390/cimb47060443 - 10 Jun 2025
Viewed by 1374
Abstract
Cancer/testis antigen (CTA) gene products are expressed in most malignant tumours, while under normal conditions their expression is primarily restricted to testicular cells. In this study, we investigated the prophylactic application of a xenogeneic (ram-derived) testicular cell (TC) vaccine for cancer prevention in [...] Read more.
Cancer/testis antigen (CTA) gene products are expressed in most malignant tumours, while under normal conditions their expression is primarily restricted to testicular cells. In this study, we investigated the prophylactic application of a xenogeneic (ram-derived) testicular cell (TC) vaccine for cancer prevention in an experimental animal model. C57BL/6 mice were immunised three times with either xenogeneic (ram) or syngeneic (mouse) formaldehyde-fixed spermatogenic tissue-derived cells. Following vaccination, mice were implanted with live B16 melanoma or LLC carcinoma cells. Tumour-bearing mice were subsequently assessed for survival and immunological parameters indicative of anti-cancer immunity. Xenogeneic vaccination with TCs induced cross-reactive immune responses to both B16 melanoma and LLC carcinoma antigens (Ags), as determined by an MTT ((3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Prophylactic vaccination with xenogeneic TCs (xTCs), but not syngeneic TCs (sTCs), significantly improved survival rates, with 30% of vaccinated mice surviving after LLC carcinoma implantation. The induced immunity was long-lasting as mice implanted with LLC carcinoma cells 3–6 months post-vaccination exhibited prolonged survival. Furthermore, lymphoid cells from surviving vaccinated mice were capable of adoptively transferring anti-cancer immunity to naïve animals, significantly increasing their survival rates upon subsequent LLC carcinoma cell implantation. Vaccinated mice bearing LLC tumours exhibited a reduction in regulatory CD4⁺CD25⁺Foxp3⁺ T cells in the spleen, with no effect observed in the central memory CD4⁺CD44⁺CD62L⁺ T-cell compartment. Moreover, vaccinated mice displayed increased interferon gamma (IFN-γ) levels in the blood, with no significant changes in interleukin-10 (IL-10) levels. Prophylactic vaccination with xenogeneic CTAs effectively induces long-term, stable anti-cancer immunity, demonstrating potential for future immunopreventive strategies. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

17 pages, 2496 KB  
Article
High-Precision Experimental Data for Thermal Model Validation of Flat-Plate Hybrid Water PV/T Collectors
by Fahad Maoulida, Rabah Djedjig, Mourad Rahim, Mohamed Aboudou Kassim and Mohammed El Ganaoui
Energies 2025, 18(11), 2972; https://doi.org/10.3390/en18112972 - 4 Jun 2025
Viewed by 1774
Abstract
An experimental setup was developed, incorporating a monitored DualSun® photovoltaic–thermal (PV/T) panel and a weather station to continuously record real-time climatic conditions. This setup enables an hour-by-hour comparison between the actual performance observed under real-world conditions and the predictions generated by the [...] Read more.
An experimental setup was developed, incorporating a monitored DualSun® photovoltaic–thermal (PV/T) panel and a weather station to continuously record real-time climatic conditions. This setup enables an hour-by-hour comparison between the actual performance observed under real-world conditions and the predictions generated by the thermal model. The generated dataset was used to evaluate a thermal model derived from the literature, comparing its predictions with measured data. The model adopts a quasi-steady-state, one-dimensional approach based on heat balance equations applied to both the photovoltaic cells and the heat transfer fluid. Conducted during the summer of 2022, the experiment provides valuable insights into the accuracy of the literature-based thermal model under summer meteorological conditions. The results show a good correlation between the experimental data and the model’s predictions. The average deviation observed for the outlet fluid temperature is 0.1 °C during the day and 1.3 °C at night. Consequently, the findings underscore the model’s effectiveness for evaluating daytime performance, while also pointing out its limitations for nighttime predictions, especially when hybrid PV/T collectors are used for applications such as nighttime free cooling. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

18 pages, 2924 KB  
Article
Adoptive Transfer of Lepr+ Bone Marrow Cells Attenuates the Osteopetrotic Phenotype of db/db Mice
by Russell T. Turner, Carmen P. Wong, Kenneth A. Philbrick, Jessica A. Keune, Edwin M. Labut, Scott A. Menn, Adam J. Branscum and Urszula T. Iwaniec
Int. J. Mol. Sci. 2025, 26(11), 5120; https://doi.org/10.3390/ijms26115120 - 27 May 2025
Viewed by 587
Abstract
Leptin-deficient (ob/ob) and leptin receptor (Lepr)-deficient db/db mice develop a mild form of osteoclast-rich osteopetrosis, most evident in long bone epiphyses, implying leptin is important for normal replacement of cartilage during skeletal maturation. However, it is unclear [...] Read more.
Leptin-deficient (ob/ob) and leptin receptor (Lepr)-deficient db/db mice develop a mild form of osteoclast-rich osteopetrosis, most evident in long bone epiphyses, implying leptin is important for normal replacement of cartilage during skeletal maturation. However, it is unclear whether leptin acts as a permissive or regulatory factor and whether its actions are mediated via peripheral pathways. Here we show the osteopetrotic phenotype is not evident in ob/+ or db/+ mice, suggesting that leptin acts as a critical but permissive factor for skeletal maturation. The importance of leptin is further supported by our results showing that interventions known to increase bone resorption (mild cold stress, simulated microgravity, or particle-induced inflammation) did not advance skeletal maturation in ob/ob mice whereas long-duration hypothalamic leptin gene therapy was effective. Additionally, administration of leptin by subcutaneously implanted osmotic pumps (400 ng/h) for 2 weeks accelerated skeletal maturation in ob/ob mice. Because leptin has the potential to act on the skeleton through peripheral pathways, we interrogated osteoclast-lineage cells for the presence of Lepr and evaluated skeletal response to the introduction of bone marrow Lepr+ cells into db/db mice. We identified Lepr on marrow MCSFR+CD11b+ osteoclast precursors and on osteoclasts generated in vitro. We then adoptively transferred Lepr+ marrow cells from GFP mice or wildtype (WT) mice into Lepr- db/db mice. Following engraftment, most MCSFR+ CD11b+ cells in marrow expressed GFP. Whereas db/dbdb/db had minimal influence on epiphyseal cartilage, WT→db/db decreased cartilage. These findings suggest peripheral leptin signaling is required for normal osteoclast-dependent replacement of cartilage by bone during skeletal maturation. Full article
(This article belongs to the Special Issue Advances in Leptin Biology)
Show Figures

Figure 1

19 pages, 3450 KB  
Article
BET Protein Inhibition Relieves MDSC-Mediated Immune Suppression in Chronic Lymphocytic Leukemia
by Erin M. Drengler, Audrey L. Smith, Sydney A. Skupa, Elizabeth Schmitz, Eslam Mohamed and Dalia El-Gamal
Hemato 2025, 6(2), 14; https://doi.org/10.3390/hemato6020014 - 24 May 2025
Viewed by 1176
Abstract
Background: Myeloid-derived suppressor cells (MDSCs) contribute to immune suppression observed in chronic lymphocytic leukemia (CLL). MDSCs are immature myeloid cells that are hijacked during development and further reprogrammed by the tumor microenvironment (TME) to harbor immune-suppressive properties and inhibit T-cell functions. Bromodomain [...] Read more.
Background: Myeloid-derived suppressor cells (MDSCs) contribute to immune suppression observed in chronic lymphocytic leukemia (CLL). MDSCs are immature myeloid cells that are hijacked during development and further reprogrammed by the tumor microenvironment (TME) to harbor immune-suppressive properties and inhibit T-cell functions. Bromodomain and extraterminal domain (BET) proteins, including BRD4, are epigenetic modulators that regulate genes implicated in CLL pathogenesis and TME interactions. Previously, we investigated how the novel BET inhibitor OPN-51107 (OPN5) prevents CLL disease expansion, modulates T-cell immune function, and alters gene expression related to MDSCs. In turn, we hypothesize that BET proteins such as BRD4 regulate MDSC functions, and subsequent pharmacological inhibition of BRD4 will alleviate MDSC-mediated immune suppression in CLL. Methods: Utilizing the Eµ-TCL1 mouse model of CLL, we evaluated BRD4 protein expression in MDSCs derived from the bone marrow of transgenic and age-matched wild-type (WT) mice. We then investigated the ex vivo functionality of OPN5-treated MDSCs, expanded from Eµ-TCL1 and WT bone marrow in MDSC-supportive medium. Finally, we conducted an in vivo study utilizing the Eµ-TCL1 adoptive transfer mouse model to determine the in vivo effects of OPN5 on MDSCs and other immune populations. Results: Through the course of this study, we found that MDSCs isolated from Eμ-TCL1 mice upregulate BRD4 expression and are more immune-suppressive than their WT counterparts. Furthermore, we demonstrated ex vivo OPN5 treatment reverses the immune-suppressive capacity of MDSCs isolated from leukemic mice, evident via enhanced T-cell proliferation and IFNγ production. Finally, we showed in vivo OPN5 treatment slows CLL disease progression and modulates immune cell populations, including MDSCs. Conclusions: Altogether, these data support BET inhibition as a useful therapeutic approach to reverse MDSC-mediated immune suppression in CLL. Full article
Show Figures

Figure 1

16 pages, 716 KB  
Review
Unconventional T Cells’ Role in Cancer: Unlocking Their Hidden Potential to Guide Tumor Immunity and Therapy
by Paola Pinco and Federica Facciotti
Cells 2025, 14(10), 720; https://doi.org/10.3390/cells14100720 - 15 May 2025
Cited by 1 | Viewed by 1387
Abstract
Unconventional T (UC T) cells, including invariant natural killer T (iNKT) cells, mucosal-associated invariant T (MAIT) cells, γδ T cells, and double-negative (DN) T cells, are key players in immune surveillance and response due to their properties combining innate-like and adaptive-like features. These [...] Read more.
Unconventional T (UC T) cells, including invariant natural killer T (iNKT) cells, mucosal-associated invariant T (MAIT) cells, γδ T cells, and double-negative (DN) T cells, are key players in immune surveillance and response due to their properties combining innate-like and adaptive-like features. These cells are widely present in mucosal tissues, where they can rapidly respond to infections and tumor-associated changes. In fact, UC T cells can have both pro- and anti-tumoral effects, with their activity influenced by factors such as microbial composition and the tumor microenvironment. In particular, intratumoral microbiota significantly impacts the development, function, and activation of UC T cells, influencing cytokine production and shaping the immune response in various cancers. The complex crosstalk between UC T cells and the surrounding factors is discussed in this review, with a focus on how these cells might be interesting candidates to explore and exploit as anticancer therapeutic agents. However, the great potential of UC T cells, not only demonstrated in the context of adoptive cell transfer, but also enhanced through techniques of engineering, is still flanked by different challenges, like the immunosuppressive tumor microenvironment and heterogeneity of target molecules associated with some specific categories of tumors, like gastrointestinal cancers. Full article
Show Figures

Figure 1

Back to TopTop