Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (566)

Search Parameters:
Keywords = adoptive immunotherapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1192 KB  
Review
From Prognostic Marker to Therapeutic Agent: The Role of Nitric Oxide in Lung Cancer
by Tommaso Pianigiani, Akter Dilroba, Asia Fanella, Laura Bergantini, Miriana d’Alessandro, Elena Bargagli and Paolo Cameli
J. Clin. Med. 2025, 14(19), 6801; https://doi.org/10.3390/jcm14196801 - 26 Sep 2025
Viewed by 248
Abstract
Background: Nitric oxide (NO) is a gaseous free radical produced from L-arginine by the nitric oxide synthase (NOS) enzymes. NO exerts a dose-dependent biphasic effect on lung cancer development, angiogenesis, and dissemination. The widespread contribution of nitric oxide signaling to lung cancer [...] Read more.
Background: Nitric oxide (NO) is a gaseous free radical produced from L-arginine by the nitric oxide synthase (NOS) enzymes. NO exerts a dose-dependent biphasic effect on lung cancer development, angiogenesis, and dissemination. The widespread contribution of nitric oxide signaling to lung cancer biology has cast a spotlight on the identification of NO-based therapeutic approaches as well as the use of fractional exhaled NO (FeNO) as a prognostic biomarker of clinical control. However, the significance of lung cancer treatment and prognosis has not been fully elucidated. Objective: This narrative review gives an overview of NO in lung cancer, focusing on its therapeutic and prognostic implications. Results: FeNO may help to assess the complications associated with non-pharmacological treatments, including postoperative pneumonia and radiation pneumonitis. By contrast, the role of FeNO dynamics during pharmacological treatment is still largely unexplored due to the suppressive effect of chemotherapy on FeNO levels. The rise of immunotherapy may pave the way to a better evaluation of FeNO as a prognostic biomarker of treatment response. The dichotomous involvement of NO in lung cancer events has led to the adoption of several NO-centered treatments that are focused on both inhibiting and enhancing NO signaling. However, NO chemical and biological characteristics have hindered its implementation in clinical practice. Conclusions: In the coming years, the advancements in drug delivery systems may lead to more effective anti-cancer applications of NO by improving tumor targeting and minimizing the systemic side effects. Together, our findings emphasize the promising role of NO in lung cancer treatment, underscoring the challenges and avenues for future research. Full article
(This article belongs to the Section Respiratory Medicine)
Show Figures

Figure 1

38 pages, 578 KB  
Review
Next-Generation Sequencing: A Review of Its Transformative Impact on Cancer Diagnosis, Treatment, and Resistance Management
by Alexandru Isaic, Nadica Motofelea, Teodora Hoinoiu, Alexandru Catalin Motofelea, Ioan Cristian Leancu, Emanuela Stan, Simona R. Gheorghe, Alina Gabriela Dutu and Andreea Crintea
Diagnostics 2025, 15(19), 2425; https://doi.org/10.3390/diagnostics15192425 - 23 Sep 2025
Viewed by 776
Abstract
Background/Objectives: Next-Generation Sequencing (NGS) has transformed cancer diagnostics and treatment by enabling comprehensive genomic profiling of tumors. This review aims to summarize the current applications of NGS in oncology, highlighting its role in early detection, precision therapy, and disease monitoring. Methods: [...] Read more.
Background/Objectives: Next-Generation Sequencing (NGS) has transformed cancer diagnostics and treatment by enabling comprehensive genomic profiling of tumors. This review aims to summarize the current applications of NGS in oncology, highlighting its role in early detection, precision therapy, and disease monitoring. Methods: We conducted a comprehensive review of the recent literature, focusing on the application of NGS in cancer care. Results: NGS enables high-resolution genomic profiling, identifying actionable mutations (e.g., EGFR, KRAS, and ALK) and immunotherapy biomarkers (e.g., PD-L1, TMB, and MSI), guiding personalized treatment selection and improving outcomes in advanced malignancies. Liquid biopsy enhances diagnostic accessibility and enables real-time monitoring of minimal residual disease and treatment resistance. Despite these advances, widespread clinical adoption remains constrained by technical limitations (e.g., coverage uniformity and sample quality), economic challenges (high costs and complex reimbursement), and interpretative issues, including the management of variants of uncertain significance (VUSs). Conclusions: NGS is central to precision oncology, enabling molecularly driven cancer care. Integration with artificial intelligence, single-cell sequencing, spatial transcriptomics, multi-omics, and nanotechnology promises to overcome current limitations, advancing personalized treatment strategies. Standardization of workflows, cost reduction, and improved bioinformatics expertise are critical for its full clinical integration. Full article
20 pages, 1051 KB  
Review
Future Directions and Priorities for Cellular Therapy in Sarcoma: A Report from the Strategic Advances in Sarcoma Science Cell Therapy Breakout
by Jacqueline Oliva-Ramirez, David Milewski, Lauren Banks, Kelly M. Bailey, Everett J. Moding, Jessica Lake, Alice Chen, Jessica D. Daley, Erin E. Resch, Rosandra N. Kaplan, Brian H. Ladle, Lindy Zhang, Margaret M. Chou, Rosa Nguyen, Urania Dagalakis, Nourhane Al Akoum, Poul H Sorensen, Jonathan A. Fletcher, Ronald DeMatteo, Nicolas J. Llosa and Seth M. Pollackadd Show full author list remove Hide full author list
Cancers 2025, 17(18), 3068; https://doi.org/10.3390/cancers17183068 - 19 Sep 2025
Viewed by 564
Abstract
Background: In September of 2024, the 2nd annual meeting of the Strategic Advances in Sarcoma Science (SASS) convened at the National Institutes of Health. This gathering of national sarcoma experts focused on preclinical studies, clinical trials, opportunities, challenges, and future directions in sarcoma [...] Read more.
Background: In September of 2024, the 2nd annual meeting of the Strategic Advances in Sarcoma Science (SASS) convened at the National Institutes of Health. This gathering of national sarcoma experts focused on preclinical studies, clinical trials, opportunities, challenges, and future directions in sarcoma biology and clinical care with a focus on immunotherapy. The Immunology in Sarcoma breakout group conducted a dedicated discussion focused on the current and future implementation of adoptive cellular therapies (ACTs) in sarcomas. The current manuscript summarizes these discussions and provides a comprehensive resource for researchers and clinicians. Results: Adoptive cell therapy (ACT) has shown encouraging results in sarcomas with afami-cel achieving durable responses in synovial sarcoma and early TCR-T trials against NY-ESO-1 and MAGE-A4 demonstrating meaningful response rates. Building on these outcomes will require discovering new targets, selecting optimal cell types, refining conditioning regimens, combining with alternative treatment strategies such as TKIs, and leveraging predictive biomarkers informed by a deeper understanding of the tumor microenvironment. Conclusions: Sarcomas are promising targets for adoptive cell therapy (ACT), as shown by afami-cel’s success in synovial sarcoma, but broader impact requires new target discovery, optimal cell selection, improved conditioning, combination treatments, deeper tumor microenvironment understanding, and predictive biomarkers to achieve more durable responses for more patients. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

29 pages, 1889 KB  
Review
Advances in Adoptive Cell Therapies in Cancer: From Mechanistic Breakthroughs to Clinical Frontiers and Overcoming Barriers
by Syed Arman Rabbani, Mohamed El-Tanani, Yahia El-Tanani, Rakesh Kumar, Shrestha Sharma, Mohammad Ahmed Khan, Suhel Parvez, Alaa A. A. Aljabali, Mohammad I. Matalka and Manfredi Rizzo
Med. Sci. 2025, 13(3), 190; https://doi.org/10.3390/medsci13030190 - 15 Sep 2025
Viewed by 736
Abstract
Adoptive cell therapies (ACTs) have revolutionized cancer treatment by harnessing the specificity and potency of T lymphocytes. Chimeric antigen receptor (CAR)-T cells have achieved landmark successes in B-cell malignancies and multiple myeloma. Tumor-infiltrating lymphocytes (TILs) and T-cell receptor (TCR)-engineered T cells offer complementary [...] Read more.
Adoptive cell therapies (ACTs) have revolutionized cancer treatment by harnessing the specificity and potency of T lymphocytes. Chimeric antigen receptor (CAR)-T cells have achieved landmark successes in B-cell malignancies and multiple myeloma. Tumor-infiltrating lymphocytes (TILs) and T-cell receptor (TCR)-engineered T cells offer complementary strategies to target solid tumors and intracellular antigens. Despite these advances, ACTs face challenges including cytokine release syndrome, neurotoxicity, on-target/off-tumor effects, manufacturing scalability, and immunosuppressive tumor microenvironments. Innovative strategies, such as dual-antigen targeting, localized delivery, checkpoint blockade combinations, gene-editing, and machine-learning-guided antigen discovery, are being used to mitigate toxicity, enhance efficacy, and streamline production. As CAR-T, TIL, and TCR modalities converge with advances in manufacturing and computational biology, the next generation of “living drugs” promises broader applicability across hematologic and solid tumors, improved safety profiles, and better treatment outcomes for patients. This review details the evolution of ACTs from first-generation CAR constructs to next-generation “armored” designs. It also focuses on the development and clinical deployment of TIL and TCR therapies. Furthermore, it synthesizes mechanisms, pivotal clinical trial outcomes, and ongoing challenges of ACTs. It also highlights strategies that will drive broader, safer, and more durable applications of these therapies across hematologic and solid tumors. Full article
(This article belongs to the Special Issue Feature Papers in Section Cancer and Cancer-Related Diseases)
Show Figures

Figure 1

28 pages, 466 KB  
Review
Neoantigen-Driven Immunotherapy in Triple-Negative Breast Cancer: Emerging Strategies and Clinical Potential
by Peter A. Shatalov, Anna A. Bukaeva, Egor M. Veselovsky, Alexey A. Traspov, Daria V. Bagdasarova, Irina A. Leukhina, Anna P. Shinkarkina, Maria P. Raygorodskaya, Alena V. Murzaeva, Yulia A. Mechenici, Maria A. Revkova, Andrey D. Kaprin and Peter V. Shegai
Biomedicines 2025, 13(9), 2213; https://doi.org/10.3390/biomedicines13092213 - 9 Sep 2025
Viewed by 931
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer (BC), comprising approximately 20% of newly diagnosed BC cases. The poor prognosis, high recurrence rates, and inefficacy of hormone-based therapies make TNBC one of the greatest challenges in contemporary [...] Read more.
Triple-negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer (BC), comprising approximately 20% of newly diagnosed BC cases. The poor prognosis, high recurrence rates, and inefficacy of hormone-based therapies make TNBC one of the greatest challenges in contemporary oncology. The unique immunological features of TNBC, including relatively high tumor mutational burden, abundance of tumor-infiltrating lymphocytes, and elevated PD-L1 expression, offer a wide range of opportunities for immunotherapeutic approaches, of which the most progressive and promising are neoantigen-driven ones. This review examines the current landscape of neoantigen-based therapeutic approaches in TNBC treatment, spanning from discovery methodologies to clinical applications. We provide a critical analysis of the tumor microenvironment (TME) in TNBC, highlighting the balance between its immunoactivating (CD8+ T-cells, dendritic cells) and immunosuppressive (regulatory T-cells, M2 macrophages) components as the key determinant of therapeutic success, as well as reviewing the emerging approaches to TME reprogramming and recruiting in favor of better outcomes. We also present state-of the-art methods in neoantigen identification and prioritization, covering the landscape of technological platforms and prediction algorithms, addressing the existing accuracy limitations along with emerging computational solutions, and comprehensively discussing the TNBC neoantigen spectrum. Our analysis shows the strong domination of patient-specific (“private”) neoantigens over shared variants in the TNBC, with TP53 as the only gene with recurrent variants. Finally, we extensively cover neoantigen-recruiting therapeutic modalities including adoptive cell therapies, personalized vaccine platforms (peptide-based, mRNA/DNA vaccines, dendritic cell vaccines), and oncolytic viruses-based approaches. Our study of current clinical trials demonstrates the substantial gap between early proof-of-concept experiments and further applicability of neoantigen-driven therapies. The major challenges hampering the success of such methods include neoantigen prediction inaccuracy rates, high manufacturing costs, and time consumption. Promising ways to overcome these difficulties include the development of combinational strategies, TME modeling and modifying, and improvement of the therapy delivery properties, along with the optimization of production workflows and cost-effectiveness of vaccine development. Full article
(This article belongs to the Special Issue Molecular Research in Breast Cancer)
22 pages, 1447 KB  
Review
Photodynamic Therapy and Tumor Microenvironment-Targeting Strategies: A Novel Synergy at the Frontier of Cancer Treatment
by Stefani Torna, Vasiliki Gkretsi and Andreas Stylianou
Int. J. Mol. Sci. 2025, 26(17), 8588; https://doi.org/10.3390/ijms26178588 - 3 Sep 2025
Viewed by 1098
Abstract
Despite intensive worldwide research efforts and multiple available therapeutic schemes for cancer treatment, cancer still remains a challenge, rendering the need for the discovery of new therapeutic approaches imperative. Photodynamic therapy (PDT) is a novel, non-invasive anti-cancer treatment that relies on the generation [...] Read more.
Despite intensive worldwide research efforts and multiple available therapeutic schemes for cancer treatment, cancer still remains a challenge, rendering the need for the discovery of new therapeutic approaches imperative. Photodynamic therapy (PDT) is a novel, non-invasive anti-cancer treatment that relies on the generation of reactive oxygen species (ROS) that are cytotoxic to cancer cells. ROS are generated by the interaction between a photosensitizer (PS) drug, a light source (primarily a laser), and oxygen. Although PDT offers the advantage of using non-ionizing radiation and bears great therapeutic potential, it has not yet been widely adopted in clinical practice. This review summarizes the new developments in the use of PDT in combination with chemotherapy, immunotherapy, and radiotherapy, giving emphasis to the combination of PDT with a novel type of therapy that also takes into account the tumor microenvironment (TME) to enhance treatment efficacy. TME-targeting therapies include strategies like hypoxia modulation, vascular normalization, and immune cell reprogramming. Interestingly, when combined with PDT, these therapies can improve therapeutic outcomes while reducing side effects, and nanoparticle-based delivery systems have demonstrated the potential to enhance PDT selectivity and efficiency. This review highlights PDT’s enormous potential in treating various cancer types and underscores the need for continued exploration of combination therapies to maximize its clinical impact. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

30 pages, 838 KB  
Review
Immunotherapy-Associated Cardiotoxicity: Current Insights and Future Directions for Precision Cardio-Oncology
by Eleni Stefanou, Georgios Tsitsinakis, Dimitra Karageorgou and Christo Kole
Cancers 2025, 17(17), 2838; https://doi.org/10.3390/cancers17172838 - 29 Aug 2025
Viewed by 1002
Abstract
Background/Objectives: Cancer immunotherapy has revolutionized the field of oncology by harnessing the immune system to attack cancer cells, increasing survival in a broad spectrum of malignancies. However, despite its positive therapeutic benefit, immunotherapy is also associated with a spectrum of adverse events [...] Read more.
Background/Objectives: Cancer immunotherapy has revolutionized the field of oncology by harnessing the immune system to attack cancer cells, increasing survival in a broad spectrum of malignancies. However, despite its positive therapeutic benefit, immunotherapy is also associated with a spectrum of adverse events affecting various vital organs, including the cardiovascular system. Methods: We conducted a comprehensive review of the available literature on the epidemiology, pathophysiological mechanisms, and current management approaches for cardiovascular adverse events associated with cancer immunotherapy. In addition, we evaluated emerging personalized strategies and interventions aimed at mitigating these risks and improving patient outcomes. Results: Immunotherapy is associated with a broad spectrum of potentially serious cardiovascular adverse events, including immune-mediated myocarditis, heart failure, arrhythmias, pericarditis, and accelerated atherosclerosis. Among these, immune checkpoint inhibitor-associated myocarditis is the most well characterized and potentially fatal form of cardiotoxicity, with reported mortality rates approaching 50%. Similarly, chimeric antigen receptor T-cell therapy, despite its powerful antitumor efficacy, is frequently associated with cytokine release syndrome—a profound immune activation that can lead to significant systemic and cardiovascular complications. In response to these challenges, several personalized strategies are currently under development, including artificial intelligence and machine learning approaches, genetic and transcriptomic profiling, novel biomarker discovery, and integrated risk scoring systems, all aimed at enhancing risk stratification and improving patient care. Conclusions: Cancer immunotherapy has been associated with a range of immune-related cardiac adverse events, both non-severe and severe. As such, it is critically important to adopt a personalized approach to patient management before, during, and after the administration of immunotherapy. Early recognition through heightened clinical vigilance, along with the implementation of individualized risk assessment tools, is essential for identifying patients at high risk of immunotherapy-induced cardiotoxicity. These strategies are imperative for optimizing patient outcomes and ensuring safe and effective cancer treatment. Full article
(This article belongs to the Special Issue Cancer Immunotherapy as Part of Precision Clinical Medicine)
Show Figures

Figure 1

29 pages, 453 KB  
Review
Comparison of Current Immunotherapy Approaches and Novel Anti-Cancer Vaccine Modalities for Clinical Application
by Elaine Meade and Mary Garvey
Int. J. Mol. Sci. 2025, 26(17), 8307; https://doi.org/10.3390/ijms26178307 - 27 Aug 2025
Viewed by 1350
Abstract
Despite improved diagnostic and treatment protocols, cancer remains a leading cause of morbidity and mortality globally. There are increasing rates of certain cancer types, including the highly drug-resistant colorectal cancer, in younger population cohorts. Therapeutic advances in oncology have led to the application [...] Read more.
Despite improved diagnostic and treatment protocols, cancer remains a leading cause of morbidity and mortality globally. There are increasing rates of certain cancer types, including the highly drug-resistant colorectal cancer, in younger population cohorts. Therapeutic advances in oncology have led to the application of immunotherapy-based agents, including checkpoint inhibitors, antibodies, and adoptive cell therapies. Such immunotherapy approaches are greatly hindered by the tumour microenvironment and lack of specificity. Therapeutic vaccines are an innovative and rapidly advancing area of oncology, having potential for application as mono- and combined therapy in clinical settings, offering long term efficacy against disease recurrence. Advances in vaccine production using gene editing and bioprocessing techniques allows for novel vaccine types, including protein-based subunit vaccines, virus-like particle vaccines, and viral vector- and nucleic acid-based (RNA and DNA) vaccines. Cancer vaccines are designed to deliver specific tumour antigens, which activate anti-cancer cytotoxic T cells and helper T cells to produce immune memory, providing long term anti-cancer action. When coupled with advances in machine learning and artificial intelligence, anti-cancer vaccines may revolutionise oncology protocols and improve patient prognosis. This review aims to discuss current immunotherapy options in cancer treatment and recent advances in anti-cancer vaccine modalities. Full article
(This article belongs to the Special Issue Hallmarks of Cancer: Emerging Insights and Innovations)
21 pages, 6603 KB  
Review
Novel Therapeutic Development for Nasopharyngeal Carcinoma
by Jongwoo Kim, Yunjoo Lee, Seoin Kim and Jong Chul Park
Curr. Oncol. 2025, 32(9), 479; https://doi.org/10.3390/curroncol32090479 - 26 Aug 2025
Viewed by 1138
Abstract
Nasopharyngeal carcinoma (NPC) is a rare malignancy with a distinct epidemiological pattern and is most often associated with Epstein–Barr virus (EBV). EBV plays a critical role in NPC pathogenesis, with viral proteins driving oncogenesis by altering immune regulation, apoptosis, and tumor progression. The [...] Read more.
Nasopharyngeal carcinoma (NPC) is a rare malignancy with a distinct epidemiological pattern and is most often associated with Epstein–Barr virus (EBV). EBV plays a critical role in NPC pathogenesis, with viral proteins driving oncogenesis by altering immune regulation, apoptosis, and tumor progression. The unique molecular landscape of NPC presents both challenges and opportunities for therapeutic development, particularly in the recurrent and metastatic (R/M) setting, where treatment resistance remains a major hurdle. While platinum-based chemotherapy has traditionally been the standard of care for R/M NPC, immune checkpoint inhibitors (ICIs) have emerged as a key component of treatment. However, both intrinsic and acquired resistance to PD-1/PD-L1 blockade underscore the need for alternative strategies, including modulation of alternative immune checkpoints and simultaneous engagement of non-redundant pathways to enhance responses and durability. Leveraging EBV-driven biology, emerging immunotherapeutic approaches, such as EBV-specific adoptive cellular therapies and therapeutic vaccines, aim to induce durable immunity to viral proteins. Additionally, targeted therapies including receptor tyrosine kinase inhibitors, epigenetic modulators, and antibody–drug conjugates are redefining precision medicine by selectively delivering cytotoxic agents to tumors. With growing insights into the biology of NPC and evolving therapeutics, the integration of immunotherapy, targeted agents, and biomarker-driven strategies is poised to transform NPC treatment, emphasizing biology-driven, multimodal approaches to optimize patient outcomes. Full article
(This article belongs to the Section Head and Neck Oncology)
Show Figures

Graphical abstract

15 pages, 1929 KB  
Article
Direct oHSV Infection Induces DC Maturation and a Tumor Therapeutic Response
by Doyeon Kim, Michael Kelly, Jack Hedberg, Alexia K. Martin, Ilse Hernandez-Aguirre, Yeaseul Kim, Lily R. Cain, Ravi Dhital and Kevin A. Cassady
Viruses 2025, 17(8), 1134; https://doi.org/10.3390/v17081134 - 19 Aug 2025
Viewed by 988
Abstract
Oncolytic herpes simplex virus (oHSV) is a promising cancer immunotherapy that induces tumor cell lysis and stimulates anti-tumor immunity. Our previous single-cell RNA sequencing analysis of oHSV-treated medulloblastoma tumors revealed expansion and activation of tumor-infiltrating dendritic cells (DCs), and direct oHSV infection of [...] Read more.
Oncolytic herpes simplex virus (oHSV) is a promising cancer immunotherapy that induces tumor cell lysis and stimulates anti-tumor immunity. Our previous single-cell RNA sequencing analysis of oHSV-treated medulloblastoma tumors revealed expansion and activation of tumor-infiltrating dendritic cells (DCs), and direct oHSV infection of DCs within the brain. While the therapeutic effects of oHSVs have been primarily attributed to tumor cell infection, we hypothesize that direct infection of DCs also contributes to therapeutic efficacy by promoting DC maturation and immune activation. Although the oHSV infection in DCs was abortive, it led to increased expression of major histocompatibility complex (MHC) class I/II and co-stimulatory molecules. oHSV-infected DCs activated naïve CD4+ and CD8+ T cells, inducing expression of CD69 and CD25. These primed T cells exhibited enhanced cytotoxicity against CT-2A glioma cells. Adoptive transfer of oHSV-infected DCs via subcutaneous injection near inguinal lymph nodes delayed tumor growth in a syngeneic CT-2A glioma model, independent of tumor viral replication and lysis. Mechanistically, our in vitro studies demonstrate that oHSV can directly infect and functionally activate DCs, enabling them to prime effective anti-tumor T cell responses. This study highlights the anti-tumor potential of leveraging oHSV-infected DCs to augment viroimmunotherapy as a cancer therapeutic. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

29 pages, 3651 KB  
Article
Donor Variability and Seeding Density Shape NK-Cell Proliferation and Surface Receptor Expression: Insights from an Integrated Phenotypic and Genetic Analysis
by Neele Kusch, Jonathan Storm, Antonia Macioszek, Cornelius Knabbe, Barbara Kaltschmidt and Christian Kaltschmidt
Cells 2025, 14(16), 1252; https://doi.org/10.3390/cells14161252 - 14 Aug 2025
Viewed by 805
Abstract
Natural killer (NK) cells are promising candidates for adoptive immunotherapy, but their clinical application requires standardized expansion protocols that yield functional cells in sufficient numbers. This study examined how initial seeding density and donor-intrinsic variability affect NK cell proliferation and receptor phenotype during [...] Read more.
Natural killer (NK) cells are promising candidates for adoptive immunotherapy, but their clinical application requires standardized expansion protocols that yield functional cells in sufficient numbers. This study examined how initial seeding density and donor-intrinsic variability affect NK cell proliferation and receptor phenotype during in vitro expansion in a G-Rex® 24-well plate under IL-2 stimulation. NK cells from healthy donors were analyzed longitudinally by flow cytometry, and targeted SNP sequencing of selected receptor genes (IL2RA, IL2RB, FCGR3A, NCR1, KLRK1, and ICAM-1) was performed to assess potential genetic contributions. A seeding density of 2.0 × 106 cells/cm2 promoted high expansion rates and favorable expression of activating receptors including CD16a, NKp46, and NKG2D. Nonetheless, marked inter-donor differences were observed. Some donors exhibited impaired proliferation and aberrant receptor expression, possibly associated with high-priority SNPs and distinct haplotype structures. Others showed robust proliferation despite the absence of identifiable genetic drivers, suggesting the involvement of variants in other genes or non-genetic mechanisms such as epigenetic priming or adaptive NK-cell differentiation. These results highlight the influence of both culture conditions and donor-intrinsic factors on NK-cell expansion outcomes. Integrating phenotypic and genetic analyses may improve the reproducibility and personalization of NK-cell-based manufacturing protocols for therapeutic use. Full article
(This article belongs to the Special Issue Natural Killer (NK) Cells in Immunity: Limitations and Potential)
Show Figures

Figure 1

27 pages, 1370 KB  
Review
Immune Organoids: A Review of Their Applications in Cancer and Autoimmune Disease Immunotherapy
by David B. Olawade, Emmanuel O. Oisakede, Eghosasere Egbon, Saak V. Ovsepian and Stergios Boussios
Curr. Issues Mol. Biol. 2025, 47(8), 653; https://doi.org/10.3390/cimb47080653 - 13 Aug 2025
Viewed by 2206
Abstract
Immune organoids have emerged as a ground-breaking platform in immunology, offering a physiologically relevant and controllable environment to model human immune responses and evaluate immunotherapeutic strategies. Derived from stem cells or primary tissues, these three-dimensional constructs recapitulate key aspects of lymphoid tissue architecture, [...] Read more.
Immune organoids have emerged as a ground-breaking platform in immunology, offering a physiologically relevant and controllable environment to model human immune responses and evaluate immunotherapeutic strategies. Derived from stem cells or primary tissues, these three-dimensional constructs recapitulate key aspects of lymphoid tissue architecture, cellular diversity, and functional dynamics, providing a more accurate alternative to traditional two-dimensional cultures and animal models. Their ability to mimic complex immune microenvironments has positioned immune organoids at the forefront of cancer immunotherapy development, autoimmune disease modeling, and personalized medicine. This narrative review highlights the advances in immune organoid technology, with a focus on their applications in testing immunotherapies, such as checkpoint inhibitors, CAR-T cells, and cancer vaccines. It also explores how immune organoids facilitate the study of autoimmune disease pathogenesis with insights into their molecular basis and support in high-throughput drug screening. Despite their transformative potential, immune organoids face significant challenges, including the replication of systemic immune interactions, standardization of fabrication protocols, scalability limitations, biological heterogeneity, and the absence of vascularization, which restricts organoid size and maturation. Future directions emphasize the integration of immune organoids with multi-organ systems to better replicate systemic physiology, the development of advanced biomaterials that closely mimic lymphoid extracellular matrices, the incorporation of artificial intelligence (AI) to optimize organoid production and data analysis, and the rigorous clinical validation of organoid-derived findings. Continued innovation and interdisciplinary collaboration will be essential to overcome existing barriers, enabling the widespread adoption of immune organoids as indispensable tools for advancing immunotherapy, vaccine development, and precision medicine. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

20 pages, 1155 KB  
Perspective
Historically Based Perspective on the Immunotherapy of Type 1 Diabetes: Where We Have Been, Where We Are, and Where We May Go
by Eugenio Cavalli, Giuseppe Rosario Pietro Nicoletti and Ferdinando Nicoletti
J. Clin. Med. 2025, 14(16), 5621; https://doi.org/10.3390/jcm14165621 - 8 Aug 2025
Viewed by 1302
Abstract
Systematic Background/Objectives: Type 1 diabetes mellitus (T1DM) is an autoimmune condition in which pancreatic β-cells are selectively destroyed, predominantly by autoreactive T lymphocytes. Despite decades of research, the achievement of durable immune tolerance remains elusive. This review presents a historically grounded and forward-looking [...] Read more.
Systematic Background/Objectives: Type 1 diabetes mellitus (T1DM) is an autoimmune condition in which pancreatic β-cells are selectively destroyed, predominantly by autoreactive T lymphocytes. Despite decades of research, the achievement of durable immune tolerance remains elusive. This review presents a historically grounded and forward-looking perspective on the evolution of immunotherapy in T1DM, from early immunosuppressive interventions to advanced precision-based cellular approaches. Specifically, we focus on systemic immunosuppressants (e.g., corticosteroids, cyclosporine), monoclonal antibodies (e.g., anti-CD3, anti-IL-1, anti-TNF), regulatory cell-based approaches (e.g., Tregs, CAR-Tregs, MDSCs), and β-cell replacement strategies using stem cell-derived islets. Methods: We analyzed major clinical and translational milestones in immunotherapy for T1DM, with particular attention to the transition from broad immunosuppression to targeted modulation of immune pathways. Emerging data on cell-based therapies, artificial intelligence (AI)-driven stratification, and personalized intervention timing have been incorporated to provide a comprehensive overview of current and future directions. Results: Initial therapies such as corticosteroids and cyclosporine offered proof-of-concept for immune modulation, yet suffered from relapse and toxicity. The introduction of monoclonal antibodies (e.g., teplizumab) marked a shift toward immune-specific intervention, particularly in stage 2 preclinical T1DM. More recent approaches include low-dose IL-2, checkpoint modulation, and antigen-specific tolerance strategies. Cellular therapies such as Treg adoptive transfer, chimeric antigen receptor Tregs (CAR-Tregs), and stem cell-derived islet replacements (e.g., VX-880) have shown promise in preserving β-cell function and modulating autoimmunity. Myeloid-derived suppressor cells (MDSCs), although still preclinical, represent a complementary avenue for immune tolerance induction. Concurrently, AI-based models are emerging as tools to stratify risk and personalize immunotherapeutic timing, enhancing trial design and outcome prediction. Conclusions: In conclusion, the historical progression from broad immunosuppression to precision-driven strategies underscores the importance of stage-specific, mechanism-based interventions in T1DM. The convergence of targeted biologics, regenerative cell therapies, and β-cell replacement approaches, supported by AI-enabled patient stratification, offers a realistic path toward durable immune tolerance and functional β-cell preservation. Continued integration of these modalities, coupled with rigorous long-term evaluation, will be essential to transform these scientific advances into sustained clinical benefit. Full article
(This article belongs to the Section Immunology & Rheumatology)
Show Figures

Figure 1

20 pages, 2095 KB  
Review
Exploiting TCR Repertoire Analysis to Select Therapeutic TCRs for Cancer Immunotherapy
by Ursule M. Demaël, Thunchanok Rirkkrai, Fatma Zehra Okus, Andreas Tiffeau-Mayer and Hans J. Stauss
Cells 2025, 14(15), 1223; https://doi.org/10.3390/cells14151223 - 7 Aug 2025
Viewed by 2081
Abstract
Over the past decade, numerous innovative immunotherapy strategies have transformed the treatment of cancer and improved the survival of patients unresponsive to conventional chemotherapy and radiation therapy. Immune checkpoint inhibition approaches aim to block negative regulatory pathways that limit the function of endogenous [...] Read more.
Over the past decade, numerous innovative immunotherapy strategies have transformed the treatment of cancer and improved the survival of patients unresponsive to conventional chemotherapy and radiation therapy. Immune checkpoint inhibition approaches aim to block negative regulatory pathways that limit the function of endogenous T cells, while adoptive cell therapy produces therapeutic T cells with high functionality and defined cancer specificity. While CAR engineering successfully targets cancer surface antigens, TCR engineering enables targeting of the entire cancer proteome, including mutated neo-antigens. To date, TCR engineering strategies have focused on the identification of target cancer antigens recognised by well-characterised therapeutic TCRs. In this review, we explore whether antigen-focused approaches could be complemented by TCR-focused approaches, whereby information of the TCR repertoire of individual patients provides the basis for selecting TCRs to engineer autologous T cells for adoptive cell therapy. We discuss how TCR clonality profiles, distribution in T cell subsets, and bioinformatic screening against continuously improving TCR databases can guide the selection of TCRs for therapeutic application. We further outline in vitro approaches to prioritise TCR candidates to confirm cancer reactivity and exclude recognition of healthy autologous cells, which could provide validation for their therapeutic use even when the target antigen remains unknown. Full article
Show Figures

Figure 1

26 pages, 1037 KB  
Review
From Spice to Survival: The Emerging Role of Curcumin in Cancer Immunotherapy
by Jacob M. Parker, Lei Zhao, Trenton G. Mayberry, Braydon C. Cowan, Mark R. Wakefield and Yujiang Fang
Cancers 2025, 17(15), 2491; https://doi.org/10.3390/cancers17152491 - 28 Jul 2025
Cited by 1 | Viewed by 1791
Abstract
Immunotherapy has revolutionized cancer treatments but still faces challenges, particularly with response rates plateauing around 20–40%. This is primarily due to the immunosuppressive nature of the tumor microenvironment (TME) and the lack of required antigen availability. This emphasizes finding agents that can improve [...] Read more.
Immunotherapy has revolutionized cancer treatments but still faces challenges, particularly with response rates plateauing around 20–40%. This is primarily due to the immunosuppressive nature of the tumor microenvironment (TME) and the lack of required antigen availability. This emphasizes finding agents that can improve these response rates, and curcumin has emerged as a promising natural compound with the potential to reengineer the TME by establishing its anti-inflammatory, antioxidant, pro-apoptotic, and anti-angiogenic effects. This review synthesizes the mechanisms by which curcumin affects major oncogenic pathways to synergize with immunotherapies, including immune checkpoint inhibitors, adoptive cell therapies, and cancer vaccinations. Finally, we discuss future directions, current clinical trials, and bioavailability issues with utilizing curcumin clinically. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

Back to TopTop