Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,797)

Search Parameters:
Keywords = adsorption energies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 16301 KB  
Article
Selective Adsorption Performance of a High-Capacity Mesoporous Silica Aerogel for Fluoroquinolones
by Yifan Zhao, Lin Gu, Zhihan Liu, Junyu Zhang, Wei Xia, Peng Wang, Wenlei Zhai, Guangxin Yang, Xiaosheng Shen, Chengqi Fan and Cong Kong
Environments 2025, 12(9), 300; https://doi.org/10.3390/environments12090300 - 28 Aug 2025
Abstract
Fluoroquinolone antibiotics (FQs) are widely applied in veterinary practice and animal husbandry and frequently persist in organic waste liquids (OWLs), creating substantial environmental and health risks when untreated. A high-capacity mesoporous silica aerogel (SA-60) was produced via a cost-effective sol–gel route from water [...] Read more.
Fluoroquinolone antibiotics (FQs) are widely applied in veterinary practice and animal husbandry and frequently persist in organic waste liquids (OWLs), creating substantial environmental and health risks when untreated. A high-capacity mesoporous silica aerogel (SA-60) was produced via a cost-effective sol–gel route from water glass, followed by ambient pressure drying at 60 °C for 6 h. SA-60 exhibited pronounced selectivity, providing a maximum adsorption capacity of 630.18 mg·g−1 for enrofloxacin (ENR) in acetonitrile. Adsorption efficiency was weakly dependent on pH. Mechanistic analysis indicated combined physical and chemical interactions, with intra-particle diffusion governing the overall rate. Thermodynamic evaluation showed a spontaneous and endothermic process for ENR adsorption. Organic solvent type and water content were major determinants of adsorption efficiency. Durable performance was observed, with capacity retention above 80% after five adsorption-desorption cycles. The mesoporous architecture (surface area 249.21 m2·g−1; average pore diameter 10.81 nm) supported the high uptake. These results identify SA-60 as a sustainable adsorbent for removing hazardous FQs from OWLs, offering a simple, energy-efficient approach for the source-level control of antibiotic pollution and improved environmental management. Full article
46 pages, 1370 KB  
Review
An Overview of Applications, Toxicology and Separation Methods of Lithium
by Ma. del Rosario Moreno-Virgen, Blanca Paloma Escalera-Velasco, Hilda Elizabeth Reynel-Ávila, Herson Antonio González-Ponce, Alvaro Rodrigo Videla-Leiva, Arturo Ignacio Morandé-Thompson, Marco Ludovico-Marques, Noemi Sogari and Adrián Bonilla-Petriciolet
Minerals 2025, 15(9), 917; https://doi.org/10.3390/min15090917 (registering DOI) - 28 Aug 2025
Abstract
Lithium has emerged as a critical element in contemporary society. It has been classified as an indispensable feedstock in the manufacture of lithium-ion batteries for electric mobility, portable electronics, and stationary energy storage systems, which are essential for the integration of intermittent renewable [...] Read more.
Lithium has emerged as a critical element in contemporary society. It has been classified as an indispensable feedstock in the manufacture of lithium-ion batteries for electric mobility, portable electronics, and stationary energy storage systems, which are essential for the integration of intermittent renewable energy sources. This metal also has other industrial applications and is projected to support future developments in semiconductor and aerospace technology. However, the exponential growth in global Li demand driven by energy transition and technological innovation requires a resilient and sustainable supply chain where both technological and environmental challenges should be addressed. This review discusses and analyzes some of current challenges associated with the Li supply chain given a particular emphasis on its separation methods. First, statistics of the Li market and its applications are provided, including the main sources from which to recover Li and the environmental impact associated with conventional Li extraction techniques from mineral ores and salar brines. Different separation methods (e.g., solvent extraction, adsorption, ion exchange, membrane technology) to recover Li from different sources are reviewed. Recent advances and developments in these separation strategies are described, including a brief analysis of their main limitations and capabilities. The importance and potential of recycling strategies for end-of-life batteries and industrial residues are also highlighted. A perspective on the gaps to be resolved with the aim of consolidating the Li supply chain to support the energy transition agenda is provided in this review. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
22 pages, 2299 KB  
Article
Characterization of Rice Husk-Based Adsorbent for Iodine and Methylene Blue Solutions
by María Lorena Cadme Arévalo, Raisha Lorena Campisi Cadme, Thais Sarah Arreaga Cadme, Ronald Oswaldo Villamar-Torres, Javier Fernández González, José Benavente Herrera, Alda Geijo López, Sesan Abiodun Aransiola and Naga Raju Maddela
Processes 2025, 13(9), 2748; https://doi.org/10.3390/pr13092748 - 28 Aug 2025
Abstract
This study focused on the comprehensive characterization of the adsorbent obtained from rice husk, which was selected for its high adsorption capacity in iodine solution (IS) and methylene blue solution (MBS). This was achieved with adsorbents prepared by a combined treatment involving calcium [...] Read more.
This study focused on the comprehensive characterization of the adsorbent obtained from rice husk, which was selected for its high adsorption capacity in iodine solution (IS) and methylene blue solution (MBS). This was achieved with adsorbents prepared by a combined treatment involving calcium carbonate prior to carbonization and activation with phosphoric acid. Characterization was performed using advanced techniques, such as scanning electron microscopy (SEM), atomic force microscopy (AFM), laser light diffraction and energy-dispersive X-ray spectroscopy (EDS), which allowed for the evaluation of the adsorbent’s microstructure and composition. The results revealed a complex structure of the adsorbents with interconnected pores, which facilitates efficient adsorption in IS and MBS and the standard indicators to evaluate adsorption capacity. The novelty of this study lies in the application of advanced characterization techniques to optimize the adsorbent properties and understand how preparation conditions affect the adsorbent’s microstructure. The characterized adsorbent materials in this study presented great potential for applications in water treatment and industrial processes, offering an economical and environmentally sustainable solution. Promoting the use of rice husks in the production of adsorbents contributes to the circular economy, reducing production costs and environmental pollution. The results suggested that these materials are effective in the removal of pollutants, which make them relevant for practical applications in water and soil bioremediation. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Figure 1

14 pages, 5572 KB  
Article
Ir- and Pt-Doped InTe Monolayers as Potential Sensors for SF6 Decomposition Products: A DFT Investigation
by Juanjuan Tan, Shuying Huang, Jianhong Dong, Jiaming Fan, Dejian Hou and Shaomin Lin
Materials 2025, 18(17), 4022; https://doi.org/10.3390/ma18174022 - 28 Aug 2025
Abstract
The burgeoning demand for reliable fault detection in high-voltage power equipment necessitates advanced sensing materials capable of identifying trace sulfur hexafluoride SF6 decomposition products (SDPs). In this work, the first-principles calculations were employed to comprehensively evaluate the potential of Ir- and Pt-doped [...] Read more.
The burgeoning demand for reliable fault detection in high-voltage power equipment necessitates advanced sensing materials capable of identifying trace sulfur hexafluoride SF6 decomposition products (SDPs). In this work, the first-principles calculations were employed to comprehensively evaluate the potential of Ir- and Pt-doped InTe (Ir-InTe and Pt-InTe) monolayers as high-performance gas sensors for the four specific SDPs (H2S, SO2, SOF2, SO2F2). The results reveal that Ir and Pt atoms are stably incorporated into the hollow sites of the InTe monolayer, significantly reducing the intrinsic bandgap from 1.536 eV to 0.278 eV (Ir-InTe) and 0.593 eV (Pt-InTe), thereby enhancing the material’s conductivity. Furthermore, Ir-InTe exhibits selective chemisorption for H2S, SO2, and SOF2, with adsorption energies exceeding −1.35 eV, while Pt-InTe shows chemisorption capability for all four SDPs. These interactions are further supported by significant charge transfer and orbital hybridization. Crucially, these interactions induce notable bandgap changes, with Ir-InTe showing up to a 65.5% increase (for SOF2) and Pt-InTe showing an exceptional 105.2% increase (for SO2F2), alongside notable work function variations. Furthermore, recovery time analysis indicates that Ir-InTe is suitable for reusable H2S sensing at 598 K (0.24 s), whereas Pt-InTe offers recyclable detection of SO2 (5.27 s) and SOF2 (0.16 s) at the same temperature. This work provides theoretical guidance for the development of next-generation InTe-based gas sensors for the fault diagnosis in high-voltage power equipment. Full article
(This article belongs to the Special Issue Ab Initio Modeling of 2D Semiconductors and Semimetals)
Show Figures

Figure 1

13 pages, 2442 KB  
Article
Sustainable Green Synthesis of Fe3O4 Nanocatalysts for Efficient Oxygen Evolution Reaction
by Erico R. Carmona, Anandhakumar Sukeri, Ronald Nelson, Cynthia Rojo, Arnoldo Vizcarra, Aliro Villacorta, Felipe Carevic, Ricard Marcos, Bernardo Arriaza, Nelson Lara, Tamara Martinez and Lucas Patricio Hernández-Saravia
Nanomaterials 2025, 15(17), 1317; https://doi.org/10.3390/nano15171317 - 27 Aug 2025
Abstract
This work focuses on the sustainable green synthesis of magnetic iron oxide nanoparticles (Fe3O4NPs) using bioreductants derived from orange peel extracts for application in the efficient oxygen evolution reactions (OER). The synthesized catalysts were characterized using X-ray diffraction analysis, [...] Read more.
This work focuses on the sustainable green synthesis of magnetic iron oxide nanoparticles (Fe3O4NPs) using bioreductants derived from orange peel extracts for application in the efficient oxygen evolution reactions (OER). The synthesized catalysts were characterized using X-ray diffraction analysis, field emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDS), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and UV–visible spectroscopy. The Fe3O4NPs exhibit a well-defined spherical morphology with a larger Brunauer–Emmett–Teller surface area and a significant electrochemically active surface area. The green synthesis using orange peel extracts leads to an excellent electrocatalytic activity of the apparent spherical Fe3O4NPs (diameter of 9.62 ± 0.07 nm), which is explored for OER in an alkaline medium (1.0 M KOH) using linear-sweep and cyclic voltammetry techniques. These nanoparticles achieved a benchmark current density of 10 mA cm−2 at a low overpotential of 0.3 V versus RHE, along with notable durability and stability. The outstanding OER electrocatalytic activity is attributed to their unique morphology, which offers large surface area and an ideal porous structure that enhances the adsorption and activation of reactive species. Furthermore, structural defects within the nanoparticles facilitate efficient electron transfer and migration of these species, further accelerating the OER process. Full article
(This article belongs to the Special Issue Hydrogen Production and Evolution Based on Nanocatalysts)
Show Figures

Figure 1

14 pages, 5390 KB  
Article
An S-Infused/S, F-Codoped PVDF-Derived Carbon as a High-Performance Anode for Sodium-Ion Batteries
by Jianjiao Wang, Qian Zhang, Pengyu Han, Jiakun Luo and Kui-Qing Peng
Materials 2025, 18(17), 4018; https://doi.org/10.3390/ma18174018 - 27 Aug 2025
Abstract
Heteroatom doping is an effective strategy for improving the sodium storage performance of hard carbon. However, the use of sulfur and fluorine codoped carbon materials as anodes for sodium-ion batteries has not been reported. Here, an S-infused/S, F-codoped PVDF-derived carbon SFC5 was prepared [...] Read more.
Heteroatom doping is an effective strategy for improving the sodium storage performance of hard carbon. However, the use of sulfur and fluorine codoped carbon materials as anodes for sodium-ion batteries has not been reported. Here, an S-infused/S, F-codoped PVDF-derived carbon SFC5 was prepared by one-step carbonization of PVDF and synchronously used as an anode for a sodium-ion battery. The prepared SFC5 containing 10.11 at% S and 9.54 at% F is a short-range ordered amorphous carbon with a microporous structure. Owing to the structural advantages of S, F codoping, and the high specific capacity of S, SFC5 exhibited an outstanding sodium storage performance of 365 mAh g−1 after 200 cycles at 50 mA g−1 and 212 mAh g−1 after 500 cycles at 400 mA g−1. Moreover, theoretical calculations based on density functional theory (DFT) verify that S and F codoping can considerably reduce the Na+ adsorption energy and increase the electronic conductivity of SFC5. The current study presents a viable and facile approach to prepare high-performance, low-cost anode materials for SIBs, supported by empirical evidence and theoretical computations. Full article
(This article belongs to the Special Issue Low Dimensional Materials for Batteries and Supercapacitors)
Show Figures

Figure 1

16 pages, 2240 KB  
Article
Defect-Engineered MnO2@Ni Foam Electrode for Zinc-Ion Batteries Toward Mobile Robotics Applications
by Shilin Li, Dong Xie, Taoyun Zhou, Qiaomei Zhao, Muzhou Liu and Xinyu Li
Nanomaterials 2025, 15(17), 1312; https://doi.org/10.3390/nano15171312 - 26 Aug 2025
Abstract
Aqueous zinc-ion batteries (AZIBs) have gained significant attention as promising candidates for next-generation energy storage systems, especially in mobile robotics, due to their inherent safety, environmental friendliness, and low cost. However, the practical application of AZIBs is often hindered by slow Zn2+ [...] Read more.
Aqueous zinc-ion batteries (AZIBs) have gained significant attention as promising candidates for next-generation energy storage systems, especially in mobile robotics, due to their inherent safety, environmental friendliness, and low cost. However, the practical application of AZIBs is often hindered by slow Zn2+ diffusion and the poor structural stability of the cathode materials under high-rate or long-term operation. To address these challenges, a defect-engineered, binder-free MnO2 electrode, with a MnO2 loading of 1.35 mg·cm−2, is synthesized via in situ hydrothermal growth of ultrathin MnO2 nanosheets directly on a 3D conductive nickel foam scaffold, followed by reductive annealing to introduce abundant oxygen vacancies. These oxygen-rich defect sites significantly enhance Zn2+ adsorption, improve charge transfer kinetics, and contribute to enhanced pseudocapacitive behavior, further improving overall electrochemical performance. The intimate contact between the MnO2 and Ni substrate ensures efficient electron transport and robust structural integrity during repeated cycling. With this synergistic architecture, the MnO2@Ni electrode achieves a high specific capacity of 122.9 mAh·g−1 at 1 A·g−1, demonstrating excellent cycling durability with 94.24% capacity retention after 800 cycles and nearly 99% coulombic efficiency. This study offers a scalable strategy for designing high-performance, structurally stable Zn-ion battery cathodes with improved rate capability, making it a promising candidate for energy-intensive mobile robotic and flexible electronic systems. Full article
(This article belongs to the Special Issue Novel Electrode Materials for Solid-State Batteries)
Show Figures

Figure 1

23 pages, 1632 KB  
Review
Borophene: Synthesis, Properties and Experimental H2 Evolution Potential Applications
by Eric Fernando Vázquez-Vázquez, Yazmín Mariela Hernández-Rodríguez, Omar Solorza-Feria and Oscar Eduardo Cigarroa-Mayorga
Crystals 2025, 15(9), 753; https://doi.org/10.3390/cryst15090753 - 25 Aug 2025
Viewed by 131
Abstract
Borophene, a two-dimensional (2D) allotrope of boron, has emerged as a highly promising material owing to its exceptional mechanical strength, electronic conductivity, and diverse structural phases. Unlike graphene and other 2D materials, borophene exhibits inherent anisotropy, flexibility, and metallicity, offering unique opportunities for [...] Read more.
Borophene, a two-dimensional (2D) allotrope of boron, has emerged as a highly promising material owing to its exceptional mechanical strength, electronic conductivity, and diverse structural phases. Unlike graphene and other 2D materials, borophene exhibits inherent anisotropy, flexibility, and metallicity, offering unique opportunities for advanced nanotechnological applications. This review presents a comprehensive summary of recent progress in borophene synthesis methods, highlighting both bottom–up strategies such as chemical vapor deposition (CVD) and molecular beam epitaxy (MBE), and top–down approaches, including liquid-phase exfoliation and sonochemical techniques. A key challenge discussed is the stabilization of borophene’s polymorphs, as bulk boron’s non-layered structure complicates exfoliation. The influence of substrates and doping strategies on structural stability and phase control is also explored. Moreover, the intrinsic physicochemical properties of borophene, including its high flexibility, oxidation resistance, and anisotropic charge transport, were examined in relation to their implications for electronic, catalytic, and sensing devices. Particular attention was given to borophene’s performance in hydrogen storage and hydrogen evolution reactions (HERs), where functionalization with alkali and transition metals significantly enhances H2 adsorption energy and storage capacity. Studies demonstrate that certain borophene–metal composites, such as Ti- or Li-decorated borophene, can achieve hydrogen storage capacities exceeding 10 wt.%, surpassing the U.S. Department of Energy targets for hydrogen storage materials. Despite these promising characteristics, large-scale synthesis, long-term stability, and integration into practical systems remain open challenges. This review identifies current research gaps and proposes future directions to facilitate the development of borophene-based energy solutions. The findings support borophene’s strong potential as a next-generation material for clean energy applications, particularly in hydrogen production and storage systems. Full article
(This article belongs to the Special Issue Advances in Nanocomposites: Structure, Properties and Applications)
Show Figures

Figure 1

12 pages, 4939 KB  
Article
Synergistic Tuning of Active Sites and π-Conjugation in 2D Conductive MOFs Boosts Uric Acid Electrosensing
by Yanli Liu, Yifan Fu, Haitong Zhang, Lingyu Wang, Xuejing Lin and Jingjuan Liu
Chemosensors 2025, 13(9), 318; https://doi.org/10.3390/chemosensors13090318 - 25 Aug 2025
Viewed by 162
Abstract
Uric acid (UA) detection is critical for human health monitoring, necessitating the development of electrochemical sensing electrodes suitable for physiological environments. This study evaluated four 2D conductive metal–organic frameworks (2D c-MOFs), namely Cu-HHTP, Ni-HHTP, Cu-HAB, and Ni-HAB, which share identical graphene-like 2D [...] Read more.
Uric acid (UA) detection is critical for human health monitoring, necessitating the development of electrochemical sensing electrodes suitable for physiological environments. This study evaluated four 2D conductive metal–organic frameworks (2D c-MOFs), namely Cu-HHTP, Ni-HHTP, Cu-HAB, and Ni-HAB, which share identical graphene-like 2D sheet structures but differ in π-conjugation extent and catalytic active centers [MX4] (M = Cu or Ni; X = O or NH) as electrosensing electrodes. Electrochemical sensing performance was compared by detecting UA in phosphate-buffered saline (PBS). Herein, the Ni-HHTP electrode demonstrated superior sensitivity (6.79 μA·μM−1·cm−2), the lowest oxidation potential (0.272 V), and the lowest detection limit (0.44 μM). Langmuir adsorption isotherm analysis revealed that the Ni-HHTP electrode possesses the highest surface coverage (ΓA) (5061.16 pmol cm−2) and the most favorable Gibbs adsorption free energy (ΔG°) (−18.775 kJ mol−1), indicating its strongest UA adsorption capacity and molecular interaction. This enhanced performance is attributed to the optimal synergy between [NiO4] catalytic centers and extended ligand π-conjugation, facilitating greater analyte adsorption and electron transfer efficiency. This work establishes clear structure–performance relationships for 2D c-MOF electrodes in UA detection, providing key insights for designing advanced electrosensing materials. Full article
(This article belongs to the Special Issue New Electrodes Materials for Electroanalytical Applications)
Show Figures

Graphical abstract

28 pages, 731 KB  
Perspective
Prospects of Novel Technologies for PFAS Destruction in Water and Wastewater
by Andrea G. Capodaglio
Appl. Sci. 2025, 15(17), 9311; https://doi.org/10.3390/app15179311 - 25 Aug 2025
Viewed by 213
Abstract
PFASs, compounds to which the C-F bond—the strongest known in nature—bestows high resistance to degradation, have been detected in surface and groundwater worldwide, including drinking water supplies. Current regulations on long-chain PFASs resulted in the shift to short-chain PFASs in industrial uses, with [...] Read more.
PFASs, compounds to which the C-F bond—the strongest known in nature—bestows high resistance to degradation, have been detected in surface and groundwater worldwide, including drinking water supplies. Current regulations on long-chain PFASs resulted in the shift to short-chain PFASs in industrial uses, with their increasing environmental detection. Currently, suggested BATs for PFAS removal from aqueous solutions include mainly adsorption or membrane filtration; however, different response behavior to even simple treatment was observed concerning long- and short-chain PFAS molecules. In order to permanently destroy (mineralize) PFASs and their precursors, treatment technologies that can deliver sufficiently high energy to crack the C-F bond are needed. This paper discusses current PFAS removal technologies and state of the art advanced methods for PFAS removal and destruction, critically discussing their efficiency, applicability, emerging issues, and future prospects. Full article
(This article belongs to the Special Issue Promising Sustainable Technologies in Wastewater Treatment)
Show Figures

Figure 1

19 pages, 4277 KB  
Article
Cu/Bi-NC Composites Derived from Bimetallic MOFs for Efficient and Stable Capture of Multiform Iodine
by Jie Ren, Aotian Gu, Peng Wang, Chunhui Gong, Kaiwei Chen, Ping Mao, Yan Jiao, Kai Chen and Yi Yang
Processes 2025, 13(9), 2678; https://doi.org/10.3390/pr13092678 - 22 Aug 2025
Viewed by 253
Abstract
With the popularization of nuclear energy in the field of energy application, the effective removal of radioactive iodine isotopes is crucial for the long-term development of nuclear energy. In this paper, bimetallic MOFs with different Cu/Bi ratios were synthesized by a simple solvothermal [...] Read more.
With the popularization of nuclear energy in the field of energy application, the effective removal of radioactive iodine isotopes is crucial for the long-term development of nuclear energy. In this paper, bimetallic MOFs with different Cu/Bi ratios were synthesized by a simple solvothermal method, and a bimetallic nano-adsorbent Cux/Bi10−x-NC was prepared by one-step calcination. Adsorption experiments show that Cux/Bi10−x-NC exhibits excellent adsorption performance for iodide ions, gaseous iodine, and I2 in cyclohexane solution, with the maximum adsorption capacities reaching up to 484.08 and 233.11 mg g−1, respectively. Through the characterization of the material system before and after adsorption, this excellent adsorption performance is attributed to the synergistic effect between Cu and Bi, as well as the highly dispersed adsorption active sites derived from the MOF template. Therefore, the prepared Cux/Bi10−x-NC has great potential in the efficient and stable capture of various forms of iodine. Full article
(This article belongs to the Special Issue Metal–Organic Frameworks (MOFs) and Applications in Adsorption)
Show Figures

Figure 1

26 pages, 1505 KB  
Review
Application of Electrochemical Oxidation for Urea Removal: A Review
by Juwon Lee, Jeongbeen Park, Intae Shim, Jae-Wuk Koo, Sook-Hyun Nam, Eunju Kim, Seung-Min Park and Tae-Mun Hwang
Processes 2025, 13(8), 2660; https://doi.org/10.3390/pr13082660 - 21 Aug 2025
Viewed by 347
Abstract
The consistent quality control of ultrapure water (UPW) in semiconductor manufacturing depends on removing trace organonitrogen compounds such as urea. Due to its high solubility, chemical stability, and neutral polarity, urea is inadequately removed by conventional processes. Even at low concentrations, it elevates [...] Read more.
The consistent quality control of ultrapure water (UPW) in semiconductor manufacturing depends on removing trace organonitrogen compounds such as urea. Due to its high solubility, chemical stability, and neutral polarity, urea is inadequately removed by conventional processes. Even at low concentrations, it elevates total organic carbon (TOC) and reduces electrical resistivity. The use of reclaimed water as a sustainable feed stream amplifies this challenge because its nitrogen content is variable and persistent. Conventional methods such as reverse osmosis, ultraviolet oxidation, and ion exchange remain limited in treating urea due to its uncharged, low-molecular-weight nature. This review examines the performance and limitations of these processes and explores electrochemical oxidation (EO) as an alternative. Advances in EO are analyzed with attention to degradation pathways, electrode design, reaction selectivity, and operational parameters. Integrated systems combining EO with membrane filtration, adsorption, or chemical oxidation are also reviewed. Although EO shows promise for selectively degrading urea, its application in UPW production is still in its early stages. Challenges such as low conductivity, byproduct formation, and energy efficiency must be addressed. The paper first discusses urea in reclaimed water and associated removal challenges, then examines both conventional and emerging treatment technologies. Subsequent sections delve into the mechanisms and optimization of EO, including electrode materials and operational parameters. The review concludes with a summary of main findings and a discussion of future research directions, aiming to provide a comprehensive foundation for validating EO as a viable technology for producing UPW from reclaimed water. Full article
(This article belongs to the Special Issue Addressing Environmental Issues with Advanced Oxidation Technologies)
Show Figures

Figure 1

38 pages, 3980 KB  
Review
Current State of Research on the Three-Dimensional Particle Electrode System for Treating Organic Pollutants from Wastewater Streams: Particle Electrode, Degradation Mechanism, and Synergy Effects
by Guene L. Razack, Jiayi Wang, Xian Zhao, Worou Chabi Noel, Hanjun Sun, Jiwei Pang, Jie Ding, Wenshuo Wang, Xiaoyin Yang, Chenhao Cui, Yani Zang, Yuqian Wang, Geng Luo, Nanqi Ren and Shanshan Yang
Water 2025, 17(16), 2490; https://doi.org/10.3390/w17162490 - 21 Aug 2025
Viewed by 287
Abstract
As the demand for effective wastewater treatment continues to rise, the application of three-dimensional (3D) electrochemical particle electrodes for the removal of organic compounds from industrial wastewater has emerged as a promising solution. This approach offers significant advantages, including high treatment efficiency, operational [...] Read more.
As the demand for effective wastewater treatment continues to rise, the application of three-dimensional (3D) electrochemical particle electrodes for the removal of organic compounds from industrial wastewater has emerged as a promising solution. This approach offers significant advantages, including high treatment efficiency, operational flexibility, high current efficiency, low energy consumption, and the ability to degrade non-biodegradable organic pollutants, ultimately mineralizing them. This review provides a comprehensive and systematic exploration of the research and development of particle electrodes for use in 3D electrochemical reactors in wastewater treatment. The pivotal role of particle electrodes in removing organic contaminants from wastewater was highlighted, with most materials used as particle electrodes characterized by a specific surface area and well-defined porous structure, both of which were thoroughly discussed. Through the synergistic mechanism of adsorption, the particle electrode aids in the breakdown of organic contaminants, demonstrating the 3D particle electrode’s effectiveness in facilitating multiple oxidation mechanisms for organic wastewater treatment. Furthermore, this review categorized various particle electrode types used in 3D electrochemical wastewater treatment based on their primary components or carriers and the presence or absence of catalysts. Finally, the current status and prospects for the development and enhancement of 3D electrode particles were presented. This review offers valuable insights into the application of the 3D electrode process for environmental water treatment. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

16 pages, 1518 KB  
Article
Comparative Simulation of Solar Adsorption and Absorption Cooling Systems with Latent Heat Storage with Erythritol and MgCl2·6H2O
by Rosenberg J. Romero, Fernando Lara, Eduardo Venegas-Reyes, Moisés Montiel-Gonzalez and Jesús Cerezo
Processes 2025, 13(8), 2655; https://doi.org/10.3390/pr13082655 - 21 Aug 2025
Viewed by 722
Abstract
The energy requirements for conditioning spaces have been increasing primarily due to population growth and climate change. This paper shows a comparison between an adsorption (ADC) and absorption cooling (ABC) systems to keep a building below the 25 °C set-point in dynamic conditions, [...] Read more.
The energy requirements for conditioning spaces have been increasing primarily due to population growth and climate change. This paper shows a comparison between an adsorption (ADC) and absorption cooling (ABC) systems to keep a building below the 25 °C set-point in dynamic conditions, utilizing a latent heat storage tank with MgCl2·6H2O and erythritol, and employing evacuated tube and parabolic trough collectors. The storage tank geometry is a plate heat exchanger. An auxiliary system was incorporated to control the temperature range of the solar cooling systems. The results showed that the coefficient of performance was kept around 0.40–0.60 and 0.70 for adsorption and absorption cooling, respectively. The latent heat storage tank with erythritol captured more solar energy than MgCl2·6H2O. A maximum solar fraction of 0.96 was obtained with MgCl2·6H2O, a thickness of 0.15 m, 20 m2 of parabolic trough collector area, and absorption cooling, while the energy supply was fully satisfied with a solar collector with erythritol, a thickness of 0.1 m, 13 m2 of parabolic trough area, and absorption cooling. In general, erythritol obtained better results of solar collector fractions than MCHH; however, it has less thermal stability than MgCl2·6H2O, and the cost is higher. Full article
Show Figures

Figure 1

21 pages, 4856 KB  
Article
High-Pressure Catalytic Ethanol Reforming for Enhanced Hydrogen Production Using Efficient and Stable Nickel-Based Catalysts
by Feysal M. Ali, Pali Rosha, Karen Delfin, Dean Hoaglan, Robert Rapier, Mohammad Yusuf and Hussameldin Ibrahim
Catalysts 2025, 15(8), 795; https://doi.org/10.3390/catal15080795 - 21 Aug 2025
Viewed by 329
Abstract
The urgent need to address the climate crisis demands a swift transition from fossil fuels to renewable energy. Clean hydrogen, produced through ethanol steam reforming (ESR), offers a viable solution. Traditional ESR operates at atmospheric pressure, requiring costly separation and compression of hydrogen. [...] Read more.
The urgent need to address the climate crisis demands a swift transition from fossil fuels to renewable energy. Clean hydrogen, produced through ethanol steam reforming (ESR), offers a viable solution. Traditional ESR operates at atmospheric pressure, requiring costly separation and compression of hydrogen. High-pressure ESR, however, improves hydrogen purification, streamlines processes like pressure swing adsorption, and reduces operational costs while enhancing energy efficiency. High-pressure ESR also enables compact reactor designs, minimizing equipment size and land use by compressing reactants into smaller volumes. This study evaluates two nickel-based commercial catalysts, AR-401 and NGPR-2, under high-pressure ESR conditions. Key parameters, including reaction temperature, steam-to-ethanol ratio, and weight hourly space velocity, were optimized. At 30 bars, 700 °C, and a steam-to-ethanol ratio of 9, both catalysts demonstrated complete ethanol conversion, with hydrogen selectivity of 65–70% and yields of 4–4.5 moles of H2 per mole of ethanol. Raising the temperature to 850 °C improved hydrogen selectivity to 74% and yielded 5.2 moles of H2 per mole. High-pressure ESR using renewable ethanol provides a scalable, efficient pathway for hydrogen production, supporting sustainable energy solutions. Full article
Show Figures

Figure 1

Back to TopTop