Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,392)

Search Parameters:
Keywords = adsorption modelling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3697 KB  
Article
From Waste to Resource: Phosphorus Adsorption on Posidonia oceanica Ash and Its Application as a Soil Fertilizer
by Juan A. González, Jesús Mengual and Antonio Eduardo Palomares
AgriEngineering 2025, 7(10), 333; https://doi.org/10.3390/agriengineering7100333 - 3 Oct 2025
Abstract
Phosphorus-based compounds play a crucial role in agricultural productivity. However, excessive phosphorus discharge into water bodies contributes to eutrophication. This study proposes a circular approach for phosphorus recovery and reuse through the thermal valorization of Posidonia oceanica residues, an abundant marine biomass along [...] Read more.
Phosphorus-based compounds play a crucial role in agricultural productivity. However, excessive phosphorus discharge into water bodies contributes to eutrophication. This study proposes a circular approach for phosphorus recovery and reuse through the thermal valorization of Posidonia oceanica residues, an abundant marine biomass along Mediterranean coasts. After energy recovery from this waste (12.3 MJ kg−1), the resulting ash was assessed as an effective adsorbent for aqueous phosphorus removal. Batch experiments were conducted to evaluate adsorption kinetics and equilibrium, considering the influence of key operational variables, such as temperature, pH, and adsorbent dosage. Under optimal conditions, the material achieved a maximum retention of approximately 55–60 mgP g−1. The Freundlich model successfully describes the equilibrium isotherm data, indicating a heterogeneous adsorbent and an overall endothermic process. Phosphorus removal was favored at basic pH values (9.5–10.5), where the monohydrogen phosphate predominates. Leaching tests further revealed that saturated material releases phosphorus and other minerals in a manner clearly dependent on the final pH, with higher phosphorus release under more acidic conditions. These results suggest that Posidonia ash could serve as a low-cost adsorbent while also acting as a potential phosphorus source in soils. Full article
(This article belongs to the Section Sustainable Bioresource and Bioprocess Engineering)
Show Figures

Figure 1

15 pages, 3041 KB  
Article
Adsorption Characteristics of Praseodymium and Neodymium with Clay Minerals
by Zhuo Chen, Han Wang, Ruan Chi and Zhenyue Zhang
Minerals 2025, 15(10), 1051; https://doi.org/10.3390/min15101051 - 3 Oct 2025
Abstract
As the production of electric vehicles grows, the rare earth elements Pr and Nd become increasingly significant, as they are key in magnetic materials production. In order to achieve the green and efficient recovery of Pr and Nd from the rare earth leachate, [...] Read more.
As the production of electric vehicles grows, the rare earth elements Pr and Nd become increasingly significant, as they are key in magnetic materials production. In order to achieve the green and efficient recovery of Pr and Nd from the rare earth leachate, this paper selected kaolinite and halloysite as adsorbents to conduct rare earth solution adsorption experiments for exploring the effects of the initial leachate concentration, the solution pH, and the adsorption temperature on the adsorption process. The adsorption characteristics of Pr and Nd by clay minerals were analyzed by quantum chemical calculation. The results showed that the adsorption effects of clay minerals on Pr and Nd decreased with the rise of leachate concentration. When leachate pH increased, the adsorption efficiency of kaolinite and halloysite for Pr firstly increased and then decreased, and the optimal adsorption efficiency was 13.33% and 24.778% at pH 6, respectively. The adsorption effects of kaolinite and halloysite on Nd enhanced gradually with the increase in pH, which increased to 15.925% and 30.482% at pH 7, respectively. With temperature increased, the adsorption of Pr and Nd by kaolinite and halloysite was positively correlated. The isothermal adsorption model was fitted to the experimental data, and it was found that the adsorption of Pr and Nd by kaolinite and halloysite was consistent with the Langmuir model, with R2 above 0.96, indicating that the adsorption process was a single molecular layer adsorption. The results provide theoretical support for the effective recycling of Pr and Nd, which is of great significance for the utilization of rare earth resources in permanent magnets. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

22 pages, 4631 KB  
Article
Crop Disease Spore Detection Method Based on Au@Ag NRS
by Yixue Zhang, Jili Guo, Fei Bian, Zhaowei Li, Chuandong Guo, Jialiang Zheng and Xiaodong Zhang
Agriculture 2025, 15(19), 2076; https://doi.org/10.3390/agriculture15192076 - 3 Oct 2025
Abstract
Crop diseases cause significant losses in agricultural production; early capture and identification of disease spores enable disease monitoring and prevention. This study experimentally optimized the preparation of Au@Ag NRS (Gold core@Silver shell Nanorods) sol as a Surface-Enhanced Raman Scattering (SERS) enhancement reagent via [...] Read more.
Crop diseases cause significant losses in agricultural production; early capture and identification of disease spores enable disease monitoring and prevention. This study experimentally optimized the preparation of Au@Ag NRS (Gold core@Silver shell Nanorods) sol as a Surface-Enhanced Raman Scattering (SERS) enhancement reagent via a modified seed-mediated growth method. Using an existing microfluidic chip developed by the research group, disease spores were separated and enriched, followed by combining Au@Ag NRS with Crop Disease Spores through electrostatic adsorption. Raman spectroscopy was employed to collect SERS fingerprint spectra of Crop Disease Spores. The spectra underwent baseline correction using Adaptive Least Squares (ALS) and standardization via Standard Normal Variate (SNV). Dimensionality reduction preprocessing was performed using Principal Component Analysis (PCA) and Successive Projections Algorithm combined with Competitive Adaptive Reweighted Sampling (SCARS). Classification was then executed using Support Vector Machine (SVM) and Multilayer Perceptron (MLP). The SCARS-MLP model achieved the highest accuracy at 97.92% on the test set, while SCARS-SVM, PCA-SVM, and SCARS-MLP models attained test set accuracy of 95.83%, 95.24%, and 96.55%, respectively. Thus, the proposed Au@Ag NRS-based SERS technology can be applied to detect airborne disease spores, establishing an early and precise method for Crop Disease detection. Full article
(This article belongs to the Special Issue Spectral Data Analytics for Crop Growth Information)
Show Figures

Figure 1

22 pages, 32792 KB  
Article
MRV-YOLO: A Multi-Channel Remote Sensing Object Detection Method for Identifying Reclaimed Vegetation in Hilly and Mountainous Mining Areas
by Xingmei Li, Hengkai Li, Jingjing Dai, Kunming Liu, Guanshi Wang, Shengdong Nie and Zhiyu Zhang
Forests 2025, 16(10), 1536; https://doi.org/10.3390/f16101536 - 2 Oct 2025
Abstract
Leaching mining of ion-adsorption rare earths degrades soil organic matter and hampers vegetation recovery. High-resolution UAV remote sensing enables large-scale monitoring of reclamation, yet vegetation detection accuracy is constrained by key challenges. Conventional three-channel detection struggles with terrain complexity, illumination variation, and shadow [...] Read more.
Leaching mining of ion-adsorption rare earths degrades soil organic matter and hampers vegetation recovery. High-resolution UAV remote sensing enables large-scale monitoring of reclamation, yet vegetation detection accuracy is constrained by key challenges. Conventional three-channel detection struggles with terrain complexity, illumination variation, and shadow effects. Fixed UAV altitude and missing topographic data further cause resolution inconsistencies, posing major challenges for accurate vegetation detection in reclaimed land. To enhance multi-spectral vegetation detection, the model input is expanded from the traditional three channels to six channels, enabling full utilization of multi-spectral information. Furthermore, the Channel Attention and Global Pooling SPPF (CAGP-SPPF) module is introduced for multi-scale feature extraction, integrating global pooling and channel attention to capture multi-channel semantic information. In addition, the C2f_DynamicConv module replaces conventional convolutions in the neck network to strengthen high-dimensional feature transmission and reduce information loss, thereby improving detection accuracy. On the self-constructed reclaimed vegetation dataset, MRV-YOLO outperformed YOLOv8, with mAP@0.5 and mAP@0.5:0.95 increasing by 4.6% and 10.8%, respectively. Compared with RT-DETR, YOLOv3, YOLOv5, YOLOv6, YOLOv7, yolov7-tiny, YOLOv8-AS, YOLOv10, and YOLOv11, mAP@0.5 improved by 6.8%, 9.7%, 5.3%, 6.5%, 6.4%, 8.9%, 4.6%, 2.1%, and 5.4%, respectively. The results demonstrate that multichannel inputs incorporating near-infrared and dual red-edge bands significantly enhance detection accuracy for reclaimed vegetation in rare earth mining areas, providing technical support for ecological restoration monitoring. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

24 pages, 3394 KB  
Article
Assessment and Discussion of the Steady-State Determination in Zeolite Composite Membranes for Multi-Component Diffusion
by Katarzyna Bizon, Dominika Boroń and Bolesław Tabiś
Membranes 2025, 15(10), 301; https://doi.org/10.3390/membranes15100301 - 2 Oct 2025
Abstract
A versatile, clear, and accurate method for determining the steady states of multi-component diffusion through composite membranes is presented in this study. This method can be used for simulating and designing membranes with any support orientation with respect to the zeolite film. In [...] Read more.
A versatile, clear, and accurate method for determining the steady states of multi-component diffusion through composite membranes is presented in this study. This method can be used for simulating and designing membranes with any support orientation with respect to the zeolite film. In the mathematical model of the membrane, it was assumed that mass transport in the zeolite layer occurs by surface diffusion in accordance with the generalized Maxwell–Stefan model. Diffusion in the macroporous support was described by the dusty gas model (DGM). An alternative model of diffusion in the zeolite was proposed to the universally accepted model, which uses a matrix of thermodynamic factors G. Thus, the difficulty of analytically determining this matrix for more complex adsorption equilibria was eliminated. This article is dedicated to methodological and cognitive aspects. The practical features of the method are illustrated using two gas mixtures as examples, namely {H2, CO2} and {H2, n-C4H10}. The roles of zeolite and support in the separation of these mixtures are discussed. It was demonstrated under what circumstances the presence of the support can be neglected in the steady-state analysis of the membrane. The effect of the alternative application of the dusty gas model or viscous flow only in the microporous support was discussed. Full article
(This article belongs to the Special Issue Composite Membranes for Gas and Vapor Separation)
16 pages, 5605 KB  
Article
Crystal Morphology Prediction of LTNR in Different Solvents by Molecular Dynamics Simulation
by Da Li, Liang Song, Yin Yu, Yan Li and Xue-Hai Ju
Chemistry 2025, 7(5), 161; https://doi.org/10.3390/chemistry7050161 - 1 Oct 2025
Abstract
Molecular dynamics simulations were conducted using the attachment energy (AE) model to investigate the growth morphology of lead 2,4,6-trinitrororesorcinate (LTNR, lead styphnate) under vacuum and different solvents. The adsorption energy of LTNR on (001), (110), (011), (020), (111), (200), and (201) crystal planes [...] Read more.
Molecular dynamics simulations were conducted using the attachment energy (AE) model to investigate the growth morphology of lead 2,4,6-trinitrororesorcinate (LTNR, lead styphnate) under vacuum and different solvents. The adsorption energy of LTNR on (001), (110), (011), (020), (111), (200), and (201) crystal planes were calculated. Meanwhile, the crystal morphology in solvents of ethanol, toluene, dichloromethane, acetone, dimethyl sulfoxide (DMSO), and water at 298 K was predicted by calculating the interaction energies between the solvents and crystal planes. The calculated results show that the morphology of LTNR crystals in different solvents is significantly different. In toluene, LTNR crystal morphologies are flat, while in pure solvents of ethanol, acetone, and DMSO, the number of crystal planes increases, and the crystal thickness is larger. In the water, LTNR tends to form tabular crystals, which is similar to the experimental results. Both radial distribution function (RDF) and mean squared displacement (MSD) analyses reveal that hydrogen bonding dominates the interactions between LTNR and solvent molecules. Solvent molecules with higher diffusion coefficients exhibit increased desorption tendencies from crystal surfaces, which may reduce their inhibitory effects on specific crystallographic planes. However, no direct correlation exists between solvent diffusion coefficients and crystal plane growth rates, suggesting that surface attachment kinetics or interfacial energy barriers play a more critical role in crystal growth. Full article
Show Figures

Figure 1

22 pages, 5839 KB  
Article
Research and Application of Deep Coalbed Gas Production Capacity Prediction Models
by Aiguo Hu, Kezhi Li, Changyu Yao, Xinchun Zhu, Hui Chang, Zheng Mao, He Ma and Xinfang Ma
Processes 2025, 13(10), 3149; https://doi.org/10.3390/pr13103149 - 1 Oct 2025
Abstract
The accurate prediction of single-well production performance necessitates considering the multiple factors influencing the dynamic changes in coal seam permeability during deep coalbed methane (CBM) extraction. This study focuses on Block D of the Ordos Basin. The Langmuir monolayer adsorption model was selected [...] Read more.
The accurate prediction of single-well production performance necessitates considering the multiple factors influencing the dynamic changes in coal seam permeability during deep coalbed methane (CBM) extraction. This study focuses on Block D of the Ordos Basin. The Langmuir monolayer adsorption model was selected to describe gas adsorption behavior, and a productivity prediction model for deep CBM was developed by coupling multiple dynamic effects, including stress sensitivity, matrix shrinkage, gas slippage, and coal fines production and blockage. The results indicate that the stress sensitivity coefficients of artificial fracture networks and cleat fractures are key factors affecting the accuracy of CBM productivity predictions. Under accurate stress sensitivity coefficients, the predicted daily gas production rates of the productivity model for single wells showed errors ranging from 1.89% to 14.22%, with a mean error of 8.15%, while the predicted daily water production rates had errors between 0.35% and 17.66%, with a mean error of 8.68%. This demonstrates that the established productivity prediction model for deep CBM aligns with field observations. The findings can provide valuable references for production performance analysis and development planning for deep CBM wells. Full article
(This article belongs to the Special Issue Numerical Simulation and Application of Flow in Porous Media)
Show Figures

Figure 1

28 pages, 7157 KB  
Article
Development and Characterization of Sawdust-Based Ceramic Membranes for Textile Effluent Treatment
by Ana Vitória Santos Marques, Antusia dos Santos Barbosa, Larissa Fernandes Maia, Meiry Gláucia Freire Rodrigues, Tellys Lins Almeida Barbosa and Carlos Bruno Barreto Luna
Membranes 2025, 15(10), 298; https://doi.org/10.3390/membranes15100298 - 1 Oct 2025
Abstract
Membranes were assessed on a bench scale for their performance in methylene blue dye separation. The sawdust, along with Brazilian clay and kaolin, were mixed and compacted by uniaxial pressing and sintered at 650 °C. The membranes were characterized by several techniques, including [...] Read more.
Membranes were assessed on a bench scale for their performance in methylene blue dye separation. The sawdust, along with Brazilian clay and kaolin, were mixed and compacted by uniaxial pressing and sintered at 650 °C. The membranes were characterized by several techniques, including X-ray diffraction, scanning electron microscopy, porosity, mechanical strength, water uptake, and membrane hydrodynamic permeability. The results demonstrated that the incorporation of sawdust not only altered the pore morphology but also significantly improved water permeation and dye removal efficiency. The ceramic membrane had an average pore diameter of 0.346–0.622 µm and porosities ranging from 40.85 to 42.96%. The membranes were applied to the microfiltration of synthetic effluent containing methylene blue (MB) and, additionally, subjected to investigation of their adsorptive capacity. All membrane variants showed high hydrophilicity (contact angles < 60°) and achieved MB rejection efficiencies higher than 96%, demonstrating their efficiency in treating dye-contaminated effluents. Batch adsorption using ceramic membranes (M0–M3) removed 34.0–41.2% of methylene blue. Adsorption behavior fitted both Langmuir and Freundlich models, indicating mixed mono- and multilayer mechanisms. FTIR confirmed electrostatic interactions, hydrogen bonding, and possible π–π interactions in dye retention. Full article
Show Figures

Figure 1

20 pages, 2858 KB  
Article
Development of 3D-Printed Carbon Capture Adsorbents by Zeolites Derived from Coal Fly Ash
by Silviya Boycheva, Boian Mladenov, Ivan Dimitrov and Margarita Popova
J. Compos. Sci. 2025, 9(10), 524; https://doi.org/10.3390/jcs9100524 - 1 Oct 2025
Abstract
The present study aims to develop 3D-structured adsorbents for carbon capture with the utilization of coal ash after its conversion into zeolites. For this purpose, printing paste mixtures with a viscosity of 800 Pa·s were developed based on an environmentally friendly and safe [...] Read more.
The present study aims to develop 3D-structured adsorbents for carbon capture with the utilization of coal ash after its conversion into zeolites. For this purpose, printing paste mixtures with a viscosity of 800 Pa·s were developed based on an environmentally friendly and safe polymer binder filled with coal ash zeolite with the addition of bentonite as a filler. The optimal consistency of the printing mixtures for preserving the shape and dimensions of the 3D-printed structures was established. Various model configurations of the macrostructure of 3D adsorbents were developed, and the optimal settings of the extruding system for their printing were established. After calcination, the resulting 3D structures were studied using instrumental analysis techniques, investigating the influence of 3D structuring on the phase composition, surface characteristics, and adsorption capacity for CO2 capture in comparison with the initial powder coal ash zeolite adsorbents. The role of compensating cations in terms of the adsorption ability of powders in 3D-printed adsorbents was investigated. The current study offers an innovative and previously unexplored approach to a more expedient and practically significant utilization of aluminosilicate solid waste and, in particular, coal ash, through their 3D structuring and outlines a new research and technological direction in the development of economically advantageous, technologically feasible, and environmentally friendly 3D adsorbents. Full article
(This article belongs to the Special Issue 3D Printing and Additive Manufacturing of Composites)
Show Figures

Graphical abstract

25 pages, 6876 KB  
Article
Sustainable Synthesis of CoFe2O4/Fe2O3 Catalyst for Hydrogen Generation from Sodium Borohydride Hydrolysis
by Lucas Tonetti Teixeira, Marcos Medeiros, Liying Liu, Vinicius Novaes Park, Célio Valente-Rodriguez, Sonia Letichevsky, Humberto Vieira Fajardo, Rogério Navarro Correia de Siqueira, Marcelo Eduardo Huguenin Maia da Costa and Amilton Barbosa Botelho Junior
Catalysts 2025, 15(10), 943; https://doi.org/10.3390/catal15100943 - 1 Oct 2025
Abstract
Hydrogen has been explored as a greener alternative for greenhouse gas emissions reduction. Sodium borohydride (NaBH4) is a favorable hydrogen carrier due to its high hydrogen content, safe handling, and rapid hydrogen release. This work presents a novel synthesis of the [...] Read more.
Hydrogen has been explored as a greener alternative for greenhouse gas emissions reduction. Sodium borohydride (NaBH4) is a favorable hydrogen carrier due to its high hydrogen content, safe handling, and rapid hydrogen release. This work presents a novel synthesis of the catalyst CoFe2O4/Fe2O3 using nanocellulose fibers (TCNF) as reactive templates for metal adsorption and subsequent calcination. The resulting material was tested for H2 production from basic NaBH4 aqueous solutions (10–55 °C). The catalyst’s composition is 74.8 wt% CoFe2O4, 25 wt% Fe2O3, and 0.2 wt% Fe2(SO4)3 with agglomerated spheroidal particles (15–20 nm) and homogeneous Fe and Co distribution. The catalyst produced 1785 mL of H2 in 15 min at 25 °C (50 mg catalyst, 4.0% NaBH4, and 2.5 wt% NaOH), close to the stoichiometric maximum (2086 mL). The maximum H2 generation rate (HGR) reached 3.55 L min−1 gcat−1 at 40 °C. Activation energies were determined using empirical (38.4 ± 5.3 kJ mol−1) and Langmuir–Hinshelwood (L–H) models (42.2 ± 5.8 kJ mol−1), consistent with values for other Co-ferrite catalysts. Kinetic data fitted better to the L–H model, suggesting that boron complex adsorption precedes H2 evolution. Full article
Show Figures

Graphical abstract

18 pages, 3872 KB  
Article
Predicting the Bandgap of Graphene Based on Machine Learning
by Qinze Yu, Lingtao Zhan, Xiongbai Cao, Tingting Wang, Haolong Fan, Zhenru Zhou, Huixia Yang, Teng Zhang, Quanzhen Zhang and Yeliang Wang
Physchem 2025, 5(4), 41; https://doi.org/10.3390/physchem5040041 - 1 Oct 2025
Abstract
Over the past decade, two-dimensional materials have become a research hotspot in chemistry, physics, materials science, and electrical and optical engineering due to their excellent properties. Graphene is one of the earliest discovered 2D materials. The absence of a bandgap in pure graphene [...] Read more.
Over the past decade, two-dimensional materials have become a research hotspot in chemistry, physics, materials science, and electrical and optical engineering due to their excellent properties. Graphene is one of the earliest discovered 2D materials. The absence of a bandgap in pure graphene limits its application in digital electronics where switching behavior is essential. In the present study, researchers have proposed a variety of methods for tuning the graphene bandgap. Machine learning methodologies have demonstrated the capability to enhance the efficiency of materials research by automating the recording of characteristic parameters from the discovery and preparation of 2D materials, property calculations, and simulations, as well as by facilitating the extraction and summarization of governing principles. In this work, we use first principle calculations to build a dataset of graphene band gaps under various conditions, including the application of a perpendicular external electric field, nitrogen doping, and hydrogen atom adsorption. Support Vector Machine (SVM), Random Forest (RF), and Multi-Layer Perceptron (MLP) Regression were utilized to successfully predict the graphene bandgap, and the accuracy of the models was verified using first principles. Finally, the advantages and limitations of the three models were compared. Full article
Show Figures

Figure 1

18 pages, 3305 KB  
Article
Removal of Cu(II) from Aqueous Medium with LDH-Mg/Fe and Its Subsequent Application as a Sustainable Catalyst
by Edgar Oswaldo Leyva Cruz, Ricardo Lopez-Medina, Deyanira Angeles-Beltrán and Refugio Rodríguez-Vázquez
Catalysts 2025, 15(10), 930; https://doi.org/10.3390/catal15100930 - 1 Oct 2025
Abstract
In this work, the removal of Cu(II) ions from an aqueous effluent was studied using an Mg/Fe layered double hydroxide (LDH) as the adsorbent. The material was synthesized and characterized before and after the adsorption process to identify structural and morphological changes induced [...] Read more.
In this work, the removal of Cu(II) ions from an aqueous effluent was studied using an Mg/Fe layered double hydroxide (LDH) as the adsorbent. The material was synthesized and characterized before and after the adsorption process to identify structural and morphological changes induced by copper uptake. Techniques such as X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), ultraviolet-visible spectroscopy (UV-Vis), Raman spectroscopy, and nitrogen physisorption (BET) were employed to confirm the interaction between the metal ions and the LDH surface. The LDH-Mg/Fe exhibited a high maximum adsorption capacity of 526 mg/g, and the adsorption kinetics followed a pseudo-second-order model, achieving over 90% removal of Cu(II) within 2.5 h. The Cu(II)-loaded material was subsequently evaluated as a sustainable catalyst in two applications: (i) an organic synthesis via “click” chemistry, reaching yields of up to 85%, and (ii) the decoloration of Congo Red via a Fenton-like process, achieving a decoloration efficiency of at least 84%. These dual uses demonstrate the potential of Cu(II)-loaded LDH as a cost-effective and environmentally friendly approach to simultaneous pollutant removal and catalytic valorization. Full article
Show Figures

Graphical abstract

15 pages, 10073 KB  
Article
Defect Engineering in Fluorinated Metal–Organic Frameworks Within Mixed-Matrix Membranes for Enhanced CO2 Separation
by Benxing Li, Lei Wang, Yizheng Tao, Rujing Hou and Yichang Pan
Membranes 2025, 15(10), 296; https://doi.org/10.3390/membranes15100296 - 30 Sep 2025
Abstract
Developing highly permeable and selective membranes for energy-efficient CO2/CH4 separation remains challenging. Mixed-matrix membranes (MMMs) integrating polymer matrices with metal–organic frameworks (MOFs) offer significant potential. However, rational filler–matrix matching presents substantial difficulties, constraining separation performance. In this work, defects were [...] Read more.
Developing highly permeable and selective membranes for energy-efficient CO2/CH4 separation remains challenging. Mixed-matrix membranes (MMMs) integrating polymer matrices with metal–organic frameworks (MOFs) offer significant potential. However, rational filler–matrix matching presents substantial difficulties, constraining separation performance. In this work, defects were engineered within fluorinated MOF ZU-61 through the partial replacement of 4,4′-bipyridine linkers with pyridine modulators, producing high-porosity HP-ZU-61 nanoparticles exhibiting a 267% BET surface area enhancement (992.9 m2 g−1) over low-porosity ZU-61 (LP-ZU-61) (372.2 m2 g−1). The HP-ZU-61/6FDA-DAM MMMs (30 wt.%) demonstrated homogeneous filler dispersion and pre-served crystallinity, achieving a CO2 permeability of 1626 barrer and CO2/CH4 selectivity (33), surpassing the 2008 Robeson upper bound. Solution-diffusion modeling indicated ligand deficiencies generated accelerated diffusion pathways, while defect-induced unsaturated metal sites functioned as strong CO2 adsorption centers that maintained solubility selectivity. This study establishes defect engineering in fluorinated MOF-based MMMs as a practical strategy to concurrently overcome the permeability–selectivity trade-off for efficient CO2 capture. Full article
(This article belongs to the Special Issue Functional Composite Membranes: Properties and Applications)
Show Figures

Figure 1

12 pages, 2029 KB  
Article
An Assessment of TiN Formation on NiTi Alloy and the Corrosion Resistance of TiN/NiTi Alloy Using First-Principles Calculation
by Yunfei Wang, Haodong He, Huan Yang, Weijian Li, Zhiyong Gao, Haizhen Wang and Xiaoyang Yi
Metals 2025, 15(10), 1089; https://doi.org/10.3390/met15101089 - 29 Sep 2025
Abstract
In this paper, the interfacial bonding properties between (110)NiTi and (200)TiN interfaces, as well as the adsorption capacity of Cl on the surfaces of (110)NiTi and (200)TiN, were investigated using the first-principles computational method based on density [...] Read more.
In this paper, the interfacial bonding properties between (110)NiTi and (200)TiN interfaces, as well as the adsorption capacity of Cl on the surfaces of (110)NiTi and (200)TiN, were investigated using the first-principles computational method based on density functional theory (DFT). Four types of interfacial models between (110)NiTi and (200)TiN were developed. It was found that the interfacial bonding energies of the four interface models are greater than zero, indicating stable interface bonding between (110)NiTi and (200)TiN. For comparison, model III (N of (200)TiN is located at the bridge size between Ti and Ni in (110)NiTi) has the largest Wad value of 9.773 J/m2, which is attributed to stronger N-Ti bonding at the interface. Based on interface model III, an interfacial model of Cl at three different adsorption locations (top, bridge, and hole) on the (110)NiTi and (200)TiN surfaces, respectively, was constructed. The results reveal that the adsorption energies of Cl on the surface of (110)NiTi are significantly less than those of the Cl on the surface of (200)TiN. This suggests that (110)NiTi is more likely to react with Cl. Hence, the introduction of a TiN layer on the surface of NiTi alloy can effectively improve its corrosion resistance. Full article
(This article belongs to the Special Issue Advances in Shape Memory Alloys: Theory, Experiment and Calculation)
Show Figures

Figure 1

18 pages, 1805 KB  
Article
Adsorption of Ammonium by Coal and Coal Fly Ash Derived from Hawthorn Tree from Aquatic Systems
by Jonathan Suazo-Hernández, Nicol Burgos, María de Los Ángeles Sepúlveda-Parada, Jorge Castro-Rojas, Patricia Poblete-Grant, Carmen Castro-Castillo, Rawan Mlih, Cristian Urdiales, Tomás Schoffer, Collin G. Joseph and Antonieta Ruiz
Processes 2025, 13(10), 3118; https://doi.org/10.3390/pr13103118 - 29 Sep 2025
Abstract
Excessive release of ammonium (NH4+) into aquatic ecosystems can promote eutrophication. In this study, the natural adsorbents, coal (C) prepared from Hawthorn (Acacia caven) and coal fly ash obtained from C, were used to remove NH4+ [...] Read more.
Excessive release of ammonium (NH4+) into aquatic ecosystems can promote eutrophication. In this study, the natural adsorbents, coal (C) prepared from Hawthorn (Acacia caven) and coal fly ash obtained from C, were used to remove NH4+ from aqueous systems through batch adsorption–desorption studies. Both adsorbents were physically and chemically characterized, while Fourier-transform infrared spectroscopy and zeta potential were used to understand the surface functional groups and surface charge characteristics. CFA showed a higher pH, BET specific surface area, electrical conductivity and higher % values for CaO and MgO than C. Kinetic studies of NH4+ adsorption at pH = 4.5 for both materials fitted the pseudo-second-order model giving the r2 of 0.970–0.983 and the χ2 of 0.008–0.005 and at pH = 6.5 only for C with the r2 of 0.986 and the χ2 of 0.013. Meanwhile, the adsorption isotherm data at pH = 4.5 for both materials and 6.5 for CFA complied with the Freundlich model (r2 > 0.965 and χ2 < 0.012), suggesting that NH4+ adsorption onto both adsorbents at those pH values occurred through the formation of a multilayer adsorption on heterogeneous surfaces. This indicates that the dominant adsorption of both adsorbents was physisorption with no site-specific interaction. Based on these results, CFA is proposed as a promising and economical material for the removal of NH4+ from aqueous systems. Full article
(This article belongs to the Special Issue Natural Low-Cost Adsorbents in Water Purification Processes)
Show Figures

Figure 1

Back to TopTop