Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,092)

Search Parameters:
Keywords = aerial datasets

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6978 KB  
Article
Identification of Landslide Boundaries and Key Morphological Features Using UAV LiDAR Data: A Case Study in Surami, Georgia
by David Bakhsoliani, Archil Magalashvili and George Gaprindashvili
GeoHazards 2025, 6(4), 73; https://doi.org/10.3390/geohazards6040073 (registering DOI) - 1 Nov 2025
Abstract
Identifying landslide boundaries and morphological features using traditional methods is labor-intensive, costly, and often limited—especially in areas altered by human activity or covered with dense vegetation. In such cases, modern remote sensing methods are considered a good alternative; however, their accuracy and reliability [...] Read more.
Identifying landslide boundaries and morphological features using traditional methods is labor-intensive, costly, and often limited—especially in areas altered by human activity or covered with dense vegetation. In such cases, modern remote sensing methods are considered a good alternative; however, their accuracy and reliability also depend on several factors. This study aims to identify landslide boundaries and morphological features using modern remote sensing techniques and to compare and validate the derived parameters with those obtained through traditional field methods. In this study, the remote sensing technology employed is a high-resolution digital elevation model (HRDEM) generated by a LiDAR sensor mounted on an unmanned aerial vehicle (UAV). Based on this dataset, various terrain parameters were analyzed, including slope, aspect, contour, curvature, hillshade, the topographic ruggedness index (TRI), the topographic position index (TPI), and the topographic wetness index (TWI). Individual analysis, composite analysis, and principal component analysis (PCA) of these parameters enabled the identification of the landslide boundaries and key morphological elements. This study was conducted on a landslide-prone slope in the Surami area of Georgia, which is characterized by extensive anthropogenic impact. The accuracy of the LiDAR-derived results was confirmed through field validation. This study demonstrates the effectiveness of UAV-LiDAR technology in areas affected by anthropogenic activity. Full article
(This article belongs to the Topic Remote Sensing and Geological Disasters)
Show Figures

Figure 1

36 pages, 60911 KB  
Article
Effectiveness of Unmanned Aerial Vehicle-Based LiDAR for Assessing the Impact of Catastrophic Windstorm Events on Timberland
by Dipika Badal, Richard Cristan, Lana L. Narine, Sanjiv Kumar, Arjun Rijal and Manisha Parajuli
Drones 2025, 9(11), 756; https://doi.org/10.3390/drones9110756 (registering DOI) - 31 Oct 2025
Abstract
The southeastern United States (US) is known for its highly productive forests, but they are under intense threat from increasing climate-induced windstorms like hurricanes and tornadoes. This study explored the effectiveness of unmanned aerial vehicles (UAVs) equipped with Light Detection and Ranging (LiDAR) [...] Read more.
The southeastern United States (US) is known for its highly productive forests, but they are under intense threat from increasing climate-induced windstorms like hurricanes and tornadoes. This study explored the effectiveness of unmanned aerial vehicles (UAVs) equipped with Light Detection and Ranging (LiDAR) to detect, classify, and map windstorm damage in ten pine-dominated forest stands (10–20 acres each). Three classification techniques, Random Forest (RF), Maximum Likelihood (ML), and Decision Tree (DT), were tested on two datasets: RGB imagery integrated with LiDAR-derived Canopy Height Model (CHM) and without LiDAR-CHM. Using LiDAR-CHM integrated datasets, RF achieved an average Overall Accuracy (OA) of 94.52% and a kappa coefficient (k) of 0.92, followed by ML (average OA = 89.52% and k = 0.85), and DT (average OA = 81.78% and k = 0.75). The results showed that RF consistently outperformed ML and DT in classification accuracy across all sites. Without LiDAR-CHM, the performance of all classifiers significantly declined, underscoring the importance of structural data in distinguishing among the classification categories (downed trees, standing trees, ground, and water). These findings highlight the role of UAV-derived LiDAR-CHM in improving classification accuracy for assessing the impact of windstorm damage on forest stands. Full article
27 pages, 24393 KB  
Article
FireRisk-Multi: A Dynamic Multimodal Fusion Framework for High-Precision Wildfire Risk Assessment
by Ke Yuan, Zhiruo Zhu, Yutong Pang, Jing Pang, Chunhui Hou and Qian Tang
ISPRS Int. J. Geo-Inf. 2025, 14(11), 426; https://doi.org/10.3390/ijgi14110426 (registering DOI) - 31 Oct 2025
Abstract
Wildfire risk assessment requires integrating heterogeneous geospatial data to capture complex environmental dynamics. This study develops a hierarchical multimodal fusion framework combining high-resolution aerial imagery, historical fire data, topography, meteorology, and vegetation indices within Google Earth Engine. We introduce three progressive fusion levels: [...] Read more.
Wildfire risk assessment requires integrating heterogeneous geospatial data to capture complex environmental dynamics. This study develops a hierarchical multimodal fusion framework combining high-resolution aerial imagery, historical fire data, topography, meteorology, and vegetation indices within Google Earth Engine. We introduce three progressive fusion levels: a single-modality baseline (NAIP-WHP), fixed-weight fusion (FIXED), and a novel geographically adaptive dynamic-weight approach (FUSED) that adjusts feature contributions based on regional characteristics like human activity intensity or aridity. Machine learning benchmarking across 49 U.S. regions reveals that Support Vector Machines (SVM) applied to the FUSED dataset achieve optimal performance, with an AUC-ROC of 92.1%, accuracy of 83.3%, and inference speed of 1.238 milliseconds per sample. This significantly outperforms the fixed-weight fusion approach, which achieved an AUC-ROC of 78.2%, and the single-modality baseline, which achieved 73.8%, representing relative improvements of 17.8% and 24.8%, respectively. The 10 m resolution risk heatmaps demonstrate operational viability, achieving an 86.27% hit rate in Carlsbad Caverns, NM. SHAP-based interpretability analysis reveals terrain dominance and context-dependent vegetation effects, aligning with wildfire ecology principles. Full article
Show Figures

Figure 1

36 pages, 64731 KB  
Article
Automated Detection of Embankment Piping and Leakage Hazards Using UAV Visible Light Imagery: A Frequency-Enhanced Deep Learning Approach for Flood Risk Prevention
by Jian Liu, Zhonggen Wang, Renzhi Li, Ruxin Zhao and Qianlin Zhang
Remote Sens. 2025, 17(21), 3602; https://doi.org/10.3390/rs17213602 (registering DOI) - 31 Oct 2025
Abstract
Embankment piping and leakage are primary causes of flood control infrastructure failure, accounting for more than 90% of embankment failures worldwide and posing significant threats to public safety and economic stability. Current manual inspection methods are labor-intensive, hazardous, and inadequate for emergency flood [...] Read more.
Embankment piping and leakage are primary causes of flood control infrastructure failure, accounting for more than 90% of embankment failures worldwide and posing significant threats to public safety and economic stability. Current manual inspection methods are labor-intensive, hazardous, and inadequate for emergency flood season monitoring, while existing automated approaches using thermal infrared imaging face limitations in cost, weather dependency, and deployment flexibility. This study addresses the critical scientific challenge of developing reliable, cost-effective automated detection systems for embankment safety monitoring using Unmanned Aerial Vehicle (UAV)-based visible light imagery. The fundamental problem lies in extracting subtle textural signatures of piping and leakage from complex embankment surface patterns under varying environmental conditions. To solve this challenge, we propose the Embankment-Frequency Network (EmbFreq-Net), a frequency-enhanced deep learning framework that leverages frequency-domain analysis to amplify hazard-related features while suppressing environmental noise. The architecture integrates dynamic frequency-domain feature extraction, multi-scale attention mechanisms, and lightweight design principles to achieve real-time detection capabilities suitable for emergency deployment and edge computing applications. This approach transforms traditional post-processing workflows into an efficient real-time edge computing solution, significantly improving computational efficiency and enabling immediate on-site hazard assessment. Comprehensive evaluations on a specialized embankment hazard dataset demonstrate that EmbFreq-Net achieves 77.68% mAP@0.5, representing a 4.19 percentage point improvement over state-of-the-art methods, while reducing computational requirements by 27.0% (4.6 vs. 6.3 Giga Floating-Point Operations (GFLOPs)) and model parameters by 21.7% (2.02M vs. 2.58M). These results demonstrate the method’s potential for transforming embankment safety monitoring from reactive manual inspection to proactive automated surveillance, thereby contributing to enhanced flood risk management and infrastructure resilience. Full article
Show Figures

Figure 1

28 pages, 4579 KB  
Article
A Mathematics-Oriented AI Iterative Prediction Framework Combining XGBoost and NARX: Application to the Remaining Useful Life and Availability of UAV BLDC Motors
by Chien-Tai Hsu, Kai-Chao Yao, Ting-Yi Chang, Bo-Kai Hsu, Wen-Jye Shyr, Da-Fang Chou and Cheng-Chang Lai
Mathematics 2025, 13(21), 3460; https://doi.org/10.3390/math13213460 - 30 Oct 2025
Abstract
This paper presents a mathematics-focused AI iterative prediction framework that combines Extreme Gradient Boosting (XGBoost) for nonlinear function approximation with nonlinear autoregressive model with exogenous inputs (NARXs) for time-series modeling, applied to analyzing the Remaining Useful Life (RUL) and availability of Unmanned Aerial [...] Read more.
This paper presents a mathematics-focused AI iterative prediction framework that combines Extreme Gradient Boosting (XGBoost) for nonlinear function approximation with nonlinear autoregressive model with exogenous inputs (NARXs) for time-series modeling, applied to analyzing the Remaining Useful Life (RUL) and availability of Unmanned Aerial Vehicle (UAV) Brushless DC (BLDC) motors. The framework integrates nonlinear regression, temporal recursion, and survival analysis into a unified system. The dataset includes five UAV motor types, each recorded for 10 min at 20 Hz, totaling approximately 12,000 records per motor for validation across these five motor types. Using grouped K-fold cross-validation by motor ID, the framework achieved mean absolute error (MAE) of 4.01 h and root mean square error (RMSE) of 4.51 h in RUL prediction. Feature importance and SHapley Additive exPlanation (SHAP) analysis identified temperature, vibration, and HI as key predictors, aligning with degradation mechanisms. For availability assessment, survival metrics showed strong performance, with a C-index of 1.00 indicating perfect risk ranking and a Brier score at 300 s of 0.159 reflecting good calibration. Additionally, Conformalized Quantile Regression (CQR) enhanced interval coverage under diverse operating conditions, providing mathematically guaranteed uncertainty bounds. The results demonstrate that this framework improves both accuracy and interpretability, offering a reliable and adaptable solution for UAV motor prognostics and maintenance planning. Full article
Show Figures

Figure 1

27 pages, 3492 KB  
Article
Filter-Wise Mask Pruning and FPGA Acceleration for Object Classification and Detection
by Wenjing He, Shaohui Mei, Jian Hu, Lingling Ma, Shiqi Hao and Zhihan Lv
Remote Sens. 2025, 17(21), 3582; https://doi.org/10.3390/rs17213582 - 29 Oct 2025
Abstract
Pruning and acceleration has become an essential and promising technique for convolutional neural networks (CNN) in remote sensing image processing, especially for deployment on resource-constrained devices. However, how to maintain model accuracy and achieve satisfactory acceleration simultaneously remains to be a challenging and [...] Read more.
Pruning and acceleration has become an essential and promising technique for convolutional neural networks (CNN) in remote sensing image processing, especially for deployment on resource-constrained devices. However, how to maintain model accuracy and achieve satisfactory acceleration simultaneously remains to be a challenging and valuable problem. To break this limitation, we introduce a novel pruning pattern of filter-wise mask by enforcing extra filter-wise structural constraints on pattern-based pruning, which achieves the benefits of both unstructured and structured pruning. The newly introduced filter-wise mask enhances fine-grained sparsity with more hardware-friendly regularity. We further design an acceleration architecture with optimization of calculation parallelism and memory access, aiming to fully translate weight pruning to hardware performance gain. The proposed pruning method is firstly proven on classification networks. The pruning rate can achieve 75.1% for VGG-16 and 84.6% for ResNet-50 without accuracy compromise. Further to this, we enforce our method on the widely used object detection model, the you only look once (YOLO) CNN. On the aerial image dataset, the pruned YOLOv5s achieves a pruning rate of 53.43% with a slight accuracy degradation of 0.6%. Meanwhile, we implement the acceleration architecture on a field-programmable gate array (FPGA) to evaluate its practical execution performance. The throughput reaches up to 809.46MOPS. The pruned network achieves a speedup of 2.23× and 4.4×, with a compression rate of 2.25× and 4.5×, respectively, converting the model compression to execution speedup effectively. The proposed pruning and acceleration approach provides crucial technology to facilitate the application of remote sensing with CNN, especially in scenarios such as on-board real-time processing, emergency response, and low-cost monitoring. Full article
Show Figures

Figure 1

26 pages, 32734 KB  
Article
Contextual-Semantic Interactive Perception Network for Small Object Detection in UAV Aerial Images
by Yiming Xu and Hongbing Ji
Remote Sens. 2025, 17(21), 3581; https://doi.org/10.3390/rs17213581 - 29 Oct 2025
Abstract
Unmanned Aerial Vehicle (UAV)-based aerial object detection has been widely applied in various fields, including logistics, public security, disaster response, and smart agriculture. However, numerous small objects in UAV aerial images are often overwhelmed by large-scale complex backgrounds, making their appearance difficult to [...] Read more.
Unmanned Aerial Vehicle (UAV)-based aerial object detection has been widely applied in various fields, including logistics, public security, disaster response, and smart agriculture. However, numerous small objects in UAV aerial images are often overwhelmed by large-scale complex backgrounds, making their appearance difficult to distinguish and thereby prone to being missed by detectors. To tackle these issues, we propose a novel Contextual-Semantic Interactive Perception Network (CSIPN) for small object detection in UAV aerial scenarios, which enhances detection performance through scene interaction modeling, dynamic context modeling, and dynamic feature fusion. The core components of the CSIPN include the Scene Interaction Modeling Module (SIMM), the Dynamic Context Modeling Module (DCMM), and the Semantic-Context Dynamic Fusion Module (SCDFM). Specifically, the SIMM introduces a lightweight self-attention mechanism to generate a global scene semantic embedding vector, which then interacts with shallow spatial descriptors to explicitly depict the latent relationships between small objects and complex background, thereby selectively activating key spatial responses. The DCMM employs two dynamically adjustable receptive-field branches to adaptively model contextual cues and effectively supplement the contextual information required for detecting various small objects. The SCDFM utilizes a dual-weighting strategy to dynamically fuse deep semantic information with shallow contextual details, highlighting features relevant to small object detection while suppressing irrelevant background. Our method achieves mAPs of 37.2%, 93.4%, 50.8%, and 48.3% on the TinyPerson dataset, the WAID dataset, the VisDrone-DET dataset, and our self-built WildDrone dataset, respectively, while using only 25.3M parameters, surpassing existing state-of-the-art detectors and demonstrating its superiority and robustness. Full article
Show Figures

Figure 1

19 pages, 2598 KB  
Article
DOCB: A Dynamic Online Cross-Batch Hard Exemplar Recall for Cross-View Geo-Localization
by Wenchao Fan, Xuetao Tian, Long Huang, Xiuwei Zhang and Fang Wang
ISPRS Int. J. Geo-Inf. 2025, 14(11), 418; https://doi.org/10.3390/ijgi14110418 - 26 Oct 2025
Viewed by 199
Abstract
Image-based geo-localization is a challenging task that aims to determine the geographic location of a ground-level query image captured by an Unmanned Ground Vehicle (UGV) by matching it to geo-tagged nadir-view (top-down) images from an Unmanned Aerial Vehicle (UAV) stored in a reference [...] Read more.
Image-based geo-localization is a challenging task that aims to determine the geographic location of a ground-level query image captured by an Unmanned Ground Vehicle (UGV) by matching it to geo-tagged nadir-view (top-down) images from an Unmanned Aerial Vehicle (UAV) stored in a reference database. The challenge comes from the perspective inconsistency between matched objects. In this work, we propose a novel metric learning scheme for hard exemplar mining to improve the performance of cross-view geo-localization. Specifically, we introduce a Dynamic Online Cross-Batch (DOCB) hard exemplar mining scheme that solves the problem of the lack of hard exemplars in mini-batches in the middle and late stages of training, which leads to training stagnation. It mines cross-batch hard negative exemplars according to the current network state and reloads them into the network to make the gradient of negative exemplars participating in back-propagation. Since the feature representation of cross-batch negative examples adapts to the current network state, the triplet loss calculation becomes more accurate. Compared with methods only considering the gradient of anchors and positives, adding the gradient of negative exemplars helps us to obtain the correct gradient direction. Therefore, our DOCB scheme can better guide the network to learn valuable metric information. Moreover, we design a simple Siamese-like network called multi-scale feature aggregation (MSFA), which can generate multi-scale feature aggregation by learning and fusing multiple local spatial embeddings. The experimental results demonstrate that our DOCB scheme and MSFA network achieve an accuracy of 95.78% on the CVUSA dataset and 86.34% on the CVACT_val dataset, which outperforms those of other existing methods in the field. Full article
(This article belongs to the Topic Artificial Intelligence Models, Tools and Applications)
Show Figures

Figure 1

30 pages, 7695 KB  
Article
RTUAV-YOLO: A Family of Efficient and Lightweight Models for Real-Time Object Detection in UAV Aerial Imagery
by Ruizhi Zhang, Jinghua Hou, Le Li, Ke Zhang, Li Zhao and Shuo Gao
Sensors 2025, 25(21), 6573; https://doi.org/10.3390/s25216573 - 25 Oct 2025
Viewed by 651
Abstract
Real-time object detection in Unmanned Aerial Vehicle (UAV) imagery is critical yet challenging, requiring high accuracy amidst complex scenes with multi-scale and small objects, under stringent onboard computational constraints. While existing methods struggle to balance accuracy and efficiency, we propose RTUAV-YOLO, a family [...] Read more.
Real-time object detection in Unmanned Aerial Vehicle (UAV) imagery is critical yet challenging, requiring high accuracy amidst complex scenes with multi-scale and small objects, under stringent onboard computational constraints. While existing methods struggle to balance accuracy and efficiency, we propose RTUAV-YOLO, a family of lightweight models based on YOLOv11 tailored for UAV real-time object detection. First, to mitigate the feature imbalance and progressive information degradation of small objects in current architectures multi-scale processing, we developed a Multi-Scale Feature Adaptive Modulation module (MSFAM) that enhances small-target feature extraction capabilities through adaptive weight generation mechanisms and dual-pathway heterogeneous feature aggregation. Second, to overcome the limitations in contextual information acquisition exhibited by current architectures in complex scene analysis, we propose a Progressive Dilated Separable Convolution Module (PDSCM) that achieves effective aggregation of multi-scale target contextual information through continuous receptive field expansion. Third, to preserve fine-grained spatial information of small objects during feature map downsampling operations, we engineered a Lightweight DownSampling Module (LDSM) to replace the traditional convolutional module. Finally, to rectify the insensitivity of current Intersection over Union (IoU) metrics toward small objects, we introduce the Minimum Point Distance Wise IoU (MPDWIoU) loss function, which enhances small-target localization precision through the integration of distance-aware penalty terms and adaptive weighting mechanisms. Comprehensive experiments on the VisDrone2019 dataset show that RTUAV-YOLO achieves an average improvement of 3.4% and 2.4% in mAP50 and mAP50-95, respectively, compared to the baseline model, while reducing the number of parameters by 65.3%. Its generalization capability for UAV object detection is further validated on the UAVDT and UAVVaste datasets. The proposed model is deployed on a typical airborne platform, Jetson Orin Nano, providing an effective solution for real-time object detection scenarios in actual UAVs. Full article
(This article belongs to the Special Issue Image Processing and Analysis for Object Detection: 3rd Edition)
Show Figures

Figure 1

23 pages, 11997 KB  
Article
Deep Learning-Driven Automatic Segmentation of Weeds and Crops in UAV Imagery
by Jianghan Tao, Qian Qiao, Jian Song, Shan Sun, Yijia Chen, Qingyang Wu, Yongying Liu, Feng Xue, Hao Wu and Fan Zhao
Sensors 2025, 25(21), 6576; https://doi.org/10.3390/s25216576 - 25 Oct 2025
Viewed by 221
Abstract
Accurate segmentation of crops and weeds is essential for enhancing crop yield, optimizing herbicide usage, and mitigating environmental impacts. Traditional weed management practices, such as manual weeding or broad-spectrum herbicide application, are labor-intensive, environmentally harmful, and economically inefficient. In response, this study introduces [...] Read more.
Accurate segmentation of crops and weeds is essential for enhancing crop yield, optimizing herbicide usage, and mitigating environmental impacts. Traditional weed management practices, such as manual weeding or broad-spectrum herbicide application, are labor-intensive, environmentally harmful, and economically inefficient. In response, this study introduces a novel precision agriculture framework integrating Unmanned Aerial Vehicle (UAV)-based remote sensing with advanced deep learning techniques, combining Super-Resolution Reconstruction (SRR) and semantic segmentation. This study is the first to integrate UAV-based SRR and semantic segmentation for tobacco fields, systematically evaluate recent Transformer and Mamba-based models alongside traditional CNNs, and release an annotated dataset that not only ensures reproducibility but also provides a resource for the research community to develop and benchmark future models. Initially, SRR enhanced the resolution of low-quality UAV imagery, significantly improving detailed feature extraction. Subsequently, to identify the optimal segmentation model for the proposed framework, semantic segmentation models incorporating CNN, Transformer, and Mamba architectures were used to differentiate crops from weeds. Among evaluated SRR methods, RCAN achieved the optimal reconstruction performance, reaching a Peak Signal-to-Noise Ratio (PSNR) of 24.98 dB and a Structural Similarity Index (SSIM) of 69.48%. In semantic segmentation, the ensemble model integrating Transformer (DPT with DINOv2) and Mamba-based architectures achieved the highest mean Intersection over Union (mIoU) of 90.75%, demonstrating superior robustness across diverse field conditions. Additionally, comprehensive experiments quantified the impact of magnification factors, Gaussian blur, and Gaussian noise, identifying an optimal magnification factor of 4×, proving that the method was robust to common environmental disturbances at optimal parameters. Overall, this research established an efficient, precise framework for crop cultivation management, offering valuable insights for precision agriculture and sustainable farming practices. Full article
(This article belongs to the Special Issue Smart Sensing and Control for Autonomous Intelligent Unmanned Systems)
Show Figures

Figure 1

15 pages, 10961 KB  
Article
Research on Visual Target Detection Method for Smart City Unmanned Aerial Vehicles Based on Transformer
by Bo Qi, Hang Shi, Bocheng Zhao, Rongjun Mu and Mingying Huo
Aerospace 2025, 12(11), 949; https://doi.org/10.3390/aerospace12110949 - 24 Oct 2025
Viewed by 254
Abstract
Unmanned aerial vehicles play a significant role in the automated inspection of future smart cities, which can ensure the safety of urban residents’ lives and property and the normal operation of the city. However, there may be situations where small targets in drone [...] Read more.
Unmanned aerial vehicles play a significant role in the automated inspection of future smart cities, which can ensure the safety of urban residents’ lives and property and the normal operation of the city. However, there may be situations where small targets in drone images are difficult to detect and the detection is unclear when the targets are similar to the environment. In response to the above problems, this paper proposes a real-time target detection method for unmanned aerial vehicle images based on Transformer. Aiming at the problem of small targets lacking visual features, a feature fusion module was designed, which realizes the interaction and fusion of features at different levels and improves the feature expression ability of small targets. Aiming at the problem of discontinuous features when the target is similar to the environment, a multi-head attention algorithm based on Transformer is designed. By extracting the context information of the target, the recognition ability of targets similar to the environment is improved. On the target image dataset collected by unmanned aerial vehicles in smart cities, the detection accuracy of the method described in this paper has reached 85.9%. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

19 pages, 6326 KB  
Article
MCD-Net: Robust Multi-UAV Cooperative Detection via Secondary Matching and Hybrid Fusion for Occluded Objects
by Huijie Zhou, Zijun Yang, Aitong Ma, Wei Zhang, Hong Zhang and Yifeng Niu
Drones 2025, 9(11), 739; https://doi.org/10.3390/drones9110739 - 24 Oct 2025
Viewed by 284
Abstract
Multi-Unmanned Aerial Vehicle (UAV) cooperative detection systems enhance perception by sharing object information from well-perceived UAVs to perception-limited UAVs via cross-view projection. However, such projections often suffer from misalignment due to environmental complexities and dynamic conditions, while existing fusion methods lack the robustness [...] Read more.
Multi-Unmanned Aerial Vehicle (UAV) cooperative detection systems enhance perception by sharing object information from well-perceived UAVs to perception-limited UAVs via cross-view projection. However, such projections often suffer from misalignment due to environmental complexities and dynamic conditions, while existing fusion methods lack the robustness to handle these inaccuracies effectively. To address this issue, we propose a novel Multi-UAV Cooperative Detection Network (MCD-Net), which introduces a secondary matching method and a hybrid fusion strategy to mitigate the adverse effects of projection misalignment. The secondary matching method integrates both background and object features to refine the inter-view projection transformation matrix, improving the reliability of cross-view information supplementation. The hybrid fusion strategy combines (1) Confidence-Based Decision Fusion for initial screening; (2) a Region Consistency Measurement module to evaluate similarity before and after projection, eliminating inconsistent results; and (3) a Vehicle Parts Perception module to detect occluded objects in potential regions, reducing false detections. Additionally, we contribute a dedicated vehicle parts dataset to train the classifier within the perception module. Experimental results demonstrate that MCD-Net achieves significant improvements over single-UAV detection, with higher recall and F-score metrics. Specifically, the recall for occluded objects improves by an average of 9.88%, highlighting the robustness and effectiveness of our approach in challenging scenarios. Full article
(This article belongs to the Section Artificial Intelligence in Drones (AID))
Show Figures

Figure 1

20 pages, 9075 KB  
Article
CatBoost Improves Inversion Accuracy of Plant Water Status in Winter Wheat Using Ratio Vegetation Index
by Bingyan Dong, Shouchen Ma, Zhenhao Gao and Anzhen Qin
Appl. Sci. 2025, 15(21), 11363; https://doi.org/10.3390/app152111363 - 23 Oct 2025
Viewed by 242
Abstract
The accurate monitoring of crop water status is critical for optimizing irrigation strategies in winter wheat. Compared with satellite remote sensing, unmanned aerial vehicle (UAV) technology offers superior spatial resolution, temporal flexibility, and controllable data acquisition, making it an ideal choice for the [...] Read more.
The accurate monitoring of crop water status is critical for optimizing irrigation strategies in winter wheat. Compared with satellite remote sensing, unmanned aerial vehicle (UAV) technology offers superior spatial resolution, temporal flexibility, and controllable data acquisition, making it an ideal choice for the small-scale monitoring of crop water status. During 2023–2025, field experiments were conducted to predict crop water status using UAV images in the North China Plain (NCP). Thirteen vegetation indices were calculated and their correlations with observed crop water content (CWC) and equivalent water thickness (EWT) were analyzed. Four machine learning (ML) models, namely, random forest (RF), decision tree (DT), LightGBM, and CatBoost, were evaluated for their inversion accuracy with regard to CWC and EWT in the 2024–2025 growing season of winter wheat. The results show that the ratio vegetation index (RVI, NIR/R) exhibited the strongest correlation with CWC (R = 0.97) during critical growth stages. Among the ML models, CatBoost demonstrated superior performance, achieving R2 values of 0.992 (CWC) and 0.962 (EWT) in training datasets, with corresponding RMSE values of 0.012% and 0.1907 g cm−2, respectively. The model maintained robust performance in testing (R2 = 0.893 for CWC, and R2 = 0.961 for EWT), outperforming conventional approaches like RF and DT. High-resolution (5 cm) inversion maps successfully identified spatial variability in crop water status across experimental plots. The CatBoost-RVI framework proved particularly effective during the booting and flowering stages, providing reliable references for precision irrigation management in the NCP. Full article
(This article belongs to the Special Issue Advanced Plant Biotechnology in Sustainable Agriculture—2nd Edition)
Show Figures

Figure 1

24 pages, 3366 KB  
Article
Study of the Optimal YOLO Visual Detector Model for Enhancing UAV Detection and Classification in Optoelectronic Channels of Sensor Fusion Systems
by Ildar Kurmashev, Vladislav Semenyuk, Alberto Lupidi, Dmitriy Alyoshin, Liliya Kurmasheva and Alessandro Cantelli-Forti
Drones 2025, 9(11), 732; https://doi.org/10.3390/drones9110732 - 23 Oct 2025
Viewed by 558
Abstract
The rapid spread of unmanned aerial vehicles (UAVs) has created new challenges for airspace security, as drones are increasingly used for surveillance, smuggling, and potentially for attacks near critical infrastructure. A key difficulty lies in reliably distinguishing UAVs from visually similar birds in [...] Read more.
The rapid spread of unmanned aerial vehicles (UAVs) has created new challenges for airspace security, as drones are increasingly used for surveillance, smuggling, and potentially for attacks near critical infrastructure. A key difficulty lies in reliably distinguishing UAVs from visually similar birds in electro-optical surveillance channels, where complex backgrounds and visual noise often increase false alarms. To address this, we investigated recent YOLO architectures and developed an enhanced model named YOLOv12-ADBC, incorporating an adaptive hierarchical feature integration mechanism to strengthen multi-scale spatial fusion. This architectural refinement improves sensitivity to subtle inter-class differences between drones and birds. A dedicated dataset of 7291 images was used to train and evaluate five YOLO versions (v8–v12), together with the proposed YOLOv12-ADBC. Comparative experiments demonstrated that YOLOv12-ADBC achieved the best overall performance, with precision = 0.892, recall = 0.864, mAP50 = 0.881, mAP50–95 = 0.633, and per-class accuracy reaching 96.4% for drones and 80% for birds. In inference tests on three video sequences simulating realistic monitoring conditions, YOLOv12-ADBC consistently outperformed baselines, achieving a detection accuracy of 92.1–95.5% and confidence levels up to 88.6%, while maintaining real-time processing at 118–135 frames per second (FPS). These results demonstrate that YOLOv12-ADBC not only surpasses previous YOLO models but also offers strong potential as the optical module in multi-sensor fusion frameworks. Its integration with radar, RF, and acoustic channels is expected to further enhance system-level robustness, providing a practical pathway toward reliable UAV detection in modern airspace protection systems. Full article
Show Figures

Figure 1

19 pages, 4001 KB  
Article
ConvNeXt with Context-Weighted Deep Superpixels for High-Spatial-Resolution Aerial Image Semantic Segmentation
by Ziran Ye, Yue Lin, Muye Gan, Xiangfeng Tan, Mengdi Dai and Dedong Kong
AI 2025, 6(11), 277; https://doi.org/10.3390/ai6110277 - 22 Oct 2025
Viewed by 397
Abstract
Semantic segmentation of high-spatial-resolution (HSR) aerial imagery is critical for applications such as urban planning and environmental monitoring, yet challenges, including scale variation, intra-class diversity, and inter-class confusion, persist. This study proposes a deep learning framework that integrates convolutional networks (CNNs) with context-enhanced [...] Read more.
Semantic segmentation of high-spatial-resolution (HSR) aerial imagery is critical for applications such as urban planning and environmental monitoring, yet challenges, including scale variation, intra-class diversity, and inter-class confusion, persist. This study proposes a deep learning framework that integrates convolutional networks (CNNs) with context-enhanced superpixel generation, using ConvNeXt as the backbone for feature extraction. The framework incorporates two key modules, namely, a deep superpixel module (Spixel) and a global context modeling module (GC-module), which synergistically generate context-weighted superpixel embeddings to enhance scene–object relationship modeling, refining local details while maintaining global semantic consistency. The introduced approach achieves mIoU scores of 84.54%, 90.59%, and 64.46% on diverse HSR aerial imagery benchmark datasets (Vaihingen, Potsdam, and UV6K), respectively. Ablation experiments were conducted to further validate the contributions of the global context modeling module and deep superpixel modules, highlighting their synergy in improving segmentation results. This work facilitates precise spatial detail preservation and semantic consistency in HSR aerial imagery interpretation tasks, particularly for small objects and complex land cover classes. Full article
Show Figures

Figure 1

Back to TopTop