Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (169)

Search Parameters:
Keywords = aeroelastic simulations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 10389 KB  
Article
Study on the Aeroelastic Characteristics of a Large-Span Joined-Wing Solar-Powered UAV
by Xinyu Tong, Xiaoping Zhu, Zhou Zhou, Junlei Sun, Jian Zhang and Qiang Wang
Aerospace 2025, 12(10), 892; https://doi.org/10.3390/aerospace12100892 - 2 Oct 2025
Abstract
When a joined-wing configuration is applied to the design of solar-powered UAVs, the increasing span amplifies aeroelastic effects, while structure complexity poses greater challenges to computational effectiveness during the conceptual design phase. This paper focuses on a large-span joined-wing solar-powered UAV (LJS-UAV) engineering [...] Read more.
When a joined-wing configuration is applied to the design of solar-powered UAVs, the increasing span amplifies aeroelastic effects, while structure complexity poses greater challenges to computational effectiveness during the conceptual design phase. This paper focuses on a large-span joined-wing solar-powered UAV (LJS-UAV) engineering prototype. The structural finite element model of the whole system is constructed by developing the ‘Simplified beam-shell model’ (SBSM) and verified by a structural mode test. A numerical simulation approach is employed to comprehensively analyse and summarise the aeroelastic characteristics of the LJS-UAV from the perspectives of static aeroelasticity, flutter, and gust response. The mode test identified 30 global modes with natural frequencies below 10 Hz, indicating that the LJS-UAV possesses an exceptionally flexible structure and exhibits highly complex aeroelastic characteristics. The simulation results reveal that the structural elasticity induces significant variations in aerodynamic forces, moments, and derivatives during flight, which cannot be neglected. The longitudinal trim strategies can considerably influence the aeroelastic boundary of the LJS-UAV. Utilising the front-wing control surfaces for trim is beneficial in improving structural performance and expanding the flight envelope. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

25 pages, 4854 KB  
Article
Computational Fluid Dynamics Approach to Aeroelastic Stability in Cable-Stayed Bridges
by Zouhir S. M. Louhibi, Nadji Chioukh, Sidi Mohammed Daoud, Zouaoui R. Harrat, Ehsan Harirchian and Walid Mansour
Buildings 2025, 15(19), 3509; https://doi.org/10.3390/buildings15193509 - 28 Sep 2025
Abstract
Long-span cable-supported bridges, such as cable-stayed and suspension bridges, are highly sensitive to wind-induced effects due to their flexibility, low damping, and relatively light weight. Aerodynamic analysis is therefore essential in their design and safety assessment. This study examines the aeroelastic stability of [...] Read more.
Long-span cable-supported bridges, such as cable-stayed and suspension bridges, are highly sensitive to wind-induced effects due to their flexibility, low damping, and relatively light weight. Aerodynamic analysis is therefore essential in their design and safety assessment. This study examines the aeroelastic stability of the Oued Dib cable-stayed bridge in Mila, Algeria, with emphasis on vortex shedding, galloping, torsional divergence, and classical flutter. A finite element modal analysis was carried out on a three-dimensional model to identify natural frequencies and mode shapes. A two-dimensional deck section was then analyzed using Computational Fluid Dynamics (CFD) under a steady wind flow of U = 20 m/s and varying angles of attack (AoA) from −10° to +10°. The simulations employed a RANS k-ω SST turbulence model with a wall function of Y+ = 30. The results provided detailed airflow patterns around the deck and enabled the evaluation of static aerodynamic coefficients—drag (CD), lift (CL), and moment (CM)—as functions of AoA. Finally, the bridge’s aeroelastic performance was assessed against the four instabilities. The findings indicate that the Oued Dib Bridge remains stable under the design wind conditions, although fatigue due to vortex shedding requires further consideration. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 7105 KB  
Article
Transient Vibration Loads Characteristics Analysis of Variable Speed Rotor
by Zhihao Yu, Chunhua Li, Jian Huang and Yi Cheng
Appl. Sci. 2025, 15(19), 10493; https://doi.org/10.3390/app151910493 - 28 Sep 2025
Abstract
To investigate the rotor vibration loads during the variable speed transient process, a transient rotor aeroelastic method based on the medium beam deformation theory and Hamilton’s principle is developed to simulate the rotor transient dynamic loads in the transient state. Different variable rotor [...] Read more.
To investigate the rotor vibration loads during the variable speed transient process, a transient rotor aeroelastic method based on the medium beam deformation theory and Hamilton’s principle is developed to simulate the rotor transient dynamic loads in the transient state. Different variable rotor speed strategies in different forward flight cases are investigated. Specifically, parameter characteristic analyses are conducted to better understand the transient rotor vibration load characteristics. Results indicate that there is significant overshoot in rotor hub torque at both the start and end of the rotor speed changing time. The maximum total overshoot of hub torque is 1940 N·m within 0.2 s at 400 km/h rotor speed decrease transient process. Different from the previous work, the impulsive features are primarily caused by the linear angular acceleration, while the transient inertial moment in hub torque is caused by the 1st frequency blade root lag bending moment. The overshoot of rotor hub torque during the transient process is mainly associated with angular acceleration, whereas flight speed and rotor thrust have minimal impact. The value of overshoot/time can be reduced by 98.6% at most in three angular acceleration strategies, and it can be reduced by 92.7% at most in three transient times. Adjusting the rotor pitch attitude during the transient state appears to be an effective strategy for reducing hub torque. Full article
Show Figures

Figure 1

23 pages, 5661 KB  
Article
Data-Driven Load Suppression and Platform Motion Optimization for Semi-Submersible Wind Turbines
by Liqing Liao, Qian Huang, Li Wang, Jian Yang, Dongran Song, Sifan Chen and Lingxiang Huang
J. Mar. Sci. Eng. 2025, 13(10), 1839; https://doi.org/10.3390/jmse13101839 - 23 Sep 2025
Viewed by 163
Abstract
To address the issues of large fatigue loads on key components and poor platform motion stability under the coupling effect of wind, waves, and internal excitations in semi-submersible wind turbines, this paper proposes a data-driven load suppression and platform motion optimization method. First, [...] Read more.
To address the issues of large fatigue loads on key components and poor platform motion stability under the coupling effect of wind, waves, and internal excitations in semi-submersible wind turbines, this paper proposes a data-driven load suppression and platform motion optimization method. First, the NREL 5 MW OC4 semi-submersible wind turbine is used as the research object. Wind-wave environment and aeroelastic simulation models are constructed based on TurbSim and OpenFAST. The rainflow counting method and Palmgren–Miner rule are applied to calculate the damage equivalent load (DEL) of key components, and the platform’s maximum horizontal displacement (Smax) is defined to represent the motion range. Secondly, a systematic analysis is conducted to examine the effects of servo control variables such as generator speed, yaw angle, and active power on the DELs of the blade root, tower base, drivetrain, mooring cables, and platform Smax. It is found that the generator speed and the yaw angle have significant impacts, with the DELs of the blade root and drivetrain showing a strong positive correlation with Smax. On this basis, a fatigue load model based on random forests is established. A multi-objective optimization framework is built using the NSGA-II algorithm, with the objectives of minimizing the total DEL of key components and Smax, thereby optimizing the servo control parameters. Case studies based on actual marine environmental data from the East China Sea show that, compared to the baseline configuration (a typical unoptimized control strategy), the optimization results lead to a maximum reduction of 14.1% in the total DEL of key components and a maximum reduction of 16.95% in Smax. The study verifies the effectiveness of data-driven modeling and multi-objective optimization for coordinated control, providing technical support for improving the structural safety and operational stability of semi-submersible wind turbines. Full article
(This article belongs to the Special Issue Cutting-Edge Technologies in Offshore Wind Energy)
Show Figures

Figure 1

34 pages, 16782 KB  
Article
Ultra-Short-Term Prediction of Monopile Offshore Wind Turbine Vibration Based on a Hybrid Model Combining Secondary Decomposition and Frequency-Enhanced Channel Self-Attention Transformer
by Zhenju Chuang, Yijie Zhao, Nan Gao and Zhenze Yang
J. Mar. Sci. Eng. 2025, 13(9), 1760; https://doi.org/10.3390/jmse13091760 - 11 Sep 2025
Viewed by 273
Abstract
Ice loads continue to pose challenges to the structural safety of offshore wind turbines (OWTs), while the rapid development of offshore wind power in cold regions is enabling the deployment of OWTs in deeper waters. To accurately simulate the dynamic response of an [...] Read more.
Ice loads continue to pose challenges to the structural safety of offshore wind turbines (OWTs), while the rapid development of offshore wind power in cold regions is enabling the deployment of OWTs in deeper waters. To accurately simulate the dynamic response of an OWT under combined ice–wind loading, this paper proposes a Discrete Element Method–Wind Turbine Integrated Analysis (DEM-WTIA) framework. The framework can synchronously simulate discontinuous ice-crushing processes and aeroelastic–structural dynamic responses through a holistic turbine model that incorporates rotor dynamics and control systems. To address the issue of insufficient prediction accuracy for dynamic responses, we introduced a multivariate time series forecasting method that integrates a secondary decomposition strategy with a hybrid prediction model. First, we developed a parallel signal processing mechanism, termed Adaptive Complete Ensemble Empirical Mode Decomposition with Improved Singular Spectrum Analysis (CEEMDAN-ISSA), which achieves adaptive denoising via permutation entropy-driven dynamic window optimization and multi-feature fusion-based anomaly detection, yielding a noise suppression rate of 76.4%. Furthermore, we propose the F-Transformer prediction model, which incorporates a Frequency-Enhanced Channel Attention Mechanism (FECAM). By integrating the Discrete Cosine Transform (DCT) into the Transformer architecture, the F-Transformer mines hidden features in the frequency domain, capturing potential periodicities in discontinuous data. Experimental results demonstrate that signals processed by ISSA exhibit increased signal-to-noise ratios and enhanced fidelity. The F-Transformer achieves a maximum reduction of 31.86% in mean squared error compared to the standard Transformer and maintains a coefficient of determination (R2) above 0.91 under multi-condition coupled testing. By combining adaptive decomposition and frequency-domain enhancement techniques, this framework provides a precise and highly adaptable ultra-short-term response forecasting tool for the safe operation and maintenance of offshore wind power in cold regions. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

27 pages, 6795 KB  
Article
Dynamic Analysis of Variable-Stiffness Laminated Composite Plates with an Arbitrary Damaged Area in Supersonic Airflow
by Pingan Zou, Dong Shao, Ningze Sun and Weige Liang
Aerospace 2025, 12(9), 802; https://doi.org/10.3390/aerospace12090802 - 5 Sep 2025
Viewed by 308
Abstract
In response to the urgent need for performance predictions of damaged aerospace structures, this study undertakes a comprehensive investigation into the flutter characteristics of damaged variable-stiffness composite laminate (VSCL) plates. The governing boundary value problem for the dynamics of damaged VSCL plates is [...] Read more.
In response to the urgent need for performance predictions of damaged aerospace structures, this study undertakes a comprehensive investigation into the flutter characteristics of damaged variable-stiffness composite laminate (VSCL) plates. The governing boundary value problem for the dynamics of damaged VSCL plates is formulated using first-order shear deformation theory (FSDT). Additionally, the first-order piston theory is utilized to model the aerodynamic pressure in supersonic airflow. A novel coupling methodology is developed through the integration of penalty function methods and irregular mapping techniques, which effectively establishes the interaction between damaged and undamaged plate elements. The vibration characteristics and aeroelastic responses are systematically analyzed using the Chebyshev differential quadrature method (CDQM). The validity of the proposed model is thoroughly demonstrated through comparative analyses with the existing literature and finite element simulations, confirming its computational accuracy and broad applicability. A notable characteristic of this research is its ability to accommodate arbitrary geometric configurations within damaged regions. The numerical results unequivocally demonstrate that accurately predicting the flutter characteristics of damaged VSCL plates constitutes an effective strategy for mitigating structural stability degradation. This approach provides valuable insights for aerospace structural design and maintenance. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

24 pages, 19377 KB  
Article
ECL5/CATANA: Comparative Analysis of Advanced Blade Vibration Measurement Techniques
by Christoph Brandstetter, Alexandra P. Schneider, Anne-Lise Fiquet, Benoit Paoletti, Kevin Billon and Xavier Ottavy
Int. J. Turbomach. Propuls. Power 2025, 10(3), 29; https://doi.org/10.3390/ijtpp10030029 - 4 Sep 2025
Viewed by 350
Abstract
A comprehensive understanding of aerodynamic instabilities, such as flutter, non-synchronous vibration (NSV), rotating stall, and forced response, is crucial for the safe and efficient operation of turbomachinery, particularly fans and compressors. These instabilities impose significant limitations on the operating envelope, necessitating precise monitoring [...] Read more.
A comprehensive understanding of aerodynamic instabilities, such as flutter, non-synchronous vibration (NSV), rotating stall, and forced response, is crucial for the safe and efficient operation of turbomachinery, particularly fans and compressors. These instabilities impose significant limitations on the operating envelope, necessitating precise monitoring and accurate quantification of vibration amplitudes during experimental investigations. This study addresses the challenge of measuring these amplitudes by comparing multiple measurement systems applied to the open-test case of the ultra-high bypass ratio (UHBR) fan ECL5. During part-speed operation, the fan exhibited a complex aeromechanical phenomenon, where an initial NSV of the second blade eigenmode near peak pressure transitioned to a dominant first-mode vibration. This mode shift was accompanied by substantial variations in blade vibration patterns, as evidenced by strain gauge data and unsteady wall pressure measurements. These operating conditions provided an optimal test environment for evaluating measurement systems. A comprehensive and redundant experimental setup was employed, comprising telemetry-based strain gauges, capacitive tip timing sensors, and a high-speed camera, to capture detailed aeroelastic behaviour. This paper presents a comparative analysis of these measurement systems, emphasizing their ability to capture high-resolution, accurate data in aeroelastic experiments. The results highlight the critical role of rigorous calibration procedures and the complementary use of multiple measurement technologies in advancing the understanding of turbomachinery instabilities. The insights derived from this investigation shed light on a complex evolution of instability mechanisms and offer valuable recommendations for future experimental studies. The open-test case has been made accessible to the research community, and the presented data can be used directly to validate coupled aeroelastic simulations under challenging operating conditions, including non-linear blade deflections. Full article
Show Figures

Figure 1

16 pages, 4086 KB  
Article
Topology Optimization for Rudder Structures Considering Additive Manufacturing and Flutter Effects
by Heng Zhang, Shuaijie Shi, Xiaohong Ding, Jiandong Yang and Min Xiong
Computation 2025, 13(9), 208; https://doi.org/10.3390/computation13090208 - 1 Sep 2025
Viewed by 380
Abstract
This paper presents a multi-constraint topology optimization strategy for rudder structures, integrating additive manufacturing (AM)-related overhang angle and flutter-performance considerations. To the best of our knowledge, this is the first study to couple AM overhang control with mass center (flutter) steering in a [...] Read more.
This paper presents a multi-constraint topology optimization strategy for rudder structures, integrating additive manufacturing (AM)-related overhang angle and flutter-performance considerations. To the best of our knowledge, this is the first study to couple AM overhang control with mass center (flutter) steering in a single density-based formulation for flight control rudder structures. The approach incorporates constraints on structural volume fraction, overhang angle for AM, and mass center positioning to address multi-function design objectives—structural lightweighting, stiffness, aerodynamic stability, and manufacturability. A build-direction-aware projection filter and a smooth Heaviside mass center constraint are introduced to enforce these requirements during every optimization iteration. The resulting layout converges to a sandwich-type rudder with balanced mechanical performance and AM feasibility. Simulation results show that enforcing overhang constraints reduces support material usage by 46.9% and residual deformation by 14.2%, significantly enhancing AM feasibility. Additionally, introducing center-of-mass constraints improves flutter velocity from 3327 m s−1 to 3759 m s−1, indicating a 6.84% increase over conventional optimization and demonstrating improved dynamic stability. These simultaneous gains in manufacturability and aeroelastic safety, achieved without post-processing, underline the novelty and practical value of the proposed constraint set. The strategy thus offers a practical and efficient design method for high-performance, AM-friendly rudder structures with superior mechanical and aerodynamic characteristics, and it can be readily extended to other mission-critical AM components. Full article
(This article belongs to the Special Issue Advanced Topology Optimization: Methods and Applications)
Show Figures

Figure 1

25 pages, 2743 KB  
Article
High Fidelity 2-Way Dynamic Fluid-Structure-Interaction (FSI) Simulation of Wind Turbines Based on Arbitrary Hybrid Turbulence Model (AHTM)
by Erkhan Sarsenov, Sagidolla Batay, Aigerim Baidullayeva, Yong Zhao, Dongming Wei and Eddie Yin Kwee Ng
Energies 2025, 18(16), 4401; https://doi.org/10.3390/en18164401 - 18 Aug 2025
Viewed by 463
Abstract
This work presents a high-fidelity two-way coupled Fluid-Structure Interaction (FSI) simulation framework for wind turbine blades, developed using the Arbitrary Hybrid Turbulence Modelling (AHTM) implemented through Very Large Eddy Simulation (VLES) in the DAFoam solver. By integrating VLES with the Toolkit for the [...] Read more.
This work presents a high-fidelity two-way coupled Fluid-Structure Interaction (FSI) simulation framework for wind turbine blades, developed using the Arbitrary Hybrid Turbulence Modelling (AHTM) implemented through Very Large Eddy Simulation (VLES) in the DAFoam solver. By integrating VLES with the Toolkit for the Analysis of Composite Structures (TACS) structural solver via the OpenMDAO/MPhys framework, this work aims to accurately model the complex aeroelastic characteristics of wind turbines, specifically focusing on the NREL Phase VI wind turbine. The numerical model accounts for the effects of transient, turbulent, and unsteady aerodynamic loading, incorporating the impact of structural deflections. A comparison of the calculated results with experimental data demonstrates strong agreement in key performance metrics, including blade tip displacements, power output, and pressure distribution. This alignment confirms that the proposed model is effective at predicting wind turbine performance. One of the significant advantages of this study is the integration of advanced turbulence modeling with shell element structural analysis, enhancing the design and performance predictions of modern wind turbines. Although computationally intensive, this approach marks a significant advancement in accurately simulating the aeroelastic response of turbines, paving the way for optimized and more efficient wind energy systems. Full article
(This article belongs to the Special Issue Advances in Fluid Dynamics and Wind Power Systems: 2nd Edition)
Show Figures

Figure 1

15 pages, 3717 KB  
Article
Multi-Objective ADRC-Based Aircraft Gust Load Control
by Chengxiang Li, Zheng Gong, Yalei Bai, Sikai Guo and Longbin Zhang
Appl. Sci. 2025, 15(16), 8882; https://doi.org/10.3390/app15168882 - 12 Aug 2025
Viewed by 292
Abstract
In this paper, we propose a dual-loop Active Disturbance Rejection Control (ADRC) strategy for gust load alleviation in flexible aircraft. By decoupling the control of modal and normal accelerations and spatially allocating control surfaces, the method effectively resolves signal interference. Simulation results show [...] Read more.
In this paper, we propose a dual-loop Active Disturbance Rejection Control (ADRC) strategy for gust load alleviation in flexible aircraft. By decoupling the control of modal and normal accelerations and spatially allocating control surfaces, the method effectively resolves signal interference. Simulation results show that compared to the uncontrolled case, the ADRC controller reduces the wing root bending moment peak by 38%, the normal load factor peak by 32%, and the pitch angle fluctuation by 38%. Robustness tests under actuator delays (4 Δt and 8 Δt) and gain perturbations (−50% and +100%) further confirm that the system maintains time-domain stability and effective load mitigation across varying conditions. These results demonstrate that the proposed ADRC scheme not only improves load suppression but also offers strong robustness against parameter uncertainty, providing theoretical and practical support for next-generation active control systems in aeroelastic environments. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

27 pages, 6700 KB  
Article
Experimental and Computational Analysis of Large-Amplitude Flutter in the Tacoma Narrows Bridge: Wind Tunnel Testing and Finite Element Time-Domain Simulation
by Bishang Zhang and Ledong Zhu
Buildings 2025, 15(15), 2800; https://doi.org/10.3390/buildings15152800 - 7 Aug 2025
Cited by 1 | Viewed by 416
Abstract
Nonlinear wind-induced vibrations and coupled static–dynamic instabilities pose significant challenges for long-span suspension bridges, especially under large-amplitude and high-angle-of-attack conditions. However, existing studies have yet to fully capture the mechanisms behind large-amplitude torsional flutter. To address this, wind tunnel experiments were performed on [...] Read more.
Nonlinear wind-induced vibrations and coupled static–dynamic instabilities pose significant challenges for long-span suspension bridges, especially under large-amplitude and high-angle-of-attack conditions. However, existing studies have yet to fully capture the mechanisms behind large-amplitude torsional flutter. To address this, wind tunnel experiments were performed on H-shaped bluff sections and closed box girders using a high-precision five-component piezoelectric balance combined with a custom support system. Complementing these experiments, a finite element time-domain simulation framework was developed, incorporating experimentally derived nonlinear flutter derivatives. Validation was achieved through aeroelastic testing of a 1:110-scale model of the original Tacoma Narrows Bridge and corresponding numerical simulations. The results revealed Hopf bifurcation phenomena in H-shaped bluff sections, indicated by amplitude-dependent flutter derivatives and equivalent damping coefficients. The simulation results showed less than a 10% deviation from experimental and historical wind speed–amplitude data, confirming the model’s accuracy. Failure analysis identified suspenders as the critical failure components in the Tacoma collapse. This work develops a comprehensive performance-based design framework that improves the safety, robustness, and resilience of long-span suspension bridges against complex nonlinear aerodynamic effects while enabling cost-effective, targeted reinforcement strategies to advance modern bridge engineering. Full article
Show Figures

Figure 1

31 pages, 26260 KB  
Article
Aeroelastic Analysis of a Tailless Flying Wing with a Rotating Wingtip
by Weiji Wang, Xinyu Ai, Xin Hu, Chongxu Han, Xiaole Xu, Zhihai Liang and Wei Qian
Aerospace 2025, 12(8), 688; https://doi.org/10.3390/aerospace12080688 - 31 Jul 2025
Viewed by 451
Abstract
This paper presents a preliminary investigation into the aeroelastic behavior of a tailless flying wing equipped with a rotating wingtip. Based on the configuration of Innovative Control Effectors (ICE) aircraft, an aeroelastic model of the tailless flying wing with a rotating wingtip has [...] Read more.
This paper presents a preliminary investigation into the aeroelastic behavior of a tailless flying wing equipped with a rotating wingtip. Based on the configuration of Innovative Control Effectors (ICE) aircraft, an aeroelastic model of the tailless flying wing with a rotating wingtip has been developed. Both numerical simulation and wind tunnel tests (WTTs) are employed to study the aeroelastic characteristics of this unique design. The numerical simulation involves the coupling of computational fluid dynamics (CFD) and implicit dynamic approaches (IDAs). Using the CFD/IDA coupling method, aeroelastic response results are obtained under different flow dynamic pressures. The critical flutter dynamic pressure is identified by analyzing the trend of the damping coefficient, with a focus on its transition from negative to positive values. Additionally, the critical flutter velocity and flutter frequency are obtained from the WTT results. The critical flutter parameters, including dynamic pressure, velocity, and flutter frequency, are examined under different wingtip rotation frequencies and angles. These parameters are derived using both the CFD/IDA coupling method and WTT. The results indicate that the rotating wingtip plays a significant role in influencing the flutter behavior of aircraft with such a configuration. Research has shown that the rotation characteristics of the rotating wingtip are the primary factor affecting its aeroelastic behavior, and increasing both the rotation frequency and rotation angle can raise the flutter boundary and effectively suppress flutter onset. Full article
(This article belongs to the Special Issue Aeroelasticity, Volume V)
Show Figures

Figure 1

23 pages, 3371 KB  
Article
Scheduling Control Considering Model Inconsistency of Membrane-Wing Aircraft
by Yanxuan Wu, Yifan Fu, Zhengjie Wang, Yang Yu and Hao Li
Processes 2025, 13(8), 2367; https://doi.org/10.3390/pr13082367 - 25 Jul 2025
Viewed by 341
Abstract
Inconsistency in the structural strengths of a membrane wing under positive and negative loads has undesirable impacts on the aeroelastic deflections of the wing, which results in more significant flight control system modeling errors and worsens the performance of the aircraft. In this [...] Read more.
Inconsistency in the structural strengths of a membrane wing under positive and negative loads has undesirable impacts on the aeroelastic deflections of the wing, which results in more significant flight control system modeling errors and worsens the performance of the aircraft. In this paper, an integrated dynamic model is derived for a membrane-wing aircraft based on the structural dynamics equation of the membrane wing and the flight dynamics equation of the traditional fixed wing. Based on state feedback control theory, an autopilot system is designed to unify the flight and control properties of different flight and wing deformation statuses. The system uses models of different operating regions to estimate the dynamic response of the vehicle and compares the estimation results with the sensor signals. Based on the compared results, the autopilot can identify the overall flight and select the correct operating region for the control system. By switching to the operating region with the minimum modeling error, the autopilot system maintains good flight performance while flying in turbulence. According to the simulation results, compared with traditional rigid aircraft autopilots, the proposed autopilot can reduce the absolute maximum attack angles by nearly 27% and the absolute maximum wingtip twist angles by nearly 25% under gust conditions. This enhanced robustness and stability performance demonstrates the autopilot’s significant potential for practical deployment in micro-aerial vehicles, particularly in applications demanding reliable operation under turbulent conditions, such as military surveillance, environmental monitoring, precision agriculture, or infrastructure inspection. Full article
(This article belongs to the Special Issue Design and Analysis of Adaptive Identification and Control)
Show Figures

Figure 1

27 pages, 8289 KB  
Article
A High-Efficient Modeling Method for Aerodynamic Loads of an Airfoil with Active Leading Edge Based on RFA and CFD
by Shengyong Fang, Sheng Zhang, Jinlong Zhou and Weidong Yang
Aerospace 2025, 12(7), 632; https://doi.org/10.3390/aerospace12070632 - 15 Jul 2025
Viewed by 447
Abstract
For the airfoil in freestream, the pressure difference between the upper and lower surfaces and the variations in pressure gradients are significant at its leading edge area. Under reasonable deflections, the active leading edge can effectively change airfoil aerodynamic loads, which helps to [...] Read more.
For the airfoil in freestream, the pressure difference between the upper and lower surfaces and the variations in pressure gradients are significant at its leading edge area. Under reasonable deflections, the active leading edge can effectively change airfoil aerodynamic loads, which helps to improve the rotor aerodynamic performance. In this paper, a modeling method for an airfoil with an active leading edge was developed to calculate its aerodynamic loads. The pitch motion of the rotor blade and the leading edge deflections were taken into account. Firstly, simulations of steady and unsteady flow for the airfoil with an active leading edge were conducted under different boundary conditions and with different leading edge deflection movement. Secondly, the rational function approximation (RFA) was employed to establish the relationship between aerodynamic loads and airfoil/active leading edge deflections. Then, coefficient matrices of the RFA approach were identified based on a limited number of high-fidelity computational fluid dynamics (CFD) results. Finally, an aerodynamic model of the airfoil with an active leading edge was developed, and its accuracy was validated by comparing it to the high-fidelity CFD results. Comparative results reveal that the developed model can calculate the aerodynamic loads of an airfoil with an active leading edge accurately and efficiently when applied appropriately. The modeling method can be used in aerodynamic load calculations and the aeroelastic coupling analysis of a rotor with active control devices. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

22 pages, 5935 KB  
Article
Aeroelastic Study of Downwind and Upwind Configurations Under Different Power Levels of Wind Turbines
by Zixuan Sun, Zhenye Sun, Yusheng Xia, Wenzhong Shen, Weijun Zhu and Esteban Ferrer
Machines 2025, 13(7), 599; https://doi.org/10.3390/machines13070599 - 11 Jul 2025
Viewed by 452
Abstract
Downwind wind turbines offer potential for reduced blade loads and lighter designs, yet systematic aeroelastic comparisons against upwind configurations remain limited, especially for multi-megawatt scales. This study conducts comprehensive OpenFAST simulations of the IEA 15 MW reference turbine in both configurations, contextualized against [...] Read more.
Downwind wind turbines offer potential for reduced blade loads and lighter designs, yet systematic aeroelastic comparisons against upwind configurations remain limited, especially for multi-megawatt scales. This study conducts comprehensive OpenFAST simulations of the IEA 15 MW reference turbine in both configurations, contextualized against smaller turbines (2.1, 5, and 10 MW). Scaling trends reveal that, with the increase in turbine size, the disadvantage of the downwind turbine (higher flapwise and edgewise fatigue load) is gradually disappearing and even becomes an advantage. However, downwind configurations amplify tower base loads significantly. These results highlight scalable benefits for blade loads but underscore critical trade-offs requiring tower reinforcement. Optimizing rotor-nacelle mass distribution emerges as a key pathway to mitigate tower penalties while leveraging blade-load alleviation for larger downwind turbines. Full article
Show Figures

Figure 1

Back to TopTop