Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,400)

Search Parameters:
Keywords = air–water temperatures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2962 KB  
Article
Process Simulation of Humidity and Airflow Effects on Arc Discharge Characteristics in Pantograph–Catenary Systems
by Yiming Dong, Hebin Wang, Huayang Zhang, Huibin Gong and Tengfei Gao
Processes 2025, 13(10), 3242; https://doi.org/10.3390/pr13103242 (registering DOI) - 11 Oct 2025
Abstract
The electrical arcs generated by high-speed dynamic separation between pantograph and catenary systems pose a significant threat to the operational safety of high-speed railways. Environmental factors, particularly relative humidity and airflow, critically influence arc characteristics. This study establishes a two-dimensional pantograph–catenary arc model [...] Read more.
The electrical arcs generated by high-speed dynamic separation between pantograph and catenary systems pose a significant threat to the operational safety of high-speed railways. Environmental factors, particularly relative humidity and airflow, critically influence arc characteristics. This study establishes a two-dimensional pantograph–catenary arc model based on magnetohydrodynamic theory, validated through a self-developed experimental platform. Research findings demonstrate that as relative humidity increases from 25% to 100%, the core arc temperature decreases from 10,500 K to 9000 K due to enhanced heat dissipation in humid air and electron capture by water molecules; the peak arc voltage rises from 37.25 V to 48.17 V resulting from accelerated deionization processes under high humidity conditions; the average arc energy in polar regions increases from 2.5 × 10−4 J/m3 to 3.5 × 10−4 J/m3, exhibiting a saddle-shaped distribution; and the maximum arc pressure declines from 5.3 Pa to 3.7 Pa. Under airflow conditions of 10–30 m/s, synergistic effects between airflow and humidity further modify arc behavior. The most pronounced temperature fluctuations and most frequent arc root migration occur at 100% humidity with 30 m/s airflow, while the shortest travel distance and longest persistence are observed at 25% humidity with 10 m/s airflow, as airflow accelerates heat dissipation and promotes arc root alternation. Experimental measurements of arc radiation intensity and temperature distribution show excellent agreement with simulation results, verifying the model’s reliability. This study quantitatively elucidates the influence patterns of humidity and airflow on arc characteristics, providing a theoretical foundation for enhancing pantograph–catenary system reliability. Full article
(This article belongs to the Section Process Control and Monitoring)
22 pages, 7794 KB  
Article
Contemporary Tendencies in Snow Cover, Winter Precipitation, and Winter Air Temperatures in the Mountain Regions of Bulgaria
by Dimitar Nikolov and Cvetan Dimitrov
Climate 2025, 13(10), 212; https://doi.org/10.3390/cli13100212 (registering DOI) - 11 Oct 2025
Abstract
Snow is an essential meteorological variable and an indicator of the changing climate. Its variations, particularly in snow depth and snow water equivalent, result mainly from changes in winter precipitation and air temperature. Recently, these conditions have been thoroughly investigated worldwide, revealing a [...] Read more.
Snow is an essential meteorological variable and an indicator of the changing climate. Its variations, particularly in snow depth and snow water equivalent, result mainly from changes in winter precipitation and air temperature. Recently, these conditions have been thoroughly investigated worldwide, revealing a general prevailing decline in precipitation and increasing tendencies in air temperatures. However, no systematic or up-to-date studies for Bulgaria exist. The main goal of the current project is to fill this national knowledge gap in the snow conditions in our mountains. For that purpose, we used 31 stations with altitudes ranging from 527 to 2925 m a.s.l. for the period between 1961 and 2020, covering two significant reference climatic periods. We extracted data about snow cover maximums, mean air temperatures, and precipitation amounts for the whole winter season in mountainous regions from October to April; however, we mainly present the results for the three winter months: December, January, and February. Most of the stations do not demonstrate any significant trends for snow depth maximums, except for the three lower stations in central west Bulgaria, which show significant increases. On the opposite end of the scale, two of the highest stations demonstrated notable decreases. The time series for the precipitation amounts are also predominantly indefinite. Significant decreasing trends can be found at the highest three alpine stations. The change in the mean seasonal air temperature is predominantly positive—17 of the stations show positive trends, and for 12, the increases are significant. The altitude of the strongest seasonal temperature rise lies between 1000 and 1700 m. Finally, due to the obvious nonlinearity of some of the time series, we decided to check for change points and a nonlinear approach to fit the data. This analysis demonstrates general changes in the investigated characteristics from the beginning of the 1970s to the middle of the 1980s. Full article
Show Figures

Figure 1

48 pages, 5238 KB  
Article
Chemodynamics of Mercury (Hg) in a Southern Reservoir Lake (Cane Creek Lake, Cookeville, TN, USA): II—Estimation of the Hg Water/Air Exchange Coefficient Using the Two-Thin Film Model and Field-Measured Data of Hg Water/Air Exchange and Dissolved Gaseous Hg
by Hong Zhang, Lesta S. Fletcher and William C. Crocker
Water 2025, 17(20), 2931; https://doi.org/10.3390/w17202931 - 10 Oct 2025
Abstract
This paper reports a novel effort to estimate and evaluate the coefficients of Hg transfer across the water/air interface in lakes such as Cane Creek Lake (CCL, Cookeville, TN, USA). This was accomplished by calculating the coefficients (kw) using the [...] Read more.
This paper reports a novel effort to estimate and evaluate the coefficients of Hg transfer across the water/air interface in lakes such as Cane Creek Lake (CCL, Cookeville, TN, USA). This was accomplished by calculating the coefficients (kw) using the Two-Thin Film (TTF) Model for Hg transfer together with the field-measured data of Hg emission flux (F), dissolved gaseous mercury concentration (DGM), air Hg concentration (Ca), and water temperature for Henry’s coefficient (KH) obtained from a separate field study at the CCL. The daily mean kw values range from 0.045 to 0.21 m h−1, with the min. at 0.0025–0.14 and the max. at 0.079–0.41 m h−1, generally higher for the summer, and from 0.0092 to 0.15, with the min. at 0.0032–0.033 and the max. at 0.017–0.31 m h−1, generally lower for the fall and winter, exhibiting an apparent seasonal trend. The highest kw values occur in August (mean: 0.21, max.: 0.41 m h−1). Our kw results add to and enrich the aquatic interfacial Hg transfer coefficient database and provide an alternative avenue to evaluate and select the coefficients for the TTF Model’s application. The kw results are of value in gaining insights into the Hg transfer actually occurring across the water/air interface under environmental influences (e.g., wind/wave, solar radiation). Our kw results do not show a clear, consistent correlation of kw with wind/wave effect, nor sunlight effect, in spite of some correlations in sporadic cases. Generally, the kw values do not exbibit the trends prescribed by the model sensitivity study. The comparisons of our kw results with those obtained using wind-based transfer models (the Liss/Merlivat Model, the Wanninkhof Model, and the modified linear model) show that they depart from each other. The findings of this study indicate that the TTF Model has limitations and weaknesses. One major assumption of the TTF Model is the equilibrium of the Hg distribution between the air and water films across the water/air interface. The predominant oversaturation of DGM shown by our DGM data evidently challenges this assumption. This study suggests that aquatic interfacial Hg transfer is considerably more complicated, involving a group of factors, more than just wind and wave. Full article
Show Figures

Figure 1

32 pages, 5321 KB  
Article
Optimization of Artificial Neural Networks for Predicting the Radiological Risks of Thermal Waters in Türkiye
by Selin Erzin
Appl. Sci. 2025, 15(20), 10891; https://doi.org/10.3390/app152010891 - 10 Oct 2025
Abstract
In this study, the prediction of four radiological risk parameters of thermal waters in Türkiye (dose contribution (DE) from radon release in thermal water to air for workers and visitors, the annual effective dose from radon ingestion (Ding [...] Read more.
In this study, the prediction of four radiological risk parameters of thermal waters in Türkiye (dose contribution (DE) from radon release in thermal water to air for workers and visitors, the annual effective dose from radon ingestion (Ding) and the annual effective dose to the stomach from radon ingestion (Dsto)) from three physicochemical properties of thermal waters (electrical conductivity (EC), pH and temperature (T)) was investigated using multilayer perceptron (MLP) and radial basis function (RBF) artificial neural networks (ANNs). To achieve this, two separate MLPANN and RBFANN models were constructed using data from the literature. The MLPANN and RBFANN models were verified using performance metrics (relative absolute error (RAE), root mean square error (RMSE), mean absolute error (MAE), and ratio of RMSE to data standard deviation (RSR)). The comparison of performance metrics shows that MLPANN models achieved approximately 54% lower error metrics than RBF models. The performance of the developed models was further examined using rank analysis, Taylor and Scaled Percentage Error (SPE) plots. Rank analysis and Taylor and SPE graphs showed that MLPANN models predicted the values of four radiological risk parameters of thermal waters more correctly than RBFANN models. This study demonstrates that MLPANNs significantly outperformed RBFANNs in predicting the radiological risks of thermal waters in Türkiye. Full article
(This article belongs to the Special Issue Measurement and Assessment of Environmental Radioactivity)
Show Figures

Figure 1

21 pages, 4750 KB  
Article
Estimation of Kcb for Irrigated Melon Using NDVI Obtained Through UAV Imaging in the Brazilian Semiarid Region
by Jeones Marinho Siqueira, Gertrudes Macário de Oliveira, Pedro Rogerio Giongo, Jose Henrique da Silva Taveira, Edgo Jackson Pinto Santiago, Mário de Miranda Vilas Boas Ramos Leitão, Ligia Borges Marinho, Wagner Martins dos Santos, Alexandre Maniçoba da Rosa Ferraz Jardim, Thieres George Freire da Silva and Marcos Vinícius da Silva
AgriEngineering 2025, 7(10), 340; https://doi.org/10.3390/agriengineering7100340 - 10 Oct 2025
Abstract
In Northeast Brazil, climatic factors and technology synergistically enhance melon productivity and fruit quality. However, the region requires further research on the efficient use of water resources, particularly in determining the crop coefficient (Kc), which comprises the evaporation coefficient (Ke) and the transpiration [...] Read more.
In Northeast Brazil, climatic factors and technology synergistically enhance melon productivity and fruit quality. However, the region requires further research on the efficient use of water resources, particularly in determining the crop coefficient (Kc), which comprises the evaporation coefficient (Ke) and the transpiration coefficient (Kcb). Air temperature affects crop growth and development, altering the spectral response and the Kcb. However, the direct influence of air temperature on Kcb and spectral response remains underemphasized. This study employed unmanned aerial vehicle (UAV) with RGB and Red-Green-NIR sensors imagery to extract biophysical parameters for improved water management in melon cultivation in semiarid northern Bahia. Field experiments were conducted during two distinct periods: warm (October–December 2019) and cool (June–August 2020). The ‘Gladial’ and ‘Cantaloupe’ cultivars exhibited higher Kcb values during the warm season (2.753–3.450 and 3.087–3.856, respectively) and lower during the cool season (0.815–0.993 and 1.118–1.317). NDVI-based estimates of Kcb showed strong correlations with field data (r > 0.80), confirming its predictive potential. The results demonstrate that UAV-derived NDVI enables reliable estimation of melon Kcb across seasons, supporting its application for evapotranspiration modeling and precision irrigation in the Brazilian semiarid context. Full article
Show Figures

Figure 1

17 pages, 1813 KB  
Review
On Grid-Generated Quantum Turbulence
by Ladislav Skrbek
Entropy 2025, 27(10), 1054; https://doi.org/10.3390/e27101054 - 10 Oct 2025
Abstract
Nearly homogeneous and isotropic turbulence, generated in flows through grids of various forms in wind tunnels or by towing or oscillating grids in stationary samples of classical viscous fluids and the superfluid phases of helium, have played an essential role in studies of [...] Read more.
Nearly homogeneous and isotropic turbulence, generated in flows through grids of various forms in wind tunnels or by towing or oscillating grids in stationary samples of classical viscous fluids and the superfluid phases of helium, have played an essential role in studies of the still partly unresolved problem of turbulence in fluids. This review describes a selected class of complementary grid experiments performed with classical viscous fluids such as air or water and with the superfluid liquid phases of 4He (He II) and 3He-B, which led to a deeper understanding of the underlying physics of turbulent quantum flows. In particular, we discuss the pioneering experiments on generating and probing quantum turbulence by oscillating grids in He II in the zero temperature limit, performed by Peter McClintock’s group in Lancaster. Full article
Show Figures

Figure 1

28 pages, 1421 KB  
Article
Climate, Crops, and Communities: Modeling the Environmental Stressors Driving Food Supply Chain Insecurity
by Manu Sharma, Sudhanshu Joshi, Priyanka Gupta and Tanuja Joshi
Earth 2025, 6(4), 121; https://doi.org/10.3390/earth6040121 - 9 Oct 2025
Viewed by 166
Abstract
As climate variability intensifies, its impacts are increasingly visible through disrupted agricultural systems and rising food insecurity, especially in climate-sensitive regions. This study explores the complex relationships between environmental stressors, such as rising temperatures, erratic rainfall, and soil degradation, with food insecurity outcomes [...] Read more.
As climate variability intensifies, its impacts are increasingly visible through disrupted agricultural systems and rising food insecurity, especially in climate-sensitive regions. This study explores the complex relationships between environmental stressors, such as rising temperatures, erratic rainfall, and soil degradation, with food insecurity outcomes in selected districts of Uttarakhand, India. Using the Fuzzy DEMATEL method, this study analyzes 19 stressors affecting the food supply chain and identifies the nine most influential factors. An Environmental Stressor Index (ESI) is constructed, integrating climatic, hydrological, and land-use dimensions. The ESI is applied to three districts—Rudraprayag, Udham Singh Nagar, and Almora—to assess their vulnerability. The results suggest that Rudraprayag faces high exposure to climate extremes (heatwaves, floods, and droughts) but benefits from a relatively stronger infrastructure. Udham Singh Nagar exhibits the highest overall vulnerability, driven by water stress, air pollution, and salinity, whereas Almora remains relatively less exposed, apart from moderate drought and connectivity stress. Simulations based on RCP 4.5 and RCP 8.5 scenarios indicate increasing stress across all regions, with Udham Singh Nagar consistently identified as the most vulnerable. Rudraprayag experiences increased stress under the RCP 8.5 scenario, while Almora is the least vulnerable, though still at risk from drought and pest outbreaks. By incorporating crop yield models into the ESI framework, this study advances a systems-level tool for assessing agricultural vulnerability to climate change. This research holds global relevance, as food supply chains in climate-sensitive regions such as Africa, Southeast Asia, and Latin America face similar compound stressors. Its novelty lies in integrating a Fuzzy DEMATEL-based Environmental Stressor Index with crop yield modeling. The findings highlight the urgent need for climate-informed food system planning and policies that integrate environmental and social vulnerabilities. Full article
Show Figures

Figure 1

24 pages, 11341 KB  
Article
Phytoplankton Dynamics in a Large Lagoon: Nutrient Load Reductions, Climate Change, and Cold- and Heatwaves
by Gerald Schernewski, Maria Schneider, Thomas Neumann and Mario von Weber
Environments 2025, 12(10), 370; https://doi.org/10.3390/environments12100370 - 9 Oct 2025
Viewed by 187
Abstract
The coastal Oder/Szczecin Lagoon is subject to multiple external changes, particularly the reduction in external nutrient loads and the impacts of climate change, including rising temperatures and more frequent heatwaves. By combining monitoring data covering the past 40 years with 3D ecosystem modelling, [...] Read more.
The coastal Oder/Szczecin Lagoon is subject to multiple external changes, particularly the reduction in external nutrient loads and the impacts of climate change, including rising temperatures and more frequent heatwaves. By combining monitoring data covering the past 40 years with 3D ecosystem modelling, we assess changes in phytoplankton abundance and diversity across different temporal scales, ranging from long-term trends to the short-term effects. Despite strong reductions in external nutrient loads, neither the average annual phytoplankton biomass nor the long-term species composition changed significantly, although extreme summer blooms appear to have decreased. In summer, cyanobacteria, usually dominated by Microcystis, can reach a relative biovolume of up to 90%. Bacillariophyceae (diatoms) contribute up to 72% of the annual relative biovolume and dominate in spring. Both interannual and short-term variability in phytoplankton biomass and composition are pronounced. Heat- and coldwaves show no consistent immediate effects; however, results suggest that cyanobacteria, particularly Microcystis, benefit from hot summers. In contrast, diatoms appear less responsive to temperature, although they tend to contribute more in colder years, with distinct shifts in species composition observed between hot and cold springs. Model simulations indicate that a 1.5 °C increase in air temperature would, via elevated water temperatures, raise average monthly phytoplankton biomass by 4% in July and by 9% in August, further promoting cyanobacteria growth. Full article
Show Figures

Figure 1

13 pages, 1328 KB  
Article
Effect of Vibration on Open-Cathode Direct Methanol Fuel Cell Stack Performance
by Selahattin Celik, Gamze Atalmis Sari, Mikail Yagiz, Hasan Özcan and Bahman Amini Horri
Physchem 2025, 5(4), 44; https://doi.org/10.3390/physchem5040044 - 8 Oct 2025
Viewed by 147
Abstract
This study investigates the impact of vibration frequency on the performance of a 10-cell open-cathode direct methanol fuel cell (OC-DMFC) stack. Experiments were conducted using three different vibration frequencies (15, 30, and 60 Hz) and compared against a baseline condition without vibration. Performance [...] Read more.
This study investigates the impact of vibration frequency on the performance of a 10-cell open-cathode direct methanol fuel cell (OC-DMFC) stack. Experiments were conducted using three different vibration frequencies (15, 30, and 60 Hz) and compared against a baseline condition without vibration. Performance was evaluated under varying methanol–water fuel flow rates (1, 5, 25, and 50 mL·min−1) while maintaining constant operating conditions: methanol temperature at 70 °C, methanol concentration at 1 M, and cathode air flow velocity at 4.8 m·s−1. The optimal performance was observed at a fuel flow rate of 5 mL·min−1, where the maximum power density reached 26.05 mW·cm−2 under 15 Hz vibration—representing a 14% increase compared to the non-vibrated condition. These findings demonstrate that low-frequency vibration can enhance fuel cell performance by improving mass transport characteristics. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

18 pages, 3531 KB  
Article
Heat, Cold and Power Supply with Thermal Energy Storage in Battery Electric Vehicles: A Holistic Evaluated Concept with High Storage Density, Performance and Scalability
by Volker Dreißigacker
Energies 2025, 18(19), 5287; https://doi.org/10.3390/en18195287 - 6 Oct 2025
Viewed by 244
Abstract
The successful establishment of battery electric vehicles (BEVs) is strongly linked to criteria such as cost and range. In particular, the need for air conditioning strains battery capacities and limits the availability of BEVs. Thermal energy storage systems (TESs) open up alternative paths [...] Read more.
The successful establishment of battery electric vehicles (BEVs) is strongly linked to criteria such as cost and range. In particular, the need for air conditioning strains battery capacities and limits the availability of BEVs. Thermal energy storage systems (TESs) open up alternative paths for heat and cold supply with excellent scalability and cost efficiency. Previous TES concepts have largely focused on heat during cold seasons, but storage-based air conditioning systems for all seasons are still missing. To fill this gap, a concept based on a Brayton cycle allowing heat and cold supply and, simultaneously, an output of electrical energy at times when no air conditioning is needed was investigated. Central thermal components include water-based cold storage and electrically heated, high-temperature, solid-medium storage, both with innovative TPMS structures and flexible operation managements. With transient simulation studies a system was identified with effective storage densities of up to 100 Wh/kg, reaching a constant heat and cold supply of 5 kW and 2.5 kW, respectively, over 41 min. In addition, the underlying cycle allows an electrical output of up to 1.7 kW during times of inactive air conditioning requirements. Compared to a reference system designed only for winter operation, the moderately lower storage densities are compensated by proportionately longer discharging times. By combining a compact and dynamic Brayton cycle with a TES in BEVs, a storage-based air conditioning system with high utilization potential and high operational flexibility was developed. In addition to further optimizations, the knowledge for TES solutions can also be transferred to today’s air conditioning systems, extending the solution space for storage-supported thermomanagement options in BEVs. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

14 pages, 1223 KB  
Article
Heat Pipe Heating and Cooling Building Modules: Thermal Properties and Possibilities of Their Use in Polish Climatic Conditions
by Karolina Durczak and Bernard Zawada
Energies 2025, 18(19), 5274; https://doi.org/10.3390/en18195274 - 4 Oct 2025
Viewed by 249
Abstract
The subject of this paper is an analysis of the use of wall heating and cooling modules with heat pipes for efficient space heating and cooling. The modules under consideration constitute a structural element installed in the room’s partition structure and consist of [...] Read more.
The subject of this paper is an analysis of the use of wall heating and cooling modules with heat pipes for efficient space heating and cooling. The modules under consideration constitute a structural element installed in the room’s partition structure and consist of heat pipes embedded in a several-centimeter layer of concrete. Water-based central heating and chilled water systems were used as the heat and cooling source. The heat pipes are filled with a thermodynamic medium that changes state in repeated gas–liquid cycles. The advantage of this solution is the use of heat pipes as a heating and cooling element built into the wall, instead of a traditional water system. This solution offers many operational benefits, such as reduced costs for pumping the heat medium. This paper presents an analysis of the potential of using heat pipe modules for heating and cooling in real-world buildings in Poland. Taking into account the structural characteristics of the rooms under consideration (i.e., internal wall area, window area), an analysis was conducted to determine the potential use of the modules for space heating and cooling. The analysis was based on rooms where, according to the authors, the largest possible use of internal and external wall surfaces is possible, such as hotels and schools. Based on the simulations and calculations, it can be concluded that the modules can be effectively used in Poland as a real heating and cooling element: standalone, covering the entire heating and cooling demand of a room, e.g., a hotel room, or as a component working with an additional system, e.g., air cooling and heating in school buildings. The changes in outdoor air temperature, during the year analyzed in the article, were in the range of −24/+32 °C. Full article
Show Figures

Figure 1

18 pages, 8425 KB  
Article
A Novel Optimal Control Method for Building Cooling Water Systems with Variable Speed Condenser Pumps and Cooling Tower Fans
by Xiao Chen, Lingjun Guan, Chaoyue Yang, Peihong Ge and Jinrui Xia
Buildings 2025, 15(19), 3568; https://doi.org/10.3390/buildings15193568 (registering DOI) - 2 Oct 2025
Viewed by 172
Abstract
The optimal control of cooling water systems is of great significance for energy saving in chiller plants. Previously optimal control methods optimize the flow rate, temperature or temperature difference setpoints but cannot control pumps and cooling tower fans directly. This study proposes a [...] Read more.
The optimal control of cooling water systems is of great significance for energy saving in chiller plants. Previously optimal control methods optimize the flow rate, temperature or temperature difference setpoints but cannot control pumps and cooling tower fans directly. This study proposes a direct optimal control method for pumps and fans based on derivative control strategy by decoupling water flow rate optimization and airflow rate optimization, which can make the total power of chillers, pumps and fans approach a minimum. Simulations for different conditions were performed for the validation and performance analysis of the optimal control strategy. The optimization algorithms and implementation methods of direct optimal control were developed and validated by experiment. The simulation results indicate that total power approaches a minimum when the derivative of total power with respect to water/air flow rate approaches zero. The power-saving rate of the studied chiller plant is 13.2% at a plant part-load ratio of 20% compared to the constant-speed pump/fan mode. The experimental results show that the direct control method, taking power frequency as a controlled variable, can make variable frequency drives regulate their output frequencies to be equal to the optimized power frequencies of pumps and fans in a timely manner. Full article
Show Figures

Figure 1

19 pages, 2976 KB  
Article
Numerical and Experimental Analyses of Flue Gas Emissions, from Biomass Pellet Combustion in a Domestic Boiler
by Nevena Mileva, Penka Zlateva, Martin Ivanov, Kalin Krumov, Angel Terziev and Adriana Comarla
Eng 2025, 6(10), 257; https://doi.org/10.3390/eng6100257 - 2 Oct 2025
Viewed by 229
Abstract
This study explores the combustion behavior of three biomass pellet types—wood (W), sunflower husk (SH), and a mixture of wood and sunflower husks (W/SH)—in a residential hot water boiler. Experiments were carried out under two air supply regimes (40%/60% and 60%/40% primary to [...] Read more.
This study explores the combustion behavior of three biomass pellet types—wood (W), sunflower husk (SH), and a mixture of wood and sunflower husks (W/SH)—in a residential hot water boiler. Experiments were carried out under two air supply regimes (40%/60% and 60%/40% primary to secondary air) to measure flue gas concentrations of oxygen (O2), carbon monoxide (CO), and nitrogen oxides (NOx). The results indicate that SH pellets generate the highest emissions (CO: 1095.3 mg/m3, NOx: 679.3 mg/m3), while W pellets achieve the lowest (CO: 0.3 mg/m3, NOx: 194.1 mg/m3). The mixed W/SH pellets produce intermediate values (CO: 148.7 mg/m3, NOx: 201.8 mg/m3). Overall boiler efficiency for all tested fuels ranged from 90.3% to 91.4%. Numerical simulations using ANSYS CFX (2024 R2 (24.2)) were performed to analyze temperature distribution, flue gas composition, and flow fields, showing good agreement with experimental outlet temperature and emission trends. These findings emphasize that both pellet composition and air distribution significantly influence efficiency and emissions, offering guidance for optimizing small-scale biomass boiler operation. Full article
Show Figures

Figure 1

12 pages, 2582 KB  
Communication
Intergranular Crack of Cathode Materials in Lithium-Ion Batteries Subjected to Rapid Cooling During Transient Thermal Runaway
by Siqi Li, Changchun Ye, Ming Jin, Guobin Zhong, Shi Liu, Yajie Liu and Zhixin Tai
Batteries 2025, 11(10), 363; https://doi.org/10.3390/batteries11100363 - 30 Sep 2025
Viewed by 210
Abstract
In metallurgy, the quenching process often induces changes in certain material properties, such as hardness and ductility, through the rapid cooling of a workpiece in water, gas, oil, polymer, air, or other fluids. Given that lithium-ion batteries operate under relatively benign conditions, conventional [...] Read more.
In metallurgy, the quenching process often induces changes in certain material properties, such as hardness and ductility, through the rapid cooling of a workpiece in water, gas, oil, polymer, air, or other fluids. Given that lithium-ion batteries operate under relatively benign conditions, conventional rapid cooling does not significantly affect the property variations in their internal electrode materials during normal use. However, thermal runaway presents an exception due to its dramatic temperature fluctuations from room temperature to several hundred degrees Celsius. In this study, we investigated NCM811 cathodes in 18,650 batteries subjected to transient thermal runaway followed by rapid cooling using several advanced analytical techniques. The results reveal a phenomenon characterized by intergranular cracking within NCM811 cathode materials when exposed to rapid cooling during transient thermal runaway. Furthermore, lithium-ion cells utilizing reused NCM-182.4 electrodes in fresh electrolyte demonstrate a reversible capacity of 231.4 mAh/g after 30 cycles at 0.1 C, highlighting the potential for reusing NCM811 cathodes in the lithium-ion battery recycling process. These findings not only illustrate that NCM811 particles may experience intergranular cracking when subjected to rapid cooling during transient thermal runaway, but also the rapidly cooled NCM811 electrodes exhibit potential for reuse. Full article
(This article belongs to the Special Issue Battery Interface: Analysis & Design)
Show Figures

Figure 1

20 pages, 19644 KB  
Article
Preliminary Study on the Heat Treatment Optimization of ZnAl15Cu1Mg (ZEP1510) for Enhanced Mechanical Performance
by Marie Zöller, Abdulkerim Karaman, Melanie Frieling and Michael Marré
Processes 2025, 13(10), 3138; https://doi.org/10.3390/pr13103138 - 30 Sep 2025
Viewed by 367
Abstract
This preliminary study investigates the optimization of the mechanical properties of the zinc wrought alloy ZEP1510 with the objective of assessing its potential to approach the hardness, strength, and toughness of the brass alloy, CuZn21Si3P. Enhancing both toughness and hardness was targeted to [...] Read more.
This preliminary study investigates the optimization of the mechanical properties of the zinc wrought alloy ZEP1510 with the objective of assessing its potential to approach the hardness, strength, and toughness of the brass alloy, CuZn21Si3P. Enhancing both toughness and hardness was targeted to improve the durability of potential replacement components. Heat treatment was the primary method, applying annealing, air cooling, water quenching, and artificial aging to modify material properties. Mechanical characterization was performed through Brinell hardness, as well as tensile and Charpy impact testing, complemented by metallographic analysis. Air cooling from temperatures near the transformation point at 275 °C produced a visually refined and homogeneous microstructure (qualitative assessment by OM/SEM), resulting in simultaneous increases in hardness and toughness. Water quenching from this range yielded a metastable state with high toughness but low hardness, while subsequent natural aging significantly increased strength and reduced toughness. Artificial aging indicated precipitation hardening behavior similar to that of aluminum alloys. Although property improvements were achieved, the targeted combination of high toughness and high strength was not fully realized. The findings suggest that controlled artificial aging, alternative quenching media and grain refinement strategies could further enhance performance, providing a basis for tailoring ZEP1510 for demanding engineering applications. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

Back to TopTop