Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (876)

Search Parameters:
Keywords = air circulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3075 KiB  
Article
Influence of Atmospheric Circulation on Seasonal Temperatures in Serbia
by Suzana Putniković
Atmosphere 2025, 16(8), 969; https://doi.org/10.3390/atmos16080969 - 15 Aug 2025
Viewed by 274
Abstract
An objective classification scheme by Jenkinson and Collison is applied to the period 1961–2010 to statistically model the temperatures over Serbia. The originally identified 26 weather types (WTs) are reorganised into 10 basic types. This discussion includes the synoptic characteristics, frequency and trends [...] Read more.
An objective classification scheme by Jenkinson and Collison is applied to the period 1961–2010 to statistically model the temperatures over Serbia. The originally identified 26 weather types (WTs) are reorganised into 10 basic types. This discussion includes the synoptic characteristics, frequency and trends of the 10 WTs as well as the trends of seasonal mean, maximum and minimum temperatures in Serbia. In this area, the anticyclonic weather type is predominant throughout the year, and its negative trend is significant in summer and autumn. The relationship between air temperature and atmospheric circulation types is investigated by analysing the mean and anomalies of mean, maximum and minimum temperatures for each individual atmospheric circulation type and by stepwise regression. The multiple regression models developed for six stations using circulation WTs as predictors showed the best performance in modelling winter mean temperatures for Zlatibor and Loznica compared to the other stations, while the models for other seasons proved to be inadequate. Full article
Show Figures

Figure 1

17 pages, 10829 KiB  
Article
Vertical Profiling of PM1 and PM2.5 Dynamics: UAV-Based Observations in Seasonal Urban Atmosphere
by Zhen Zhao, Yuting Pang, Bing Qi, Chi Zhang, Ming Yang and Xuezhu Ye
Atmosphere 2025, 16(8), 968; https://doi.org/10.3390/atmos16080968 - 15 Aug 2025
Viewed by 289
Abstract
Urban particulate matter (PM) pollution critically impacts public health and climate. However, traditional ground-based monitoring fails to resolve vertical PM distribution, limiting understanding of transport and stratification-coupled mechanisms. Vertical profiles collected by an unmanned aerial vehicle (UAV) over Hangzhou, a core megacity in [...] Read more.
Urban particulate matter (PM) pollution critically impacts public health and climate. However, traditional ground-based monitoring fails to resolve vertical PM distribution, limiting understanding of transport and stratification-coupled mechanisms. Vertical profiles collected by an unmanned aerial vehicle (UAV) over Hangzhou, a core megacity in China’s Yangtze River Delta, reveal the spatiotemporal heterogeneity and multi-scale drivers of regional PM pollution during two intensive ten-day campaigns capturing peak pollution scenarios (winter: 17–26 January 2019; summer: 21–30 August 2019). Results show stark seasonal differences: winter PM1 and PM2.5 averages were 2.6- and 2.7-fold higher (p < 0.0001) than summer. Diurnal patterns were bimodal in winter and unimodal (single valley) in summer. Vertically consistent PM1 and PM2.5 distributions featured sharp morning (08:00) concentration increases within specific layers (winter: 250–325 m; summer: 350–425 m). Analysis demonstrates multi-scale coupling of synoptic systems, boundary layer processes, and vertical wind structure governing pollution. Key mechanisms include a winter “Transport-Accumulation-Reactivation” cycle driven by cold air, and summer typhoon circulation influences. We identify hygroscopic growth triggered by inversion-high humidity coupling and sea-breeze-driven secondary aerosol formation. Leveraging UAV-based vertical profiling over Hangzhou, this study pioneers a three-dimensional dissection of layer-coupled PM dynamics in the Yangtze River Delta, offering a scalable paradigm for aerial–ground networks to achieve precision stratified control strategies in megacities. Full article
(This article belongs to the Special Issue Air Pollution in China (4th Edition))
Show Figures

Figure 1

17 pages, 2285 KiB  
Article
Simulation of Biomass Gasification and Syngas Methanation for Methane Production with H2/CO Ratio Adjustment in Aspen Plus
by Suaad Al Zakwani, Miloud Ouadi, Kazeem Mohammed and Robert Steinberger-Wilckens
Energies 2025, 18(16), 4319; https://doi.org/10.3390/en18164319 - 14 Aug 2025
Cited by 1 | Viewed by 309
Abstract
In the context of advancing sustainable energy solutions, this paper provides a detailed modelling study of the process integration of biomass gasification to produce syngas and subsequent methanation for methane production. The process is assumed to take place in a circulating fluidised bed [...] Read more.
In the context of advancing sustainable energy solutions, this paper provides a detailed modelling study of the process integration of biomass gasification to produce syngas and subsequent methanation for methane production. The process is assumed to take place in a circulating fluidised bed and three adiabatic fixed-bed reactors. To address the low H2/CO ratio of syngas produced from biomass gasification using air, three pre-methanation scenarios were evaluated: water gas shift reaction (scenario 1), H2 addition through Power-to-Gas (scenario 2), and splitting syngas into pure H2 and CO and then recombining them in a 3:1 ratio (scenario 3). The findings reveal that each scenario presents a unique balance of efficiency, decarbonisation potential, and technological integration. Scenario 2 achieves the highest overall efficiency at 62%, highlighting the importance of integrating renewable electricity into the methane industry. Scenario 1, which incorporates WGS and CO2 capture, offers an environmentally friendly solution with an overall efficiency of 59%. In contrast, Scenario 3, involving H2/CO separation and recombination, achieves only 44.4% efficiency due to energy losses during separation, despite its operational simplicity. Methane yields were highest in Scenario 1, while Scenario 2 offers the most significant potential for integration with decarbonised power systems. The model was validated using published data and feedstock characteristics from experimental work and industrial projects. The results showed good agreement and supported the accuracy of the simulation in reflecting realistic biomass processing for methane production. Full article
Show Figures

Figure 1

20 pages, 13166 KiB  
Article
Flow and Flame Stabilization in Scramjet Engine Combustor with Two Opposing Cavity Flameholders
by Jayson C. Small, Liwei Zhang, Bruce G. Crawford and Valerio Viti
Aerospace 2025, 12(8), 723; https://doi.org/10.3390/aerospace12080723 - 13 Aug 2025
Viewed by 217
Abstract
Scramjet operation requires a comprehensive understanding of the internal flowfield, encompassing fuel–air mixing and combustion. This study investigates transient flow and flame development within a HIFiRE-2 scramjet engine combustor, which features two opposing cavities and dual sets of fuel injectors—the upstream (primary) and [...] Read more.
Scramjet operation requires a comprehensive understanding of the internal flowfield, encompassing fuel–air mixing and combustion. This study investigates transient flow and flame development within a HIFiRE-2 scramjet engine combustor, which features two opposing cavities and dual sets of fuel injectors—the upstream (primary) and downstream (secondary) injectors. These cavities function as flameholders, creating circulating flows with elevated temperatures and pressures. Shock waves form both ahead of fuel plumes and at the diverging and converging sections of the flowpath. Special attention is given to the interactions among these shock waves and the shear layers along the supersonic core flow as the system progresses towards a quasi-steady state. Driven by increased backpressure, bow shocks and disturbances induced by the normal, secondary fuel injection and the inclined, primary fuel injection move upstream, amplifying the cavity pressure. These shocks generate adverse pressure gradients, causing near-wall flow separation adjacent to both injector sets, which enhances the penetration and dispersion of fuel plumes. Once a quasi-steady state is achieved, a feedback loop is established between dynamic wave motions and combustion processes, resulting in sustained entrainment of reactive mixtures into the cavities. This mechanism facilitates stable combustion in the cavities and near-wall separation zones. Full article
(This article belongs to the Special Issue Advances in Thermal Fluid, Dynamics and Control)
Show Figures

Figure 1

17 pages, 16756 KiB  
Article
Self-Driven Cycle and Thermal Characteristics of Seawater Battery System with a Preheater
by Haihong Dong, Bendong Ma, Jianchao Wang, Jingdan Xue, Xingru Chen, Jie Bai and Housheng Wang
Energies 2025, 18(16), 4261; https://doi.org/10.3390/en18164261 - 11 Aug 2025
Viewed by 244
Abstract
As a novel energy storage technology, seawater batteries exhibit significant application potential across various domains, including marine exploration, underwater communication, and island power supply. However, the deep-sea low-temperature environment adversely affects the performance of seawater battery systems. This paper proposes a seawater metal–air [...] Read more.
As a novel energy storage technology, seawater batteries exhibit significant application potential across various domains, including marine exploration, underwater communication, and island power supply. However, the deep-sea low-temperature environment adversely affects the performance of seawater battery systems. This paper proposes a seawater metal–air battery system equipped with a preheater (SMAB-P). This innovative system establishes stable natural circulation and utilizes the high-temperature seawater within the system to preheat the incoming low-temperature seawater, thereby effectively enhancing battery performance. It was found that, compared with the SMAB system without a preheater, when achieving a heat recovery rate of 100% the average temperature of seawater in the electrode plate area of the SMAB-P system can be increased by 54%. Consequently, the electrical conductivity of seawater within the system can be increased by approximately 20%, leading to a significant reduction in ohmic losses and an enhancement in the load voltage of the battery. Furthermore, increasing either the height or width of the electrode plate can enhance self-driven force and circulation flow rate, as well as both average and maximum temperatures of seawater in the electrode plate area to some extent. Reducing the annular space of the preheater can significantly increase the seawater temperature within the system, but excessive reduction may hinder the effective replacement of fresh seawater in the system. It is also noted that seawater velocity in the electrode plate channels remains relatively low and evenly distributed while exhibiting very small temperature variation. Full article
(This article belongs to the Special Issue Ocean Energy Conversion and Magnetohydrodynamic Power Systems)
Show Figures

Figure 1

47 pages, 10040 KiB  
Article
Analysis of Urban-Level Greenhouse Gas and Aerosol Variability at a Southern Italian WMO/GAW Observation Site: New Insights from Air Mass Aging Indicators Applied to Nine Years of Continuous Measurements
by Francesco D’Amico, Luana Malacaria, Giorgia De Benedetto, Salvatore Sinopoli, Teresa Lo Feudo, Daniel Gullì, Ivano Ammoscato and Claudia Roberta Calidonna
Environments 2025, 12(8), 275; https://doi.org/10.3390/environments12080275 - 10 Aug 2025
Viewed by 526
Abstract
Gaseous pollutants and aerosols resulting from anthropic activities and natural phenomena require adequate source apportionment methodologies to be fully assessed. Furthermore, it is crucial to differentiate between fresh anthropogenic emissions and the atmospheric background. The proximity method based on the O3/NO [...] Read more.
Gaseous pollutants and aerosols resulting from anthropic activities and natural phenomena require adequate source apportionment methodologies to be fully assessed. Furthermore, it is crucial to differentiate between fresh anthropogenic emissions and the atmospheric background. The proximity method based on the O3/NOx (ozone to nitrogen oxides) ratio has been used at the Lamezia Terme (code: LMT) World Meteorological Organization—Global Atmosphere Watch (WMO/GAW) regional station in Italy to determine the variability of CO (carbon monoxide), CO2 (carbon dioxide), CH4 (methane), SO2 (sulfur dioxide), and eBC (equivalent black carbon), thus allowing the differentiation between local and remote sources of emission. Prior to this work, all O3/NOx ratios lower than 10 were grouped under the LOC (local) proximity category, thus including very low ratios (≤1), which are generally attributed by the literature to “urban” air masses, particularly enriched in anthropogenic emissions. This study, aimed at nine continuous years of measurements (2015–2023), introduces the URB category in the assessment of CO, CO2, CH4, SO2, and eBC variability at the LMT site, highlighting patterns and peaks in concentrations that were previously neglected. The daily cycle, which is locally influenced by wind circulation and Planetary Boundary Layer (PBL) dynamics, is particularly susceptible to urban-scale emissions and its analysis has allowed the highlighting of notable peaks in concentrations that were previously neglected. Correlations with wind corridors and speeds indicate that most evaluated parameters are linked to northeastern winds at LMT and wind speeds under 5.5 m/s. Weekly cycle analyses, i.e., differences between weekdays (MON-FRI) and weekends (SAT-SUN), have also highlighted tendencies driven by seasonality and wind corridors. The results highlight the potential of the URB category as a tool necessary to access a given area’s anthropogenic output and its impact on air quality and the environment. Full article
Show Figures

Figure 1

18 pages, 5124 KiB  
Article
Effects of Different Drying Methods on the Quality of Forest Ginseng Revealed Based on Metabolomics and Enzyme Activity
by Junjia Xing, Xue Li, Wenyu Dang, Limin Yang, Lianxue Zhang, Wei Li, Yan Zhao, Jiahong Han and Enbo Cai
Foods 2025, 14(15), 2753; https://doi.org/10.3390/foods14152753 - 7 Aug 2025
Viewed by 350
Abstract
Forest ginseng (FG) is a rare medicinal and culinary plant in China, and its drying quality is heavily dependent on the drying method. This study investigated the effects of traditional hot air drying (HAD) and the self-developed negative-pressure circulating airflow-assisted desiccator drying (PCAD) [...] Read more.
Forest ginseng (FG) is a rare medicinal and culinary plant in China, and its drying quality is heavily dependent on the drying method. This study investigated the effects of traditional hot air drying (HAD) and the self-developed negative-pressure circulating airflow-assisted desiccator drying (PCAD) method on the quality of FG using metabolomics and enzyme activity. The results revealed that the enzyme activities of dried FG were reduced considerably. PCAD preserved higher enzyme activity than HAD. Metabolomics data demonstrate that HAD promotes the formation of primary metabolites (amino acids, lipids, nucleotides, etc.), whereas PCAD promotes the formation of secondary metabolites (terpenoids, phenolic acids, etc.). A change-transformation network was built by combining the metabolites listed above and their biosynthetic pathways, and it was discovered that these biosynthetic pathways were primarily associated with the mevalonate (MVA) pathway, lipid metabolism, phenylpropane biosynthesis, and nucleotide metabolism. It is also believed that these findings are related to the chemical stimulation induced by thermal degradation and the ongoing catalysis of enzyme responses to drought stress. The facts presented above will give a scientific basis for the selection of FG drying processes, as well as helpful references for increasing the nutritional quality of processed FG. Full article
Show Figures

Figure 1

19 pages, 14381 KiB  
Article
Temperature and Humidity Anomalies During the Summer Drought of 2022 over the Yangtze River Basin
by Dengao Li, Er Lu, Dian Yuan and Ruisi Liu
Atmosphere 2025, 16(8), 942; https://doi.org/10.3390/atmos16080942 - 6 Aug 2025
Viewed by 240
Abstract
In the summer of 2022, central and eastern China experienced prolonged extreme high temperatures and severe drought, leading to significant economic losses. To gain a more profound understanding of this drought event and furnish a reference for forecasting similar events in the future, [...] Read more.
In the summer of 2022, central and eastern China experienced prolonged extreme high temperatures and severe drought, leading to significant economic losses. To gain a more profound understanding of this drought event and furnish a reference for forecasting similar events in the future, this study examines the circulation anomalies associated with the drought. Employing a diagnostic method focused on temperature and moisture anomalies, this study introduces a novel approach to quantify and compare the relative significance of moisture transport and warm air dynamics in contributing to the drought. This study examines the atmospheric circulation anomalies linked to the drought event and compares the relative contributions of water vapor transport and warm air activity in causing the drought, using two parameters defined in the paper. The results show the following: (1) The West Pacific Subtropical High (WPSH) was more intense than usual and extended westward, consistently controlling the Yangtze River Basin. Simultaneously, the polar vortex area was smaller and weaker, the South Asian High area was larger and stronger, and it shifted eastward. These factors collectively led to weakened water vapor transport conditions and prevailing subsiding air motions in the Yangtze River Basin, causing frequent high temperatures. (2) By defining Iq and It to represent the contributions of moisture and temperature to precipitation, we found that the drought event in the Yangtze River Basin was driven by both reduced moisture supplies in the lower troposphere and higher-than-normal temperatures, with temperature playing a dominant role. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

26 pages, 7634 KiB  
Article
Research on the Preparation and Performance of Wood with High Negative Oxygen Ion Release Induced by Moisture
by Min Yin, Yuqi Zhang, Yun Lu, Zongying Fu, Haina Mi, Jianfang Yu and Ximing Wang
Coatings 2025, 15(8), 905; https://doi.org/10.3390/coatings15080905 - 2 Aug 2025
Viewed by 415
Abstract
With the growing severity of environmental pollution, people are paying increasing attention to their health. However, naturally occurring wood with health benefits and applications in human healthcare is still scarce. Natural wood exhibits a limited negative oxygen ion release capacity, and this release [...] Read more.
With the growing severity of environmental pollution, people are paying increasing attention to their health. However, naturally occurring wood with health benefits and applications in human healthcare is still scarce. Natural wood exhibits a limited negative oxygen ion release capacity, and this release has a short duration, failing to meet practical application requirements. This study innovatively developed a humidity-responsive, healthy wood material with a high negative oxygen ion release capacity based on fast-growing poplar. Through vacuum cyclic impregnation technology, hexagonal stone powder was infused into the pores of poplar wood, endowing it with the ability to continuously release negative oxygen ions. The healthy wood demonstrated a static average negative oxygen ion release rate of 537 ions/cm3 (peaking at 617 ions/cm3) and a dynamic average release rate of 3,170 ions/cm3 (peaking at 10,590 ions/cm3). The results showed that the particle size of hexagonal stone powder in suspension was influenced by the dispersants and dispersion processes. The composite dispersion process demonstrated optimal performance when using 0.5 wt% silane coupling agent γ-(methacryloxy)propyltrimethoxysilane (KH570), achieving the smallest particle size of 8.93 μm. The healthy wood demonstrated excellent impregnation performance, with a weight gain exceeding 14.61% and a liquid absorption rate surpassing 165.18%. The optimal impregnation cycle for vacuum circulation technology was determined to be six cycles, regardless of the type of dispersant. Compared with poplar wood, the hygroscopic swelling rate of healthy wood was lower, especially in PEG-treated samples, where the tangential, radial, longitudinal, and volumetric swelling rates decreased by 70.93%, 71.67%, 69.41%, and 71.35%, respectively. Combining hexagonal stone powder with fast-growing poplar wood can effectively enhance the release of negative oxygen ions. The static average release of negative oxygen ions from healthy wood is 1.44 times that of untreated hexagonal stone powder, and the dynamic release reaches 2 to 3 times the concentration of negative oxygen ions specified by national fresh air standards. The water-responsive mechanism revealed that negative oxygen ion release surged when ambient humidity exceeded 70%. This work proposes a sustainable and effective method to prepare healthy wood with permanent negative oxygen ion release capability. It demonstrates great potential for improving indoor air quality and enhancing human health. Full article
Show Figures

Figure 1

32 pages, 6657 KiB  
Article
Mechanisms of Ocean Acidification in Massachusetts Bay: Insights from Modeling and Observations
by Lu Wang, Changsheng Chen, Joseph Salisbury, Siqi Li, Robert C. Beardsley and Jackie Motyka
Remote Sens. 2025, 17(15), 2651; https://doi.org/10.3390/rs17152651 - 31 Jul 2025
Viewed by 469
Abstract
Massachusetts Bay in the northeastern United States is highly vulnerable to ocean acidification (OA) due to reduced buffering capacity from significant freshwater inputs. We hypothesize that acidification varies across temporal and spatial scales, with short-term variability driven by seasonal biological respiration, precipitation–evaporation balance, [...] Read more.
Massachusetts Bay in the northeastern United States is highly vulnerable to ocean acidification (OA) due to reduced buffering capacity from significant freshwater inputs. We hypothesize that acidification varies across temporal and spatial scales, with short-term variability driven by seasonal biological respiration, precipitation–evaporation balance, and river discharge, and long-term changes linked to global warming and river flux shifts. These patterns arise from complex nonlinear interactions between physical and biogeochemical processes. To investigate OA variability, we applied the Northeast Biogeochemistry and Ecosystem Model (NeBEM), a fully coupled three-dimensional physical–biogeochemical system, to Massachusetts Bay and Boston Harbor. Numerical simulation was performed for 2016. Assimilating satellite-derived sea surface temperature and sea surface height improved NeBEM’s ability to reproduce observed seasonal and spatial variability in stratification, mixing, and circulation. The model accurately simulated seasonal changes in nutrients, chlorophyll-a, dissolved oxygen, and pH. The model results suggest that nearshore areas were consistently more susceptible to OA, especially during winter and spring. Mechanistic analysis revealed contrasting processes between shallow inner and deeper outer bay waters. In the inner bay, partial pressure of pCO2 (pCO2) and aragonite saturation (Ωa) were influenced by sea temperature, dissolved inorganic carbon (DIC), and total alkalinity (TA). TA variability was driven by nitrification and denitrification, while DIC was shaped by advection and net community production (NCP). In the outer bay, pCO2 was controlled by temperature and DIC, and Ωa was primarily determined by DIC variability. TA changes were linked to NCP and nitrification–denitrification, with DIC also influenced by air–sea gas exchange. Full article
Show Figures

Figure 1

30 pages, 3678 KiB  
Article
An Automated Method of Parametric Thermal Shaping of Complex Buildings with Buffer Spaces in a Moderate Climate
by Jacek Abramczyk, Wiesław Bielak and Ewelina Gotkowska
Energies 2025, 18(15), 4050; https://doi.org/10.3390/en18154050 - 30 Jul 2025
Viewed by 329
Abstract
This article presents a new method of parametric shaping of buildings with buffer spaces characterized by complex forms and effective thermal operation in the moderate climate of the Central Europe Plane. The parameterization of an elaborated thermal qualitative model of buildings with buffer [...] Read more.
This article presents a new method of parametric shaping of buildings with buffer spaces characterized by complex forms and effective thermal operation in the moderate climate of the Central Europe Plane. The parameterization of an elaborated thermal qualitative model of buildings with buffer spaces and its configuration based on computer simulations of thermal operation of many discrete models are the specific features of the method. The model uses various original building shapes and a new parametric artificial neural network (a) to automate the calculations and recording of results and (b) to predict a number of new buildings with buffer spaces characterized by effective thermal operation. The configuration of the parametric quantitative model was carried out based on the simulation results of 343 discrete models defined by means of ten independent variables grouping the properties of the building and buffer space related to their forms, materials and air circulation. The analysis performed for the adopted parameter variability ranges indicates a varied impact of these independent variables on the thermal operation of buildings located in a moderate climate. The infiltration and ventilation and physical properties of the windows and walls are the independent variables that most influence the energy savings utilized by the examined buildings with buffer spaces. The optimal values of these variables allow up to 50–60% of the energy supplied by the HVAC system to be saved. The accuracy and universality of the method will continuously be increased in future research by increasing the types and ranges of independent variables. Full article
(This article belongs to the Special Issue Energy Efficiency of the Buildings: 3rd Edition)
Show Figures

Figure 1

22 pages, 5830 KiB  
Article
Design of and Experimental Study on Drying Equipment for Fritillaria ussuriensis
by Liguo Wu, Jiamei Qi, Liping Sun, Sanping Li, Qiyu Wang and Haogang Feng
Appl. Sci. 2025, 15(15), 8427; https://doi.org/10.3390/app15158427 - 29 Jul 2025
Viewed by 212
Abstract
To address the problems of the time consumption, labor intensiveness, easy contamination, uneven drying, and impact on the medicinal efficacy of Fritillaria ussuriensis in the traditional drying method, the hot-air-drying characteristics of Fritillaria ussuriensis were studied. The changes in the moisture ratio and [...] Read more.
To address the problems of the time consumption, labor intensiveness, easy contamination, uneven drying, and impact on the medicinal efficacy of Fritillaria ussuriensis in the traditional drying method, the hot-air-drying characteristics of Fritillaria ussuriensis were studied. The changes in the moisture ratio and drying rate of Fritillaria ussuriensis under different hot-air-drying conditions (45 °C, 55 °C, 65 °C) were compared and analyzed. Six common mathematical models were used to fit the moisture change law, and it was found that the cubic model was the most suitable for describing the drying characteristics of Fritillaria ussuriensis. The R2 values after fitting under the three temperature conditions were all greater than 0.99, and the maximum was achieved at 45 °C. Based on the principle of hot-air drying, a drying device for Fritillaria ussuriensis with a processing capacity of 15 kg/h was designed. It adopted a thermal circulation structure of inner and outer drying ovens, with the heating chamber separated from the drying chamber. The structural parameters were optimized based on Fluent simulation analysis. After optimization, the temperature of each layer was stable at 338 K ± 2 K, and the pressure field and velocity field were evenly distributed. The drying process parameters of Fritillaria ussuriensis were optimized based on response surface analysis, and the optimal process parameters were obtained as follows: inlet temperature: 338 K (65 °C), inlet air velocity: 3 m/s, and drying time: 10 h. The simulation results showed that the predicted moisture content of Fritillaria ussuriensis under the optimal working conditions was 12.58%, the temperature difference of Fritillaria ussuriensis at different positions was within 0.8 °C, and the humidity deviation was about 1%. A prototype of the drying device was built, and the drying test of Fritillaria ussuriensis was carried out. It was found that the temperature and moisture content of Fritillaria ussuriensis were consistent with the simulation results and met the design requirements, verifying the rationality of the device structure and the reliability of the simulation model. This design can significantly improve the distribution of the internal flow field and temperature field of the drying device, improve the drying quality and production efficiency of Fritillaria ussuriensis, and provide a technical reference for the Chinese herbal medicine-drying industry. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

34 pages, 13488 KiB  
Review
Numeric Modeling of Sea Surface Wave Using WAVEWATCH-III and SWAN During Tropical Cyclones: An Overview
by Ru Yao, Weizeng Shao, Yuyi Hu, Hao Xu and Qingping Zou
J. Mar. Sci. Eng. 2025, 13(8), 1450; https://doi.org/10.3390/jmse13081450 - 29 Jul 2025
Viewed by 441
Abstract
Extreme surface winds and wave heights of tropical cyclones (TCs)—pose serious threats to coastal community, infrastructure and environments. In recent decades, progress in numerical wave modeling has significantly enhanced the ability to reconstruct and predict wave behavior. This review offers an in-depth overview [...] Read more.
Extreme surface winds and wave heights of tropical cyclones (TCs)—pose serious threats to coastal community, infrastructure and environments. In recent decades, progress in numerical wave modeling has significantly enhanced the ability to reconstruct and predict wave behavior. This review offers an in-depth overview of TC-related wave modeling utilizing different computational schemes, with a special attention to WAVEWATCH III (WW3) and Simulating Waves Nearshore (SWAN). Due to the complex air–sea interactions during TCs, it is challenging to obtain accurate wind input data and optimize the parameterizations. Substantial spatial and temporal variations in water levels and current patterns occurs when coastal circulation is modulated by varying underwater topography. To explore their influence on waves, this study employs a coupled SWAN and Finite-Volume Community Ocean Model (FVCOM) modeling approach. Additionally, the interplay between wave and sea surface temperature (SST) is investigated by incorporating four key wave-induced forcing through breaking and non-breaking waves, radiation stress, and Stokes drift from WW3 into the Stony Brook Parallel Ocean Model (sbPOM). 20 TC events were analyzed to evaluate the performance of the selected parameterizations of external forcings in WW3 and SWAN. Among different nonlinear wave interaction schemes, Generalized Multiple Discrete Interaction Approximation (GMD) Discrete Interaction Approximation (DIA) and the computationally expensive Wave-Ray Tracing (WRT) A refined drag coefficient (Cd) equation, applied within an upgraded ST6 configuration, reduce significant wave height (SWH) prediction errors and the root mean square error (RMSE) for both SWAN and WW3 wave models. Surface currents and sea level variations notably altered the wave energy and wave height distributions, especially in the area with strong TC-induced oceanic current. Finally, coupling four wave-induced forcings into sbPOM enhanced SST simulation by refining heat flux estimates and promoting vertical mixing. Validation against Argo data showed that the updated sbPOM model achieved an RMSE as low as 1.39 m, with correlation coefficients nearing 0.9881. Full article
(This article belongs to the Section Ocean and Global Climate)
Show Figures

Figure 1

15 pages, 3635 KiB  
Article
The Calprotectin Fragment, CPa9-HNE, Is a Plasma Biomarker of Mild Chronic Obstructive Pulmonary Disease
by Mugdha M. Joglekar, Jannie M. B. Sand, Theo Borghuis, Diana J. Leeming, Morten Karsdal, Frank Klont, Russell P. Bowler, Barbro N. Melgert, Janette K. Burgess and Simon D. Pouwels
Cells 2025, 14(15), 1155; https://doi.org/10.3390/cells14151155 - 26 Jul 2025
Viewed by 417
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease predominantly of the small airways and parenchyma. COPD lungs exhibit an influx of circulating innate immune cells, which, when isolated, display impaired functions, including imbalanced protease secretion. In addition to immune cells, the [...] Read more.
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease predominantly of the small airways and parenchyma. COPD lungs exhibit an influx of circulating innate immune cells, which, when isolated, display impaired functions, including imbalanced protease secretion. In addition to immune cells, the extracellular matrix (ECM) plays a crucial role in COPD pathology. Remodeling of the ECM can generate ECM fragments, which can be released into circulation and subsequently induce pro-inflammatory responses. COPD is a heterogeneous disease, and serological biomarkers can be used to sub-categorize COPD patients for targeted treatments and optimal recruitment in clinical trials. This study evaluated fragments of calprotectin, collagen type VI, and versican, generated by neutrophil elastase and matrix metalloproteinases (MMP-) 2 and 12, respectively, as potential biomarkers of COPD disease, severity, and endotypes. Lower plasma levels of a neoepitope marker of calprotectin, indicative of activated neutrophils (nordicCPa9-HNETM), were detected in COPD donors compared to controls. CPa9-HNE was associated with milder disease, higher degree of air-trapping, and higher serum levels of MMP-2. Deposition of CPa9-HNE levels in lung tissue revealed no differences between groups. Taken together, CPa9-HNE was found to be a potential marker of mild COPD, but further studies are warranted to validate our findings. Full article
Show Figures

Graphical abstract

17 pages, 4550 KiB  
Article
Spatiotemporal Characteristics and Associated Circulation Features of Summer Extreme Precipitation in the Yellow River Basin
by Degui Yao, Xiaohui Wang and Jinyu Wang
Atmosphere 2025, 16(7), 892; https://doi.org/10.3390/atmos16070892 - 21 Jul 2025
Viewed by 240
Abstract
By utilizing daily precipitation data from 400 meteorological stations in the Yellow River Basin (YRB) of China, atmospheric and oceanic reanalysis data, this study investigates the climatological characteristics, leading modes, and relationships with atmospheric circulation and sea surface temperature (SST) of summer extreme [...] Read more.
By utilizing daily precipitation data from 400 meteorological stations in the Yellow River Basin (YRB) of China, atmospheric and oceanic reanalysis data, this study investigates the climatological characteristics, leading modes, and relationships with atmospheric circulation and sea surface temperature (SST) of summer extreme precipitation in the YRB from 1981 to 2020 through the extreme precipitation metrics and Empirical Orthogonal Function (EOF) analysis. The results indicate that both the frequency and intensity of extreme precipitation exhibit an eastward and southward increasing pattern in terms of climate state, with regions of higher precipitation showing greater interannual variability. When precipitation in the YRB exhibits a spatially coherent enhancement pattern, high latitudes exhibits an Eurasian teleconnection wave train that facilitates the southward movement of cold air. Concurrently, the northward extension of the Western Pacific subtropical high (WPSH) enhances moisture transport from low latitudes to the YRB, against the backdrop of a transitioning SST pattern from El Niño to La Niña. When precipitation in the YRB shows a “south-increase, north-decrease” dipole pattern, the southward-shifted Ural high and westward-extended WPSH converge cold air and moist in the southern YRB region, with no dominant SST drivers identified. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

Back to TopTop