Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,762)

Search Parameters:
Keywords = alkaline activator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2797 KB  
Article
MoO3 Nanobelts Synthesized from Recycled Industrial Powder and Applied as Electrodes for Energy Storage Applications
by Angelo Di Mauro, Federico Ursino, Giacometta Mineo, Antonio Terrasi and Salvo Mirabella
Nanomaterials 2025, 15(17), 1380; https://doi.org/10.3390/nano15171380 (registering DOI) - 8 Sep 2025
Abstract
The sustainable development of our society faces significant challenges, including the need for environmentally friendly energy storage devices. Our work is concerned with the conversion of Mo-based recycled industrial waste into active nanocatalysts for energy storage applications. To reach this goal, we employed [...] Read more.
The sustainable development of our society faces significant challenges, including the need for environmentally friendly energy storage devices. Our work is concerned with the conversion of Mo-based recycled industrial waste into active nanocatalysts for energy storage applications. To reach this goal, we employed hydrothermal synthesis, a low-cost and temperature-scalable method. The proposed synthesis produces MoO3 nanobelts (50–200 nm in width and 2–5 µm in length) with a high yield, about 74%. The synthesized nanostructures were characterized in 1 M KOH and 1 M NH4OH, as alkaline environments are a promising choice for the development of eco-friendly devices. To investigate the material’s behaviour cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS) measurements were carried out. From CV curves, it was possible to evaluate the specific capacitance values of 290 and 100 Fg−1 at 5 mVs−1 in 1 M KOH and 1 M NH4OH, respectively. Also, GCD was employed to evaluate the specific capacitance of the material, resulting in 75 and 60 Fg−1 in 1 M KOH and 1 M NH4OH, respectively. CV and GCD analyses revealed that MoO3 nanobelts act as two different types of energy storage devices: supercapacitors and pseudocapacitors. Additionally, EIS allowed us to distinguish between the resistive and capacitive behaviour contributions depending on the electrolyte. Furthermore, it provided a comprehensive electrochemical characterization in different alkaline electrolytes, with the intention of conjugating waste management and sustainable energy storage device production. Full article
Show Figures

Figure 1

13 pages, 2264 KB  
Article
Mechanism of Activation and Microstructural Evolution in Calcium Carbide Slag-Activated GGBS-CG Composite Cementitious Materials
by Tengfei Wang, Feng Ju, Meng Xiao, Dong Wang, Lidong Yin, Lu Si, Yingbo Wang, Mengxin Xu and Dongming Yang
Materials 2025, 18(17), 4189; https://doi.org/10.3390/ma18174189 - 6 Sep 2025
Viewed by 73
Abstract
The efficient resource utilization of industrial solid wastes, such as ground granulated blast-furnace slag (GGBS) and coal gangue (CG), is essential for sustainable development. However, their activation commonly depends on expensive and corrosive chemical alkalis. This study proposes a solution by developing a [...] Read more.
The efficient resource utilization of industrial solid wastes, such as ground granulated blast-furnace slag (GGBS) and coal gangue (CG), is essential for sustainable development. However, their activation commonly depends on expensive and corrosive chemical alkalis. This study proposes a solution by developing a fully waste-based cementitious material using calcium carbide slag (CS), another industrial residue, as an eco-friendly alkaline activator for the GGBS-CG system. The influence of CS dosage (0–20 wt%) on hydration evolution and mechanical properties was examined using uniaxial compression testing, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The results indicated that a CS dosage of 10 wt% yielded the highest compressive strength, reaching 10.13 MPa—a 16.5% improvement compared to the 20 wt% group. This enhancement is ascribed to the formation of hydrotalcite (HT) and calcium silicate hydrate (C-(A)-S-H) gel, which densify the microstructure. In contrast, higher CS contents led to a passivation effect that restrained further reaction. This work offers a practical and theoretical basis for the development of low-carbon, multi-waste cementitious materials and presents a promising strategy for large-scale valorization of industrial solid wastes. Full article
Show Figures

Figure 1

22 pages, 1802 KB  
Article
Proteolytic Bacillus sp. Isolation and Identification from Tannery Alkaline Baths
by Manuela Lageiro, Fernanda Simões, Nuno Alvarenga and Alberto Reis
Molecules 2025, 30(17), 3632; https://doi.org/10.3390/molecules30173632 - 5 Sep 2025
Viewed by 304
Abstract
The application of microbial alkaline proteases holds significant potential for eco-sustainable industrial processes by reducing chemical usage and lowering the costs of effluent treatment. In the search for novel proteases with industrial relevance, several microbial strains were isolated from alkaline baths of the [...] Read more.
The application of microbial alkaline proteases holds significant potential for eco-sustainable industrial processes by reducing chemical usage and lowering the costs of effluent treatment. In the search for novel proteases with industrial relevance, several microbial strains were isolated from alkaline baths of the Portuguese tannery agroindustry. The most promising protease-producing strains were selected for identification and further study. Two isolates demonstrated the highest proteolytic activity, reaching 0.51 ± 0.01 U mL−1 and 0.70 ± 0.01 U mL−1 after 7.5 h of submerged cultivation in nutrient broth. Based on API biochemical tests, molecular biology techniques, and GC-FAME analysis of membrane lipids, the isolates were identified as Bacillus subtilis and incorporated into INIAV’s collection of industrial microbial cultures as B. subtilis CCMI 1253 (BMR2) and B. subtilis CCMI 1254 (BMR1). The most promising protease producer, B. subtilis CCMI 1253 (BMR2), exhibited a maximum specific growth rate of 0.88 ± 0.10 h−1. The proteases produced exhibited good extracellular proteolytic activity, with adaptability to industrial conditions, indicating their suitability for agroindustry applications such as leather making, detergent formulations and the treatment of effluents and protein residues. The results support the potential of microbial proteases as valuable tools in the bioeconomy and green chemistry. Full article
(This article belongs to the Special Issue Bioactive Molecules from Natural Sources and Their Functions)
Show Figures

Figure 1

18 pages, 2985 KB  
Article
Corn Stover Biochar Amendment Enhances Nitrogen and Phosphorus Transformations, Microbial Community Diversity, and Enzyme Activities in Agricultural Soil
by Baihui Li, Jie Zhang, Tingting Chang, Qianqian Wu, Hanyu Zheng and Dong Zhang
Plants 2025, 14(17), 2787; https://doi.org/10.3390/plants14172787 - 5 Sep 2025
Viewed by 122
Abstract
Corn stover biochar amendment significantly influences nitrogen (N) and phosphorus (P) transformations, microbial community composition, and enzyme activities in continuous cropping soils. This study aimed to identify the optimal biochar application rate for enhancing N and P nutrient availability in Solanum lycopersicum L. [...] Read more.
Corn stover biochar amendment significantly influences nitrogen (N) and phosphorus (P) transformations, microbial community composition, and enzyme activities in continuous cropping soils. This study aimed to identify the optimal biochar application rate for enhancing N and P nutrient availability in Solanum lycopersicum L. continuous cropping systems, providing theoretical and technical foundations for mitigating continuous cropping obstacles. A soil experiment under rain-out shelters employed four treatments: 1% biochar (BA1), 3% biochar (BA3), 5% biochar (BA5), and a non-amended control (BA0). The results indicated that biochar amendment significantly elevated available phosphorus content in the soil while effectively suppressing its vertical migration; nitrate N content increased under BA1 treatment but decreased in the BA3 and BA5 groups; and the strength of the inhibition effect of biochar treatment on the vertical migration of nitrate N was BA1 > BA5 > BA0 > BA3. The addition of biochar treatment had no significant effect on the content of ammonium N but could inhibit the vertical migration of ammonium N. The addition of biochar treatment could increase the soil’s ammonium N content. The addition of biochar treatment increased soil catalase and urease and sucrase activities, decreased alkaline phosphatase activity, led to the promotion of nitrate reductase activity at low doses and its inhibition at high doses, and resulted in BA1 treatment having the largest soil enzyme index (SEI), which was the most favorable to increase the overall level of soil enzyme activities. Biochar significantly increased the relative abundance of Patescibacteria and Ciliophora while reducing Gemmatimonadota, Acidobacteriota, Nitrospirota, Ascomycota, and Chlorophyta. Comprehensive evaluation using gray relational analysis (GRA) demonstrated that the addition of 5% biochar resulted in the optimal overall performance, enhancing nitrogen and phosphorus transformation, improving microbial community structure, and harmonizing enzyme activities, thereby exhibiting considerable potential for alleviating the nutrient limitations of nitrogen and phosphorus in continuous cropping soils. Full article
(This article belongs to the Special Issue Advances in Microbial Solutions for Sustainable Agriculture)
Show Figures

Figure 1

21 pages, 4868 KB  
Article
Time-Dependent Degradation Mechanism of Basalt Fiber Reinforced Polymer (BFRP) in a Low-Alkalinity Environment
by Weiwen Li, Murong Zou, Meilin He, Wanye Li, Peng Wang and Yihong Tang
Materials 2025, 18(17), 4170; https://doi.org/10.3390/ma18174170 - 5 Sep 2025
Viewed by 244
Abstract
Basalt fiber reinforced polymer (BFRP) has been utilized as a corrosion-resistant substitute for steel rebar in concrete structures. However, embedded BFRP rebars may degrade over time within the alkaline concrete pore solution. While extensive literature has scrutinized BFRP degradation under highly alkaline conditions [...] Read more.
Basalt fiber reinforced polymer (BFRP) has been utilized as a corrosion-resistant substitute for steel rebar in concrete structures. However, embedded BFRP rebars may degrade over time within the alkaline concrete pore solution. While extensive literature has scrutinized BFRP degradation under highly alkaline conditions (e.g., pH~13 in normal concrete), comparatively few studies have addressed its behavior under lower alkalinity (e.g., pH~11–12 in carbonated/green concrete). To address this issue, this study systematically investigates the degradation mechanism of BFRP rebars under coupled factors of pH (7, 11, 12, and 13), temperature (23, 40, and 60 °C), and aging time (30, 60, and 90 days). Research outcomes indicate that a decrease in pH from 13 to 11 at 23 °C results in a reduction in diffusion coefficient from 7.071 × 10−7 mm2/s to 5.876 × 10−7 mm2/s. Moreover, lowering the temperature from 60 °C to 23 °C at pH 12 leads to a decline in the diffusion coefficient from 7.547 × 10−7 mm2/s to 6.758 × 10−7 mm2/s. Furthermore, following a 90-day immersion at 60 °C, decreasing the exposure pH from 13 to 11 can significantly improve tensile strength retention from 25.357% to 71.933%. In the same scenario, flexural strength retention (or interlaminar shear strength retention) increases from 20.930% to 87.638% (or 23.464% to 76.592%) in such a mildly alkaline environment. A comprehensive degradation mechanism is uncovered, linking macroscopic mechanical properties to microscopic characteristics (encompassing fiber corrosion, matrix cracking, and interfacial debonding). This degradation process can be expedited by alkali attack and thermal activation. These findings contribute valuable insights into the alkali-induced degradation process and furnish a comprehensive dataset regarding the durability performance of BFRP rebars. Full article
(This article belongs to the Special Issue Advances in Carbon Fiber/Resin Matrix Polymer Composites)
Show Figures

Figure 1

19 pages, 5577 KB  
Article
Comparative Analysis of the Effects of Acidic and Alkaline Beverages on the Optical Properties, Surface Topography, and Bacterial Activity of Zirconia Materials
by Nasser M. Alahmari
J. Funct. Biomater. 2025, 16(9), 329; https://doi.org/10.3390/jfb16090329 - 5 Sep 2025
Viewed by 195
Abstract
This study aimed to evaluate how acidic and alkaline staining solutions affect the optical properties (mean color change, ΔE*), geometric characteristics (surface roughness, Ra), and bacterial adhesion of zirconia Ceramill Zolid PS computer-aided design/computer-aided manufacture (CAD/CAM) material after 21 days of immersion. Ninety-six [...] Read more.
This study aimed to evaluate how acidic and alkaline staining solutions affect the optical properties (mean color change, ΔE*), geometric characteristics (surface roughness, Ra), and bacterial adhesion of zirconia Ceramill Zolid PS computer-aided design/computer-aided manufacture (CAD/CAM) material after 21 days of immersion. Ninety-six zirconia CAD/CAM Ceramill Zolid multilayer PS specimens were prepared and allocated to eight groups based on the pH values of the immersion solutions; the acidic solutions included Mirinda Citrus, CodeRed, yerba mate tea, Saudi coffee, and Nescafe (A–E), and the alkaline solutions included artificial saliva, DZRT (tobacco-free nicotine pouches), and smokeless tobacco (F–H). The specimens were immersed for 21 days at 37 °C, with the solutions replaced every 12 h to ensure consistency. Color changes were measured using a VITA Easyshade V spectrophotometer, and Ra was evaluated via white-light interferometric microscopy. The bacterial adhesion of Streptococcus mutans was quantified by counting colony-forming units (CFUs, CFU/mm2). Statistical analyses included the Shapiro–Wilk test for normality, one-way ANOVA with Tukey’s HSD post hoc test for group comparisons, and paired t-tests, with significance set at <0.05. The recorded pH values of the staining materials ranged from acidic (Mirinda Citrus: 3.23) to alkaline (smokeless tobacco: 8.54). Smokeless tobacco caused the most unacceptable mean color change (ΔE* = 6.84), followed by DZRT (ΔE* = 6.46), whereas artificial saliva produced the least discoloration (ΔE* = 2.15), with statistically significant differences among the solutions (p < 0.001). The Ra measurements varied significantly (p < 0.001), with Nescafe demonstrating the lowest value (0.486 µm) and DZRT the highest (0.748 µm). S. mutans adhesion was the highest for CodeRed (546.75 CFU) and the lowest for smokeless tobacco (283.92 CFU), demonstrating significant variation across groups (ANOVA, p < 0.001). The acidic and alkaline solutions significantly altered the optical properties, Ra, and bacterial adhesion of zirconia Ceramill Zolid PS CAD/CAM, with acidic solutions leading to higher bacterial adhesion. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

28 pages, 5852 KB  
Article
Interaction of PCE and Chemically Modified Starch Admixtures with Metakaolin-Based Geopolymers—The Role of Activator Type and Concentration
by Stephan Partschefeld, Jasmine Aschoff and Andrea Osburg
Materials 2025, 18(17), 4154; https://doi.org/10.3390/ma18174154 - 4 Sep 2025
Viewed by 267
Abstract
Water-reducing admixtures are of enormous importance to adjust the workability of alkali-activated materials. Especially in geopolymers activated by highly concentrated alkaline solutions, the polycarboxylate ether (PCE) superplasticizers are less effective than in conventional cementitious systems. The aim of this study was to clarify [...] Read more.
Water-reducing admixtures are of enormous importance to adjust the workability of alkali-activated materials. Especially in geopolymers activated by highly concentrated alkaline solutions, the polycarboxylate ether (PCE) superplasticizers are less effective than in conventional cementitious systems. The aim of this study was to clarify the reasons for the lower dispersing performance of PCE and the synthesis of alternative dispersing agents based on the biopolymer starch to improve the workability of highly alkaline geopolymers. Furthermore, the focus of investigations was on the role of activator type and concentration as key parameters for geopolymer reaction and interaction of water-reducing agents. Therefore, in this study the conformation of three different types of PCE (MPEG: methacrylate ester, IPEG: isoprenol ether, and HPEG: methallyl ether) and synthesized starch admixtures in sodium and potassium hydroxide solutions (1 mol/L up to 8 mol/L) were studied. Furthermore, the dispersing performance, adsorption behavior, and influence on reaction kinetics in metakaolin-based geopolymer pastes were investigated in dependence on activator type and concentration. While the PCE superplasticizers show coiling and formation of insoluble aggregates at activator concentrations of 3 mol/L and 4 mol/L, the synthesized starch admixtures show no significant change in conformation. The cationic starch admixtures showed a higher dispersing performance in geopolymer pastes at all activator concentrations and types. The obtained adsorption isotherms depend strongly on the activator type and the charge density of the starch admixtures. The reaction kinetics of geopolymer pastes were not significantly influenced using the synthesized starch admixtures. Especially the cationic starch admixtures allow the reduction of liquid/solid ratios, which leads to higher flexural and compressive strengths. Full article
(This article belongs to the Special Issue Geopolymers and Fiber-Reinforced Concrete Composites (Second Edition))
Show Figures

Figure 1

31 pages, 21231 KB  
Article
Comparative Analysis of Chemical Activators and Expansive Agents for Aeolian Sand Stabilization Using Industrial Solid Waste-Based Geopolymers
by Zilu Xie, Zengzhen Qian, Xianlong Lu, Hao Wang and Phatyoufy Lai
Gels 2025, 11(9), 713; https://doi.org/10.3390/gels11090713 - 4 Sep 2025
Viewed by 233
Abstract
Aeolian sand is the primary geological material for construction in desert regions, and its stabilization with industrial solid wastes-based geopolymer (ISWG) provides an eco-friendly treatment replacing cement. This study comparatively investigated the enhancement effects of chemical activators and expansive agents on compressive strength [...] Read more.
Aeolian sand is the primary geological material for construction in desert regions, and its stabilization with industrial solid wastes-based geopolymer (ISWG) provides an eco-friendly treatment replacing cement. This study comparatively investigated the enhancement effects of chemical activators and expansive agents on compressive strength of aeolian sand stabilized by ISWG (ASIG). Three chemical activators—NaOH, Ca(OH)2, and CaCl2—along with two expansive agents—desulfurized gypsum and bentonite—were considered. Through X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, mercury intrusion porosimetry and pH values tests, the enhancement mechanisms of the additives on ASIG were elucidated. Results demonstrate that the expansive agent exhibits significantly superior strengthening effects on ASIG compared to the widely applied chemical activators. Chemical activators promoted ISWs dissolution and hydration product synthesis, thereby densifying the hydration product matrix but concurrently enlarged interparticle pores. Desulfurized gypsum incorporation induced morphological changes in ettringite, and excessive desulfurized gypsum generated substantial ettringite that disrupted gel matrix. In contrast, bentonite demonstrated superior pore-filling efficacy while densifying gel matrix through a compaction effect. These findings highlight bentonite superior compatibility with the unique microstructure of aeolian sand compared to conventional alkaline activators or expansive agents, and better effectiveness in enhancing the strength of ASIG. Full article
(This article belongs to the Special Issue Development and Applications of Advanced Geopolymer Gel Materials)
Show Figures

Figure 1

13 pages, 4544 KB  
Article
Anodic Catalytic Oxidation of Sulfamethoxazole: Efficiency and Mechanism on Co3O4 Nanowire Self-Assembled CoFe2O4 Nanosheet Heterojunction
by Han Cui, Qiwei Zhang and Shan Qiu
Catalysts 2025, 15(9), 854; https://doi.org/10.3390/catal15090854 - 4 Sep 2025
Viewed by 233
Abstract
By modulating the mass ratio of hydrothermal agents to cobalt/iron precursors, Co3O4 nanowires were successfully integrated into spinel-type Co/Fe@NF, forming a heterojunction anode for alkaline water electrolysis (AWE) hydrogen production. This Co3O4 nanowire-assembled CoFe2O4 [...] Read more.
By modulating the mass ratio of hydrothermal agents to cobalt/iron precursors, Co3O4 nanowires were successfully integrated into spinel-type Co/Fe@NF, forming a heterojunction anode for alkaline water electrolysis (AWE) hydrogen production. This Co3O4 nanowire-assembled CoFe2O4 nanosheet anode (Co/Fe(5:1)@NF) exhibits exceptional electrochemical oxygen evolution reaction (OER) performance, requiring only 221 mV overpotential to achieve 10 mA cm−2. Sulfamethoxazole (SMX) was employed as a model pollutant to investigate the anode sacrificial material; it achieved approximately 95% SMX degradation efficiency, reducing the OER potential of 50 mV/10 mA cm−2. SMX oxidation coupled with Co/Fe heterojunction structure partially substitutes the OER. Co/Fe heterojunction generates an internal magnetic field, which induces the formation of novel active species within the system. ·O2 is the newly formed active oxygen species, which enhanced the proportion of indirect SMX oxidation. Quantitative analysis reveals that superoxide radical-mediated indirect oxidation of SMX accounts for approximately 38.5%, Fe(VI) for 9.4%, other active species for 6.1%, and direct oxidation for 46.0%. The nanowire–nanosheet assembly stabilizes a high-spin configuration on the catalyst surface, redirecting oxygen intermediate pathways toward triplet oxygen (3O2) generation. Subsequent electron transfer from nanowire tips facilitates rapid 3O2 reduction, forming superoxide radicals (·O2). This study effectively driven by indirect oxidation, with cathodic hydrogen production, providing a novel strategy for utilizing renewable electricity and reducing OER while offering insights into the design of Co/Fe-based catalyst. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Graphical abstract

17 pages, 7046 KB  
Article
Hydrogeochemical Processes and Sustainability Challenges of Arsenic- and Fluoride-Contaminated Groundwater in Arid Regions: Evidence from the Tarim Basin, China
by Yunfei Chen, Jun Hou, Jinlong Zhou, Jiawen Yu, Jie Zhang and Jiangtao Zhao
Sustainability 2025, 17(17), 7971; https://doi.org/10.3390/su17177971 - 4 Sep 2025
Viewed by 279
Abstract
The anomalous enrichment of arsenic (As) and fluoride (F) in groundwater in the oasis area at the southern margin of the Tarim Basin has become a critical environmental and sustainability challenge. It poses not only potential health risks but also profound socio-economic impacts [...] Read more.
The anomalous enrichment of arsenic (As) and fluoride (F) in groundwater in the oasis area at the southern margin of the Tarim Basin has become a critical environmental and sustainability challenge. It poses not only potential health risks but also profound socio-economic impacts on local communities, threatening the long-term security of water resources in arid regions. Therefore, an in-depth investigation of the hydrochemical characteristics of groundwater and the co-enrichment mechanism of As and F is essential for advancing sustainable groundwater management. In this study, 110 phreatic water samples and 50 confined water samples were collected, and mathematical and statistical methods were applied to analyze the hydrochemical characteristics, sources, and co-enrichment mechanisms of As and F. The results show that (1) the groundwater chemistry types are mainly Cl·SO4-Na, SO4·Cl-Na·Mg, Cl·SO4-Na·Mg, and Cl-Na, and the chemistry is primarily controlled by evaporation and concentration processes, with additional influence from human activities and cation exchange; (2) As and F mainly originate from soils and minerals, and are released through dissolution; (3) As and F enrichment is positively correlated with pH, Na+, and HCO3, but negatively correlated with Ca2+, Mg2+, and SO42−, indicating that a weakly alkaline hydrochemical environment with high HCO3 and Na+, and low Ca2+ promotes their enrichment; (4) strong evaporative concentration in retention zones, combined with artificial groundwater extraction, further intensifies As and F accumulation. This study not only provides an innovative theoretical and methodological framework for exploring trace element enrichment mechanisms in groundwater under arid conditions but also delivers critical scientific evidence for developing sustainable water resource management strategies, mitigating water-related health risks, and supporting regional socio-economic resilience under global climate change. Full article
(This article belongs to the Special Issue (Re)Designing Processes for Improving Supply Chain Sustainability)
Show Figures

Figure 1

17 pages, 6214 KB  
Article
Molecular Characterization of a Novel Alkaline Endo-Pectate Lyase from Paenibacillus borealis and Over-Production in Bioreactor Realized by Constructing the Tandem Expression Cassettes in Host Genome
by Ying Han, Xiao-Bo Peng, Shu-Ya Wei, Qi-Guo Chen and Jiang-Ke Yang
Molecules 2025, 30(17), 3612; https://doi.org/10.3390/molecules30173612 - 4 Sep 2025
Viewed by 347
Abstract
Alkaline pectate lyases hold significant promise for various industrial applications, including the degumming processes in papermaking and textiles. In this study, a novel pectinase, PelA, derived from a strain of Paenibacillus borealis, was characterized both at the molecular level and through enzymatic [...] Read more.
Alkaline pectate lyases hold significant promise for various industrial applications, including the degumming processes in papermaking and textiles. In this study, a novel pectinase, PelA, derived from a strain of Paenibacillus borealis, was characterized both at the molecular level and through enzymatic analysis. This enzyme represents a distinct cluster diverging from the well-characterized Bacillus pectinases and exhibits molecular activity under alkaline conditions, with an optimal pH of 9.5. It can be classified as an endo-(1,4)-pectate lyase, capable of cleaving the α-1,4 glycosidic bonds of polygalacturonic acid via a trans-elimination mechanism. Notably, the addition of the metal ion Ca2+ did not enhance enzyme activity. To achieve high-level secretory expression and improve its economic viability for bioapplications, the gene copy number of pelA in the host genome was increased by constructing tandem pelA gene expression cassettes. Following optimization of cultivation conditions and monitoring of cell growth, the recombinant strain harboring the multi-copy pelA gene attained an expression level of 7520 U/mL in a bioreactor. This study successfully achieved high-level secretory expression of an alkaline pectinase, thereby enhancing its potential for industrial bioapplications and providing a reference for future research on the heterologous expression of target genes. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Graphical abstract

18 pages, 5185 KB  
Article
Ferrate-Modified Biochar Boosts Ryegrass Phytoremediation of Petroleum and Zinc Co-Contaminated Soils
by Xinyu Wang, Guodong Zheng, Zhe Liu and Jie Li
Processes 2025, 13(9), 2827; https://doi.org/10.3390/pr13092827 - 3 Sep 2025
Viewed by 211
Abstract
Phytoremediation is widely acknowledged as a viable method for soil remediation; however, its efficacy remains limited in soils co-polluted with petroleum hydrocarbons and heavy metals. To overcome this constraint, the present study explored an innovative approach utilizing ferrate-modified biochar (FeBC) to augment phytoremediation [...] Read more.
Phytoremediation is widely acknowledged as a viable method for soil remediation; however, its efficacy remains limited in soils co-polluted with petroleum hydrocarbons and heavy metals. To overcome this constraint, the present study explored an innovative approach utilizing ferrate-modified biochar (FeBC) to augment phytoremediation efficiency. Experimental findings revealed that ferrate treatment markedly modified the physicochemical characteristics of biochar, yielding thinner, smoother-surfaced structures with pronounced iron enrichment. At a 5% application rate alongside ryegrass cultivation, FeBC exhibited superior remediation performance, achieving 52.0% degradation of petroleum hydrocarbons (notably within the meso-aggregate fraction) and a 19.2% decline in zinc bioavailability via immobilization, thereby reducing zinc uptake in ryegrass tissues. Furthermore, FeBC amendment induced significant shifts in rhizosphere soil biochemistry and microbial ecology, characterized by diminished catalase activity but elevated urease and alkaline phosphatase activities. Phospholipid fatty acid profiling indicated a substantial rise in bacterial biomass (encompassing both Gram-positive and Gram-negative groups), particularly in meso- and micro-aggregates, whereas soil bacterial α-diversity declined markedly, accompanied by distinct compositional changes across aggregate size fractions. These results offer mechanistic insights into the synergistic interaction between FeBC and ryegrass in co-contaminated soil rehabilitation, the aggregate-dependent distribution of remediation effects, and microbial community adaptations to FeBC treatment. Collectively, this study advances the understanding of ferrate-modified biochar’s role in phytoremediation enhancement and clarifies its operational mechanisms in petroleum-zinc co-contaminated soil systems. Full article
Show Figures

Figure 1

16 pages, 2394 KB  
Article
Nitrogen-Doped Biocarbon Derived from Alginate-Extraction Residues of Sargassum spp.: Towards Low-Cost Electrocatalysts for Alkaline ORR
by Aurora Caldera, Beatriz Escobar, Juan Briceño, José M. Baas-López, Romeli Barbosa and Jorge Uribe
Chemistry 2025, 7(5), 144; https://doi.org/10.3390/chemistry7050144 - 3 Sep 2025
Viewed by 157
Abstract
Extraction processes of alginates from Sargassum spp. generate a substantial number of solid residues that are commonly discarded. This study explores the sustainable transformation of these residues into nitrogen-doped biocarbon through chemical activation with KOH and nitrogen doping using urea. XRD, FTIR, SEM-EDX, [...] Read more.
Extraction processes of alginates from Sargassum spp. generate a substantial number of solid residues that are commonly discarded. This study explores the sustainable transformation of these residues into nitrogen-doped biocarbon through chemical activation with KOH and nitrogen doping using urea. XRD, FTIR, SEM-EDX, Raman spectroscopy, BET surface area analysis, XPS, and CHNS elemental analysis were used to characterize the materials. The doped and activated biocarbon (BDA) demonstrated excellent physicochemical properties, including a specific surface area of 1790 m2 g−1 and a mesoporous structure. Electrochemical evaluation in alkaline media revealed a current density of −4.37 mA cm−2, an onset potential of 0.922 E vs. RHE, and a half-wave potential of 0.775 E vs. RHE. Koutecky–Levich analysis indicated a two-electron reduction pathway. The superior performance was attributed to the synergistic effects of high surface area, nitrogen functionalities (pyridinic-N and pyrrolic-N), and enhanced accessibility of active sites. These results highlight the potential of waste-derived, nitrogen-doped biocarbon as a sustainable and low-cost alternative for ORR electrocatalysis in alkaline fuel cells. Full article
(This article belongs to the Section Catalysis)
Show Figures

Figure 1

17 pages, 5764 KB  
Article
Effects of Different Agricultural Wastes on the Growth of Photinia × fraseri Under Natural Low-Temperature Conditions
by Xiaoye Li, Jie Li, Airong Liu, Yuanbing Zhang and Kunkun Zhao
Horticulturae 2025, 11(9), 1055; https://doi.org/10.3390/horticulturae11091055 - 3 Sep 2025
Viewed by 245
Abstract
As low temperature is a key factor affecting the growth and development of plants and the utilization of agricultural waste has significant research value, this study explores the effects of 16 agricultural wastes on the growth of P. fraseri under natural low-temperature conditions [...] Read more.
As low temperature is a key factor affecting the growth and development of plants and the utilization of agricultural waste has significant research value, this study explores the effects of 16 agricultural wastes on the growth of P. fraseri under natural low-temperature conditions and evaluates its cold resistance capacity. Soil chemical properties were analyzed and all the wastes were found to exhibit alkalinity. The highest total nitrogen content was found in group A (garden soil/coir/municipal sludge = 7:1:2). In this group, the branch number, branch length, and branch diameter were the largest. Interestingly, the plants in group E (garden soil/coir/pig manure = 7:1:2) had the highest average number of new shoots, with 5.72. Analysis of the physiological indexes of leaves revealed that the proline content, superoxide dismutase activity, fresh weight, and dry weight of plants in group L (garden soil/coir/pear residue = 7:1:2) were the highest. The stomatal conductance and transpiration rate of the leaves of plants in group L were the largest, at 86.23 mmol∙m−2∙s−1 and 1.67 mmol∙m−2∙s−1, respectively. Furthermore, combined with morphological and physiological indicators for membership function analysis, the results show that plants in group A exhibited optimal growth under natural low temperature. Correlation analysis indicated varying degrees of correlation between 38 pairs of indicators, including branch number and branch length, intercellular CO2 concentration and stomatal conductance, and leaf fresh weight and dry weight. Heatmap analysis showed that branch number, branch length, and branch diameter were highest in group A plants, while the highest levels of proline occurred in group L plants. In this study, groups A and L are recommended for growth under naturally low-temperature conditions. Full article
Show Figures

Figure 1

14 pages, 2577 KB  
Article
Effect of Dandelion Root Extract on Growth, Biochemical Indices, Antioxidant Capacity, Intestinal Histomorphology and Microbiota in Micropterus salmoides
by Peng-Ao Liu, Hong-Ling Yang, Jian Huang, Fen Li, Ke-Yun Huang, Zi-Xin Liu, Guo-He Cai and Yun-Zhang Sun
Fishes 2025, 10(9), 446; https://doi.org/10.3390/fishes10090446 - 3 Sep 2025
Viewed by 208
Abstract
Intensive aquaculture systems face challenges including compromised immune function and hepatointestinal damage in cultured species. Therefore, it is urgent to seek effective feed additives to strengthen health and immunity in intensive aquaculture. This study evaluated the potential of dandelion root extract (DRE) for [...] Read more.
Intensive aquaculture systems face challenges including compromised immune function and hepatointestinal damage in cultured species. Therefore, it is urgent to seek effective feed additives to strengthen health and immunity in intensive aquaculture. This study evaluated the potential of dandelion root extract (DRE) for improving growth performance, immune response, and hepatointestinal health in juvenile largemouth bass (Micropterus salmoides). Fish were fed diets supplemented with 0.05% (DRE1), 0.1% (DRE2), and 0.15% (DRE3) DRE for 42 days. The results showed that DRE supplementation had no significant effect on growth performance indicators (p > 0.05). However, compared to the control group, the DRE2 and DRE3 groups exhibited significantly reduced AST and ALT activities (p < 0.05). Lysozyme (LZM) activity increased significantly in all DRE groups, while alkaline phosphatase (AKP) activity was significantly elevated in the DRE2 and DRE3 groups (p < 0.05). In the liver, catalase (CAT) activity was significantly higher in the DRE2 group compared to the control (p < 0.05), and total antioxidant capacity (T-AOC) was significantly enhanced in DRE2 (p < 0.05). DRE also improved intestinal morphology, with significantly greater muscularis thickness in DRE2 and villus height in DRE3 compared to the control (p < 0.05). Also, serum D-lactate content was significantly decreased in all DRE-supplemented groups. Regarding intestinal microbiota, DRE2 supplementation resulted in an increased relative abundance of beneficial bacteria (Firmicutes) and a decreased relative abundance of potentially pathogenic bacteria (Proteobacteria), indicating favorable restructuring of the gut microbiota by DRE. In conclusion, dietary DRE supplementation, notably at 0.10%, enhanced antioxidant capacity and immunity while improving hepatointestinal health in largemouth bass, demonstrating potential as a functional feed additive in aquaculture. Full article
(This article belongs to the Special Issue Intestinal Health of Aquatic Organisms)
Show Figures

Figure 1

Back to TopTop