Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = alkaloid oligomers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2975 KiB  
Article
The Alkaloid Gelsemine Reduces Aβ Peptide Toxicity by Targeting Transglutaminase Type 2 Enzyme
by Jessica Panes-Fernández, Ana M. Marileo, Nicole Espinoza-Rubilar, Macarena E. Meza, Bernardita A. Salgado-Martínez, Krishna Gaete-Riquelme, Gustavo Moraga-Cid, Patricio A. Castro, Carlos F. Burgos, Jorge Fuentealba and Gonzalo E. Yévenes
Plants 2025, 14(10), 1556; https://doi.org/10.3390/plants14101556 - 21 May 2025
Viewed by 163
Abstract
Gelsemine, a naturally occurring indole alkaloid derived from plants of the Gelsemium species of the Gelsemiaceae family, has been extensively investigated for its neuroprotective and anti-inflammatory properties. Recent studies have demonstrated that gelsemine exerts neuroprotective effects against beta-amyloid (Aβ) oligomers, a key neurotoxic [...] Read more.
Gelsemine, a naturally occurring indole alkaloid derived from plants of the Gelsemium species of the Gelsemiaceae family, has been extensively investigated for its neuroprotective and anti-inflammatory properties. Recent studies have demonstrated that gelsemine exerts neuroprotective effects against beta-amyloid (Aβ) oligomers, a key neurotoxic peptide implicated in the pathogenesis of Alzheimer’s disease (AD). However, despite these beneficial effects, the precise molecular targets underlying gelsemine’s neuroprotective actions in AD remain unidentified. Here, we employed a combination of bioinformatic, biochemical, and functional assays in neuronal models to investigate the mechanism of gelsemine’s action in AD cellular models. Our findings indicate that gelsemine inhibits the activity of transglutaminase 2 (TG2), an enzyme involved in protein cross-linking with emerging roles in Aβ aggregation and neurotoxicity. Molecular modeling and biochemical analyses reveal that gelsemine interacts with the TG2 catalytic site, leading to its inhibition. Furthermore, gelsemine modulates the TG2-mediated Aβ aggregation process, thereby attenuating Aβ-induced neurotoxicity and preserving neuronal function. These findings establish TG2 as a previously unrecognized molecular target of gelsemine and underscore the potential of Gelsemium-derived alkaloids as neuroprotective agents. The modulation of TG2 activity by natural alkaloids may provide a novel therapeutic approach for mitigating Aβ toxicity and preserving neuronal function in AD. Full article
(This article belongs to the Special Issue Alkaloids: Chemical Structures with Pharmaceutical Potential)
Show Figures

Figure 1

16 pages, 3450 KiB  
Article
Ellagitannin Oligomers from Eucalyptus camaldulensis Leaves and Their Role in the Detoxification of Aluminum
by Haruna Uemori, Ayano Inoue, Shoichi Suzuki, Yuji Iwaoka, Tsutomu Hatano, Morio Yoshimura, Yoshiaki Amakura, Toshiyuki Murakami, Ko Tahara and Hideyuki Ito
Molecules 2025, 30(10), 2216; https://doi.org/10.3390/molecules30102216 - 19 May 2025
Viewed by 318
Abstract
Eucalyptus camaldulensis of the Myrtaceae family shows high resistance to aluminum (Al) ions and contains various compounds such as steroids, terpenoids, saponins, flavonoids, glycosides, alkaloids, and tannins. Although the ellagitannin oenothein B (12) isolated from E. camaldulensis exhibits remarkable properties for [...] Read more.
Eucalyptus camaldulensis of the Myrtaceae family shows high resistance to aluminum (Al) ions and contains various compounds such as steroids, terpenoids, saponins, flavonoids, glycosides, alkaloids, and tannins. Although the ellagitannin oenothein B (12) isolated from E. camaldulensis exhibits remarkable properties for Al detoxification, likely contributing to its Al resistance, other ellagitannin oligomers present in E. camaldulensis have not been investigated in detail. In this study, novel dimeric and trimeric ellagitannin oligomers eucarpanin D2 (1) and eucamalin A (2), together with known gallotannins (7, 8, and 10), monomeric ellagitannins (46, and 11), and dimeric ellagitannins (3, 9, and 1214), were isolated from E. camaldulensis leaves. The structures of these novel compounds were elucidated based on their chemical and physicochemical properties, including the orientations of tergalloyl groups in compounds 1 and 2. Similar to compound 12, previously isolated from the roots of E. camaldulensis, the ellagitannins demonstrated good Al detoxification properties. Hence, these tannins may play a critical role in the high Al resistance of E. camaldulensis in acidic soils. This paper reports for the first time the isolation of ellagitannin oligomers from the leaves of E. camaldulensis. Full article
Show Figures

Figure 1

26 pages, 6749 KiB  
Review
Traditional Uses, Pharmacology and Phytochemistry of the Medicinal Plant Flueggea virosa (Roxb. ex Willd.) Royle
by Christian Bailly
Future Pharmacol. 2024, 4(1), 77-102; https://doi.org/10.3390/futurepharmacol4010007 - 18 Jan 2024
Cited by 3 | Viewed by 5179
Abstract
The white berry bush, officially Flueggea virosa (Roxb. ex Willd.) Royle is a medicinal plant distributed throughout tropical areas and traditionally used in Africa, India and China. Root decoctions are used to treat abdominal pain, whereas extracts from the aerial parts serve to [...] Read more.
The white berry bush, officially Flueggea virosa (Roxb. ex Willd.) Royle is a medicinal plant distributed throughout tropical areas and traditionally used in Africa, India and China. Root decoctions are used to treat abdominal pain, whereas extracts from the aerial parts serve to treat liver and urinary diseases, inflammatory pathologies and diabetes, among other pathologies. Plant extracts have revealed antiparasitic, antimicrobial, antiepilepsy, antidiabetic, anticancer and analgesic effects. Three main categories of phytochemicals were isolated from F. virosa: polyphenols, with the lead product bergenin; terpenoids, such as the flueggenoids and related podocarpane-type diterpenoids; and many alkaloids derived from securinine and norsecurinine. A remarkable feature of S. virosa is the production of norsecurinine oligomers, including macromolecular tetramers and pentamers, such as fluevirosinines. The most potent anticancer alkaloid in the family is the dimeric indolizidine flueggine B, which was identified as a potential binder to α/β-tubulin dimer, which is a known target for securinine. This review highlights the diversity of phytochemicals identified from S. virosa and the potential therapeutic benefits of dimeric alkaloids. Studies are encouraged to further investigate the therapeutic properties of the lead compounds but also define and finesse the nutritional profile of the edible fruit. Full article
Show Figures

Graphical abstract

11 pages, 7664 KiB  
Article
Chemometric Classification of Colombian Cacao Crops: Effects of Different Genotypes and Origins in Different Years of Harvest on Levels of Flavonoid and Methylxanthine Metabolites in Raw Cacao Beans
by Catalina Agudelo, Susana Acevedo, Luis Carrillo-Hormaza, Elkin Galeano and Edison Osorio
Molecules 2022, 27(7), 2068; https://doi.org/10.3390/molecules27072068 - 23 Mar 2022
Cited by 4 | Viewed by 3099
Abstract
The aim of this study was to evaluate the levels of chemical markers in raw cacao beans in two clones (introduced and regional) in Colombia over several years. Multivariate statistical methods were used to analyze the flavanol monomers (epicatechin and catechin), flavanol oligomers [...] Read more.
The aim of this study was to evaluate the levels of chemical markers in raw cacao beans in two clones (introduced and regional) in Colombia over several years. Multivariate statistical methods were used to analyze the flavanol monomers (epicatechin and catechin), flavanol oligomers (procyanidins) and methylxanthine alkaloids (caffeine and theobromine) of cocoa samples. The results identified genotype as the main factor contributing to cacao chemistry, although significant differences were not observed between universal and regional clones in PCA. The univariate analysis allowed us to establish that EET-96 had the highest contents of both flavanol monomers (13.12 ± 2.30 mg/g) and procyanidins (7.56 ± 4.59 mg/g). In addition, the geographic origin, the harvest conditions of each region and the year of harvest may contribute to major discrepancies between results. Turbo cocoa samples are notable for their higher flavanol monomer content, Chigorodó cocoa samples for the presence of both types of polyphenol (monomer and procyanidin contents) and the Northeast cocoa samples for the higher methylxanthine content. We hope that knowledge of the heterogeneity of the metabolites of interest in each clone will contribute to the generation of added value in the cocoa production chain and its sustainability. Full article
(This article belongs to the Collection Advances in Food Analysis)
Show Figures

Figure 1

23 pages, 11035 KiB  
Article
Unlocking the Diversity of Pyrroloiminoquinones Produced by Latrunculid Sponge Species
by Jarmo-Charles J. Kalinski, Rui W. M. Krause, Shirley Parker-Nance, Samantha C. Waterworth and Rosemary A. Dorrington
Mar. Drugs 2021, 19(2), 68; https://doi.org/10.3390/md19020068 - 28 Jan 2021
Cited by 7 | Viewed by 3045
Abstract
Sponges of the Latrunculiidae family produce bioactive pyrroloiminoquinone alkaloids including makaluvamines, discorhabdins, and tsitsikammamines. The aim of this study was to use LC-ESI-MS/MS-driven molecular networking to characterize the pyrroloiminoquinone secondary metabolites produced by six latrunculid species. These are Tsitsikamma favus, Tsitsikamma pedunculata [...] Read more.
Sponges of the Latrunculiidae family produce bioactive pyrroloiminoquinone alkaloids including makaluvamines, discorhabdins, and tsitsikammamines. The aim of this study was to use LC-ESI-MS/MS-driven molecular networking to characterize the pyrroloiminoquinone secondary metabolites produced by six latrunculid species. These are Tsitsikamma favus, Tsitsikamma pedunculata, Cyclacanthia bellae, and Latrunculia apicalis as well as the recently discovered species, Tsitsikamma nguni and Tsitsikamma michaeli. Organic extracts of 43 sponges were analyzed, revealing distinct species-specific chemical profiles. More than 200 known and unknown putative pyrroloiminoquinones and related compounds were detected, including unprecedented makaluvamine-discorhabdin adducts and hydroxylated discorhabdin I derivatives. The chemical profiles of the new species T. nguni closely resembled those of the known T. favus (chemotype I), but with a higher abundance of tsitsikammamines vs. discorhabdins. T. michaeli sponges displayed two distinct chemical profiles, either producing mostly the same discorhabdins as T. favus (chemotype I) or non- or monobrominated, hydroxylated discorhabdins. C. bellae and L. apicalis produced similar pyrroloiminoquinone chemistry to one another, characterized by sulfur-containing discorhabdins and related adducts and oligomers. This study highlights the variability of pyrroloiminoquinone production by latrunculid species, identifies novel isolation targets, and offers fundamental insights into the collision-induced dissociation of pyrroloiminoquinones. Full article
(This article belongs to the Special Issue Bioactive Compounds from Marine Sponges 2020)
Show Figures

Graphical abstract

18 pages, 5237 KiB  
Article
Galantamine-Curcumin Hybrids as Dual-Site Binding Acetylcholinesterase Inhibitors
by Georgi Stavrakov, Irena Philipova, Atanas Lukarski, Mariyana Atanasova, Dimitrina Zheleva, Zvetanka D. Zhivkova, Stefan Ivanov, Teodora Atanasova, Spiro Konstantinov and Irini Doytchinova
Molecules 2020, 25(15), 3341; https://doi.org/10.3390/molecules25153341 - 23 Jul 2020
Cited by 30 | Viewed by 6180
Abstract
Galantamine (GAL) and curcumin (CU) are alkaloids used to improve symptomatically neurodegenerative conditions like Alzheimer’s disease (AD). GAL acts mainly as an inhibitor of the enzyme acetylcholinesterase (AChE). CU binds to amyloid-beta (Aβ) oligomers and inhibits the formation of Aβ plaques. Here, we [...] Read more.
Galantamine (GAL) and curcumin (CU) are alkaloids used to improve symptomatically neurodegenerative conditions like Alzheimer’s disease (AD). GAL acts mainly as an inhibitor of the enzyme acetylcholinesterase (AChE). CU binds to amyloid-beta (Aβ) oligomers and inhibits the formation of Aβ plaques. Here, we combine GAL core with CU fragments and design a combinatorial library of GAL-CU hybrids as dual-site binding AChE inhibitors. The designed hybrids are screened for optimal ADME properties and BBB permeability and docked on AChE. The 14 best performing compounds are synthesized and tested in vitro for neurotoxicity and anti-AChE activity. Five of them are less toxic than GAL and CU and show activities between 41 and 186 times higher than GAL. Full article
(This article belongs to the Special Issue Amaryllidaceae Alkaloids)
Show Figures

Graphical abstract

15 pages, 2786 KiB  
Article
9-Methylfascaplysin Is a More Potent Aβ Aggregation Inhibitor than the Marine-Derived Alkaloid, Fascaplysin, and Produces Nanomolar Neuroprotective Effects in SH-SY5Y Cells
by Qingmei Sun, Fufeng Liu, Jingcheng Sang, Miaoman Lin, Jiale Ma, Xiao Xiao, Sicheng Yan, C. Benjamin Naman, Ning Wang, Shan He, Xiaojun Yan, Wei Cui and Hongze Liang
Mar. Drugs 2019, 17(2), 121; https://doi.org/10.3390/md17020121 - 18 Feb 2019
Cited by 41 | Viewed by 5030
Abstract
β-Amyloid (Aβ) is regarded as an important pathogenic target for Alzheimer’s disease (AD), the most prevalent neurodegenerative disease. Aβ can assemble into oligomers and fibrils, and produce neurotoxicity. Therefore, Aβ aggregation inhibitors may have anti-AD therapeutic efficacies. It was found, here, that the [...] Read more.
β-Amyloid (Aβ) is regarded as an important pathogenic target for Alzheimer’s disease (AD), the most prevalent neurodegenerative disease. Aβ can assemble into oligomers and fibrils, and produce neurotoxicity. Therefore, Aβ aggregation inhibitors may have anti-AD therapeutic efficacies. It was found, here, that the marine-derived alkaloid, fascaplysin, inhibits Aβ fibrillization in vitro. Moreover, the new analogue, 9-methylfascaplysin, was designed and synthesized from 5-methyltryptamine. Interestingly, 9-methylfascaplysin is a more potent inhibitor of Aβ fibril formation than fascaplysin. Incubation of 9-methylfascaplysin with Aβ directly reduced Aβ oligomer formation. Molecular dynamics simulations revealed that 9-methylfascaplysin might interact with negatively charged residues of Aβ42 with polar binding energy. Hydrogen bonds and π–π interactions between the key amino acid residues of Aβ42 and 9-methylfascaplysin were also suggested. Most importantly, compared with the typical Aβ oligomer, Aβ modified by nanomolar 9-methylfascaplysin produced less neuronal toxicity in SH-SY5Y cells. 9-Methylfascaplysin appears to be one of the most potent marine-derived compounds that produces anti-Aβ neuroprotective effects. Given previous reports that fascaplysin inhibits acetylcholinesterase and induces P-glycoprotein, the current study results suggest that fascaplysin derivatives can be developed as novel anti-AD drugs that possibly act via inhibition of Aβ aggregation along with other target mechanisms. Full article
(This article belongs to the Special Issue Bioactive Compounds from Marine Sponges)
Show Figures

Figure 1

Back to TopTop