Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,153)

Search Parameters:
Keywords = amorphous state

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3068 KB  
Article
Reconfigurable GeTe’s Planar RGB Resonator Filter–Absorber
by Israel Alves Oliveira, Vitaly F. Rodriguez-Esquerre and Igor L. Gomes de Souza
Crystals 2025, 15(9), 789; https://doi.org/10.3390/cryst15090789 - 3 Sep 2025
Abstract
This study presents a reconfigurable planar photonic device capable of dynamically switching between optical filter and absorber functionalities by exploiting the phase transition properties of GeTe, a chalcogenide phase-change material. The device adopts a Metal–Dielectric–PCM architecture composed of silver (Ag), silicon dioxide (SiO [...] Read more.
This study presents a reconfigurable planar photonic device capable of dynamically switching between optical filter and absorber functionalities by exploiting the phase transition properties of GeTe, a chalcogenide phase-change material. The device adopts a Metal–Dielectric–PCM architecture composed of silver (Ag), silicon dioxide (SiO2), and GeTe layers, each playing a distinct role: the silver layer governs the transmission and absorption efficiency, the SiO2 layer controls the resonance conditions, and the GeTe layer determines the device’s scattering behavior via its tunable optical losses. Numerical simulations revealed that the structure enables high RGB transmission in the amorphous state and broadband absorption in the crystalline state. By adjusting geometric parameters—especially the metallic thickness—the device exhibits finely tunable spectral responses under varying polarizations and incidence angles. These findings highlight the synergistic interplay between material functionality and layer configuration, positioning this platform as a compact and energy-efficient solution for applications in tunable photonics, optical sensing, and programmable metasurfaces. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

24 pages, 9433 KB  
Article
Enrichment and Fractionation of Rare Earth Elements in High-Altitude Thick Weathered Crust Elution-Deposited Rare Earth Ore
by Zhenyue Zhang, Dan Li, Fei Long, Ruan Chi and Zhuo Chen
Minerals 2025, 15(9), 932; https://doi.org/10.3390/min15090932 - 1 Sep 2025
Viewed by 154
Abstract
Weathered crust elution-deposited rare earth ores (WCE-REOs) are the primary global source of medium and heavy rare earth elements (M/HREEs). The recent discovery of high-altitude (1500–2500 m) WCE-REOs in southern Yunnan Province, China, presents new opportunities for the development of M/HREE resources. This [...] Read more.
Weathered crust elution-deposited rare earth ores (WCE-REOs) are the primary global source of medium and heavy rare earth elements (M/HREEs). The recent discovery of high-altitude (1500–2500 m) WCE-REOs in southern Yunnan Province, China, presents new opportunities for the development of M/HREE resources. This study investigates the enrichment and fractionation mechanisms of rare earth elements (REEs) in these deposits through a systematic analysis of three representative weathering profiles associated with the Lincang granite batholith. The analytical results indicate that the profiles consist mainly of clay minerals (kaolinite, halloysite, illite, minor montmorillonite) and iron oxides, with high SiO2 (64.10–74.40 wt.%) and Al2O3 (15.50–20.20 wt.%) and low CaO/MgO—typical of weathered REE deposits. The total REE contents (238.12–1545.53 ppm) show distinct fractionation: LREE-enriched upper layers and HREE-enriched deeper zones. Sequential extraction revealed that the REEs in the Lincang granite weathering profiles predominantly occur in ion-exchangeable, residual, and iron-manganese oxide-bound states (>95% total REEs). Ion-exchangeable REEs showed depth-dependent enrichment (peaking at 819.96 ppm), while iron-manganese oxides exhibited a strong REE affinity (up to 47% total REEs), with amorphous phases that were preferentially enriched in Ce (partitioning >80%). Fissure systems exerted critical control over the redistribution of elements, particularly REEs. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

18 pages, 4692 KB  
Article
The Material Growth and Characteristics of Transition Metal Oxide Thin Films Based on Hot Wire Oxidation Sublimation Deposition Technology
by Fengchao Li, Qingguo Kang, Zhenwei Kang, Tengteng Li, Jiangang Yu, Haibing Qiu, Ting Liang and Cheng Lei
Materials 2025, 18(17), 4083; https://doi.org/10.3390/ma18174083 - 31 Aug 2025
Viewed by 289
Abstract
Transition-metal oxides (TMOs) possess pronounced optoelectronic properties and are widely exploited in photovoltaics and photocatalysis. Here, we introduce a hot wire oxidation sublimation deposition (HWOSD) that directly converts elemental Mo and W into amorphous MoOx and WOx films on various substrates. [...] Read more.
Transition-metal oxides (TMOs) possess pronounced optoelectronic properties and are widely exploited in photovoltaics and photocatalysis. Here, we introduce a hot wire oxidation sublimation deposition (HWOSD) that directly converts elemental Mo and W into amorphous MoOx and WOx films on various substrates. Scanning electron microscopy and atomic force microscopy reveal uniform thickness and conformal coverage over textured and planar surfaces. X-ray photoelectron spectroscopy indicates high oxygen contents with stoichiometric ratios of 2.94 (MoOx) and 2.91 (WOx). Optical measurements show transmittances > 94% across 400–1200 nm, yielding optical band gaps of 1.86 eV (MoOx) and 2.67 eV (WOx). The conductivities of MoOx and WOx were 2.58 × 10−6 S cm−1 and 5.14 × 10−7 S cm−1 at room temperature, and the TMO/Si surface potential differences are 200 mV and 114 mV, respectively. Minority-carrier-lifetime measurements indicate that MoOx films confer an additional passivation benefit to the i a-Si:H/c-Si/i a-Si:H stack. Annealing of MoOx and WOx realized their phase transition from an amorphous state to a polycrystalline state, with changes in their optical transmittance in the visible light region. Investigation of the photovoltaic performances of MoOx and WOx as HTLs deposited by HWOSD demonstrates their excellent electronic functionality in optoelectronics. These results establish HWOSD as a scalable, low-temperature method to fabricate high-quality TMO films and expand their potential in advanced optoelectronic devices. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

11 pages, 4557 KB  
Article
Nanostructured Metal Oxide from Metallic Glass for Water Splitting: Effect of Hydrothermal Duration on Structure and Performance
by Hae Jin Park, Tae Kyung Kim, Jürgen Eckert, Sung Hwan Hong and Ki Buem Kim
Materials 2025, 18(17), 4082; https://doi.org/10.3390/ma18174082 - 31 Aug 2025
Viewed by 211
Abstract
This study investigates the optimal duration for forming a uniform oxide layer and evaluates its influence on water-splitting performance. We selected a Ti50Cu32Ni15Sn3 amorphous ribbon, which is known to simultaneously form anatase TiO2 and Sn [...] Read more.
This study investigates the optimal duration for forming a uniform oxide layer and evaluates its influence on water-splitting performance. We selected a Ti50Cu32Ni15Sn3 amorphous ribbon, which is known to simultaneously form anatase TiO2 and Sn oxide via a single hydrothermal process. Hydrothermal treatments were conducted at 220 °C in 150 mL of distilled water for durations of 3 and 6 h. The process successfully formed nanoscale metal oxides on the alloy surface, with the uniformity of the oxide layer increasing over time. The amorphous phase of the alloy was retained under all conditions. X-ray photoelectron spectroscopy (XPS) analysis confirmed the formation of TiO2 and SnOx, while Cu and Ni remained in their metallic state. Furthermore, we verified the coexistence of these oxides with metallic Ti and Sn. Photoelectrochemical analysis showed that the sample treated for 6 h exhibited the best water-splitting performance, which correlated directly with the most uniform oxide coverage. This time-controlled hydrothermal oxidation method, using only water, presents a promising and efficient approach for developing functional surfaces for electronic and photoelectrochemical applications of metallic glasses (MGs). Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

22 pages, 3886 KB  
Article
Targeted Development of an Optimised Formulation for 3D-Printing of a Sertraline Hydrochloride-Containing Drug Delivery System with Immediate-Release Characteristics Utilising a Mixture Design
by Mirco Bienhaus, Leif Neumann, Charlotte Müller and Frank E. Runkel
Pharmaceutics 2025, 17(9), 1137; https://doi.org/10.3390/pharmaceutics17091137 - 30 Aug 2025
Viewed by 325
Abstract
Objectives: Although 3D-printing has been identified as a promising technique for personalised medicine manufacturing, developing complex formulations that are suitable for the process can be challenging. This study evaluates the use of a mixture design for the targeted development of an optimised formulation [...] Read more.
Objectives: Although 3D-printing has been identified as a promising technique for personalised medicine manufacturing, developing complex formulations that are suitable for the process can be challenging. This study evaluates the use of a mixture design for the targeted development of an optimised formulation designed for the 3D-printing of oral dosage forms containing the drug sertraline hydrochloride featuring immediate-release drug dissolution. Methods: The polymers Eudragit E PO, Kollidon 17 PF and hydroxypropyl cellulose were compared in simple screening experiments regarding their extrudability, printability and disintegration. A combination of Eudragit E PO and Kollidon 17 PF proved superior and therefore served as the basis for the mixture design. The resulting blends were processed via hot melt extrusion to produce filaments, which were then measured for bending stress using a 3-point-bending-test, and 3D-printed sample plates were used to determine the crystallinity index of sertraline hydrochloride using X-ray diffraction in a previously identified range with low interference from the other components. The formulation was optimised using statistically based models with the aim of minimising the bending stress to obtain flexible, process-robust filaments and simultaneously minimising the crystallinity index with the intention of improving the solubility of the drug by maximising its amorphous content. Results: The filaments made from the optimised formulation could be reliably printed, and the amorphous state of the active ingredient therein was confirmed. The oral dosage forms produced from these showed immediate release characteristics in an acidic medium. Conclusions: This study demonstrates the advantages of a mixture design for optimising complex formulations in a time- and resource-efficient way and could serve as a basis for other research groups to develop innovative, customisable drug delivery systems more effectively. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

46 pages, 7349 KB  
Review
Convergence of Thermistor Materials and Focal Plane Arrays in Uncooled Microbolometers: Trends and Perspectives
by Bo Wang, Xuewei Zhao, Tianyu Dong, Ben Li, Fan Zhang, Jiale Su, Yuhui Ren, Xiangliang Duan, Hongxiao Lin, Yuanhao Miao and Henry H. Radamson
Nanomaterials 2025, 15(17), 1316; https://doi.org/10.3390/nano15171316 - 27 Aug 2025
Viewed by 271
Abstract
Uncooled microbolometers play a pivotal role in infrared detection owing to their compactness, low power consumption, and cost-effectiveness. This review comprehensively summarizes recent progress in thermistor materials and focal plane arrays (FPAs), highlighting improvements in sensitivity and integration. Vanadium oxide (VOx) [...] Read more.
Uncooled microbolometers play a pivotal role in infrared detection owing to their compactness, low power consumption, and cost-effectiveness. This review comprehensively summarizes recent progress in thermistor materials and focal plane arrays (FPAs), highlighting improvements in sensitivity and integration. Vanadium oxide (VOx) remains predominant, with Al-doped films via atomic layer deposition (ALD) achieving a temperature coefficient of resistance (TCR) of −4.2%/K and significant 1/f noise reduction when combined with single-walled carbon nanotubes (SWCNTs). Silicon-based materials, such as phosphorus-doped hydrogenated amorphous silicon (α-Si:H), exhibit a TCR exceeding −5%/K, while titanium oxide (TiOx) attains TCR values up to −7.2%/K through ALD and annealing. Emerging materials including GeSn alloys and semiconducting SWCNT networks show promise, with SWCNTs achieving a TCR of −6.5%/K and noise equivalent power (NEP) as low as 1.2 mW/√Hz. Advances in FPA technology feature pixel pitches reduced to 6 μm enabled by vertical nanotube thermal isolation, alongside the 3D heterogeneous integration of single-crystalline Si-based materials with readout circuits, yielding improved fill factors and responsivity. State-of-the-art VOx-based FPAs demonstrate noise equivalent temperature differences (NETD) below 30 mK and specific detectivity (D*) near 2 × 1010 cm⋅Hz 1/2/W. Future advancements will leverage materials-driven innovation (e.g., GeSn/SWCNT composites) and process optimization (e.g., plasma-enhanced ALD) to enable ultra-high-resolution imaging in both civil and military applications. This review underscores the central role of material innovation and system optimization in propelling microbolometer technology toward ultra-high resolution, high sensitivity, high reliability, and broad applicability. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

15 pages, 6388 KB  
Article
Properties of ZnO Prepared by Polymeric Citrate Amorphous Precursor Method: Influence of Cobalt Concentration
by Jailes J. Beltrán, Luis A. Flórez and Luis C. Sánchez
Materials 2025, 18(17), 3991; https://doi.org/10.3390/ma18173991 - 26 Aug 2025
Viewed by 430
Abstract
This study aims to investigate the vibrational, structural, morphological, optical, and magnetic properties of Zn1−xCoxO with 0.00 ≤ x ≤ 0.05 prepared by the sol–gel method via an amorphous citrate precursor. FTIR spectroscopy was used to follow the thermal [...] Read more.
This study aims to investigate the vibrational, structural, morphological, optical, and magnetic properties of Zn1−xCoxO with 0.00 ≤ x ≤ 0.05 prepared by the sol–gel method via an amorphous citrate precursor. FTIR spectroscopy was used to follow the thermal decomposition process of the ZnO precursor, identifying acetate zinc as the intermediate main component. XRD and FTIR-ATR techniques showed only the single wurtzite crystalline phase with the presence of oxygen deficiency and/or vacancies, and secondary phases were not detected. SEM micrographs showed agglomerated particles of irregular shape and size with a high distribution and evidenced particles of nanometric size with a morphology change for x = 0.05. We detected high–spin Co2+ ions located in the tetrahedral core and pseudo–octahedral surface sites, substituting Zn2+ ions. The energy band gap of the ZnO semiconductor decreased gradually when the Co doping concentration was increased. M vs. H for undoped ZnO nanoparticles exhibited a diamagnetic signal overlapped with a weak ferromagnetic signal at room temperature. Interestingly, temperature-dependent magnetization showed superparamagnetic behavior with a blocked state in the low temperature range. The Co–doped ZnO samples evidenced a weak ferromagnetic signal and a paramagnetic component, which increased with x. The saturation magnetization increased until x = 0.03 and then decreased for x = 0.05, while the coercive field gradually decreased. Full article
Show Figures

Graphical abstract

18 pages, 3565 KB  
Article
Structure and Electrochemical Performance of Glasses in the Li2O-B2O3-V2O5-MoO3 System
by Margarita Milanova, Xinhao Yang, Pamela Vargas, Nataly Carolina Rosero-Navarro, Ruzha Harizanova, Bojidar Jivov, Lyubomir Aleksandrov, Reni Iordanova, Maya Shopska and Savina Koleva
Inorganics 2025, 13(9), 285; https://doi.org/10.3390/inorganics13090285 - 26 Aug 2025
Viewed by 367
Abstract
Applying the melt quenching method (cooling rate 101–102 K/s), new multicomponent vanadate glasses were synthesized, containing different amounts of MoO3 at the expense of B2O3 with the composition 20Li2O:(30 − x)B2O3 [...] Read more.
Applying the melt quenching method (cooling rate 101–102 K/s), new multicomponent vanadate glasses were synthesized, containing different amounts of MoO3 at the expense of B2O3 with the composition 20Li2O:(30 − x)B2O3:50V2O5:xMoO3, x = 10, 20 mol%. The obtained samples were characterized by X-ray diffraction, infrared spectroscopy, differential scanning calorimetry and impedance spectroscopy. The density of the glasses was measured by the Archimedes method, on the basis of which the physicochemical parameters molar volume, oxygen molar volume and oxygen packing density were calculated. It was found that the replacement of B2O3 with MoO3 leads to changes in electrical conductivity, which are a consequence of the increase in non-bridging oxygen atoms in the amorphous structure. The electrochemical characterization of the 20Li2O:(30 − x)B2O3:50V2O5:20MoO3 glass obtained was performed by assembling an all-solid-state cell, employing 20Li2O:(30 − x)B2O3:50V2O5:20MoO3 glass as a cathode active material. The obtained results show that the studied glass compositions are interesting in view of their potential application as cathode materials in all-solid-state lithium-ion batteries. Full article
(This article belongs to the Special Issue Featured Papers in Inorganic Materials 2025)
Show Figures

Figure 1

24 pages, 8420 KB  
Article
Energy Landscape-Guided Virtual Screening of Side-Chain Engineering in Polymer Dynamics Design
by Han Liu, Sen Meng and Liantang Li
Polymers 2025, 17(17), 2298; https://doi.org/10.3390/polym17172298 - 25 Aug 2025
Viewed by 470
Abstract
Side-chain engineering is versatile for tuning the chain mobility of graft polymers and governs their thermal stability. However, it remains elusive to predict the graft effect on chain mobility, especially for competitive side-chain types. Here, relying on molecular dynamics simulation and energy landscape [...] Read more.
Side-chain engineering is versatile for tuning the chain mobility of graft polymers and governs their thermal stability. However, it remains elusive to predict the graft effect on chain mobility, especially for competitive side-chain types. Here, relying on molecular dynamics simulation and energy landscape theory, we introduce a three-stage virtual pipeline to sequentially refine the screening of graft chain mobility while minimizing computation cost, by taking the example of grafting similar side-chain types (hydroxyethyl methacrylate (HEMA), methyl methacrylate (MMA), and vinyl acetate (VAC)) onto amorphous polypropylene (PP). Ascribed to their structural similarity, these graft systems exhibit a non-evident chain mobility distinction, with the atom displacement—governing the local “roughness” in potential energy landscape (PEL)—exhibiting only weak-to-modest correlation with their initial atomic energy, volume, and stress. This necessitates the subsequent-stage screening for broader PEL navigation, which confirms a stability and roughness rank of VAC ≥ MMA > HEMA > PP, with their chain activation energy revealing that these side chains enhance the PEL roughness through a counterbalance between possibly lowering the overall energy barrier but extensively wrinkling the landscape. Overall, the three-stage screening establishes a state-of-the-art efficient strategy to evaluate thermal stability of graft polymers in stepwise higher precision from local to ergodic roughness inspection. Full article
Show Figures

Figure 1

9 pages, 2115 KB  
Communication
Charge Carrier Transport and Localized States in Graphite-like Amorphous Carbon Films at Room Temperatures
by Vyacheslav A. Moshnikov, Ekaterina N. Muratova, Igor A. Vrublevsky, Alexandr I. Maximov, Viktor B. Bessonov, Stepan E. Parfenovich, Alexandr K. Tuchkovsky and Dmitry A. Kozodaev
Materials 2025, 18(17), 3977; https://doi.org/10.3390/ma18173977 - 25 Aug 2025
Viewed by 428
Abstract
The conductivity of direct and alternating current for graphite-like amorphous carbon films after annealing in vacuum at a temperature of 700 °C was studied. The I–V characteristics of such films are symmetrical. The I–V curve in logarithmic coordinates demonstrated the presence of two [...] Read more.
The conductivity of direct and alternating current for graphite-like amorphous carbon films after annealing in vacuum at a temperature of 700 °C was studied. The I–V characteristics of such films are symmetrical. The I–V curve in logarithmic coordinates demonstrated the presence of two linear sections. A study of the frequency dependences of structures with a thin graphite-like amorphous carbon film showed a sharp increase in capacitance at low frequencies and a decrease in the high-frequency region. The increase in capacitance in the low-frequency region is explained by the Maxwell–Wagner polarization, which is observed in inhomogeneous dielectrics with conducting inclusions. The results of temperature measurements of resistance showed that at room temperatures, there is a mechanism of conduction of electrons with a variable jump length along localized states lying in a narrow energy band near the Fermi level. At the same time, with an increase in the injection current, an additional mechanism of hopping electrical transport with a variable jump length along localized states in the tail of the valence band arises, which leads to an increase in the conductivity of the films. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

20 pages, 8484 KB  
Article
Nanoparticle-Reinforced Electroless Composite Coatings for Pipeline Steel: Synthesis and Characterization
by Biplab Baran Mandal, Vikash Kumar, Sovan Sahoo, Buddhadeb Oraon and Sumanta Mukherjee
Materials 2025, 18(17), 3949; https://doi.org/10.3390/ma18173949 - 22 Aug 2025
Viewed by 464
Abstract
Protective coatings are essential for extending the service life of components exposed to harsh conditions, such as pipes used in industrial systems, where wear and corrosion remain constant challenges. This study explores the development of a nano-sized TiO2-reinforced electroless nickel-based ternary [...] Read more.
Protective coatings are essential for extending the service life of components exposed to harsh conditions, such as pipes used in industrial systems, where wear and corrosion remain constant challenges. This study explores the development of a nano-sized TiO2-reinforced electroless nickel-based ternary (Ni-W-P) alloy and composite coating on API X60 steel, a high-strength carbon steel pipe grade widely used in oil and gas pipelines, using an alkaline hypophosphite-reduced bath. The surface morphology, microstructure, elemental composition, structure, phase evolution, adhesion, and roughness of the coatings were analyzed using optical microscopy, FESEM, EDS, XRD, AFM, cross-cut tape test, and 3D profilometry. The tribological performance was evaluated via Vickers microhardness measurements and reciprocating wear tests conducted under dry conditions at a 5 N load. The TiO2 nanoparticle-reinforced composite coating achieved a consistent thickness of approximately 24 µm and exhibited enhanced microhardness and reduced coefficient of friction (COF), although the addition of nanoparticles increased surface roughness (Sa). Annealing the electroless composites at 400 °C led to a significant improvement in their tribological properties, primarily owing to the grain growth, phase transformation, and Ni3P crystallization. XRD analysis revealed phase evolution from an amorphous state to crystalline Ni3P upon annealing. Both the alloy and composite coatings exhibited excellent adhesion performances. The combined effect of TiO2 nanoparticles, tungsten, and Ni3P crystallization greatly improved the wear resistance, with abrasive and adhesive wear identified as the dominant mechanisms, making these coatings well suited for high-wear applications. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

14 pages, 19891 KB  
Article
Investigating Surface Morphology and Subsurface Damage Evolution in Nanoscratching of Single-Crystal 4H-SiC
by Jianpu Xi, Xinxing Ban, Zhen Hui, Wenlan Ba, Lijuan Deng and Hui Qiu
Micromachines 2025, 16(8), 935; https://doi.org/10.3390/mi16080935 - 14 Aug 2025
Viewed by 488
Abstract
Single-crystal 4H silicon carbide (4H-SiC) is a key substrate material for third-generation semiconductor devices, where surface and subsurface integrity critically affect performance and reliability. This study systematically examined the evolution of surface morphology and subsurface damage (SSD) during nanoscratching of 4H-SiC under varying [...] Read more.
Single-crystal 4H silicon carbide (4H-SiC) is a key substrate material for third-generation semiconductor devices, where surface and subsurface integrity critically affect performance and reliability. This study systematically examined the evolution of surface morphology and subsurface damage (SSD) during nanoscratching of 4H-SiC under varying normal loads (0–100 mN) using a nanoindenter equipped with a diamond Berkovich tip. Scratch characteristics were assessed using scanning electron microscopy (SEM), while cross-sectional SSD was characterised via focused ion beam (FIB) slicing and transmission electron microscopy (TEM). The results revealed three distinct material removal regimes: ductile removal below 14.5 mN, a brittle-to-ductile transition between 14.5–59.3 mN, and brittle removal above 59.3 mN. Notably, substantial subsurface damage—including median cracks exceeding 4 μm and dislocation clusters—was observed even within the transition zone where the surface appeared smooth. A thin amorphous layer at the indenter-substrate interface suppressed immediate surface defects but promoted subsurface damage nucleation. Crack propagation followed slip lines or their intersections, demonstrating sensitivity to local stress states. These findings offer important insights into nanoscale damage mechanisms, which are essential for optimizing precision machining processes to minimise SSD in SiC substrates. Full article
Show Figures

Figure 1

21 pages, 7460 KB  
Article
Deciphering the Triple-Peak C-O-C Stretching FTIR Absorbance Consistently Occurring in Semicrystalline PEG
by Theodor Stern
Polymers 2025, 17(16), 2199; https://doi.org/10.3390/polym17162199 - 12 Aug 2025
Viewed by 534
Abstract
Polyethylene glycol (PEG) is among the most intensively researched and applied polymers, exhibiting a very wide range of industrial, pharmaceutical, and biomedical applications. The strongest and most highly diagnostic absorbance in the FTIR spectrum of PEG and of PEG-containing polyurethanes, is the ether [...] Read more.
Polyethylene glycol (PEG) is among the most intensively researched and applied polymers, exhibiting a very wide range of industrial, pharmaceutical, and biomedical applications. The strongest and most highly diagnostic absorbance in the FTIR spectrum of PEG and of PEG-containing polyurethanes, is the ether C-O-C stretching absorbance, which consistently appears as a triple-peak absorbance in a semicrystalline state. Surprisingly, this phenomenon has very seldom been mentioned or elaborated, and no direct structural diagnostic FTIR assignment has been determined for each component of the triple-peak. The present research conclusively demonstrates that the left-side and right-side components of the triple-peak are assigned to the chain-fold regions and the extended-chain regions of the crystallized chains, respectively, while the strong-wide central component is assigned to the randomly oriented chains in the amorphous phase of the semicrystalline PEG. The present demonstration was facilitated via the synthesis of a highly oriented fibrillar polyurethane block-copolymer, exclusively containing extended-chain-crystallized PEG soft-segments, obtained through dense hard-segment crosslinking under vigorous unidirectional shear-stress continuously applied during the synthesis. The present research results enable us to directly relate the FTIR spectra of PEG and block copolymers synthesized thereof, to their crystallization mechanisms and chain conformations, thus facilitating the development of improved industrial processing methods. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

17 pages, 4123 KB  
Article
Crystallographic Effect of TiAl Alloy Under High-Speed Shock Deformation
by Jiayu Liu, Huailin Liu and Zhengping Zhang
Appl. Sci. 2025, 15(16), 8837; https://doi.org/10.3390/app15168837 - 11 Aug 2025
Viewed by 281
Abstract
In this paper, the molecular dynamics simulation method was adopted to systematically study the microstructure evolution behavior of TiAl alloys under impact compression under three typical crystal orientations ([001], [110], [111]). By analyzing the characteristics of structural phase transition, defect type evolution, dislocation [...] Read more.
In this paper, the molecular dynamics simulation method was adopted to systematically study the microstructure evolution behavior of TiAl alloys under impact compression under three typical crystal orientations ([001], [110], [111]). By analyzing the characteristics of structural phase transition, defect type evolution, dislocation expansion, and radial distribution function, the anisotropic response mechanism under the joint regulation of crystal orientation and impact velocity was revealed. The results show that the [111] crystal orientation is most prone to local amorphous transformation at high strain rates, and its structural collapse is due to the rapid accumulation and limited reconstruction of dislocations/faults. The [001] crystal orientation is prone to forming staggered stacking of layers and local HCP phase transformation, presenting as a medium-strength structural disorder. Under the strain regulation mechanism dominated by twinning, the [110] orientation exhibits superior structural stability and anti-disorder ability. With increases in the impact velocity, the defect type gradually changes from isolated dislocations to large-scale HCP regions and amorphous bands, and there are significant differences in the critical velocities of amorphous transformation corresponding to different crystal orientations. Further analysis indicates that the HCP structure and the formation of layering faults are important precursor states of amorphous transformation. The evolution of the g(r) function verifies the stepwise disintegration process of medium and long-range ordered structures under shock induction. It provides a new theoretical basis and microscopic perspective for the microstructure regulation, damage tolerance improvement, and impact resistance design of TiAl alloys under extreme stress conditions. Full article
Show Figures

Figure 1

21 pages, 1757 KB  
Article
Description of Gas Transport in Polymers: Integrated Thermodynamic and Transport Modeling of Refrigerant Gases in Polymeric Membranes
by Matteo Minelli, Marco Giacinti Baschetti and Virginia Signorini
Polymers 2025, 17(16), 2169; https://doi.org/10.3390/polym17162169 - 8 Aug 2025
Viewed by 467
Abstract
Hydrofluorocarbons (HFC) are today widely used as refrigerants, solvents, or aerosols for fire protection. Due to their non-negligible environmental impact, there exists an increasing interest towards their effective separation and recovery, which still remains a major challenge. This work presents a comprehensive thermodynamic [...] Read more.
Hydrofluorocarbons (HFC) are today widely used as refrigerants, solvents, or aerosols for fire protection. Due to their non-negligible environmental impact, there exists an increasing interest towards their effective separation and recovery, which still remains a major challenge. This work presents a comprehensive thermodynamic and transport modeling approach able to describe HFC sorption and transport in different amorphous polymers, including glassy, rubbery, and copolymers, as well as in supported Ionic Liquid membranes (SILMs). In particular, the literature solubility data for refrigerants such as R-32, R-125, R-134a, and R-152a is analyzed by means of the Sanchez–Lacombe Equation of State (SL-EoS), and its non-equilibrium extension (NELF), to predict gas uptake in complex polymeric materials. The Standard Transport Model (STM) is then employed to describe permeability behaviors, incorporating concentration-dependent diffusion using a mobility coefficient and thermodynamic factor. Results demonstrate that fluorinated gases exhibit strong affinity to fluorinated and high free-volume polymers, and that solubility is primarily governed by gas condensability, molecular size, and polymer structure. The combined EoS–STM approach accurately predicts both solubility and permeability across different pressures in all polymers, including SILM. The thorough study of HFC transport in polymer membranes provided both systematic insights and predictive capabilities to guide the design of next-generation materials for refrigerant recovery and low-GWP separation processes. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Graphical abstract

Back to TopTop