Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (770)

Search Parameters:
Keywords = analog format

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
54 pages, 3027 KB  
Article
Numerical Analysis of Aerodynamics and Aeroacoustics in Heterogeneous Vehicle Platoons: Impacts on Fuel Consumption and Environmental Emissions
by Wojciech Bronisław Ciesielka and Władysław Marek Hamiga
Energies 2025, 18(19), 5275; https://doi.org/10.3390/en18195275 - 4 Oct 2025
Viewed by 236
Abstract
The systematic economic development of European Union member states has resulted in a dynamic increase in road transport, accompanied by adverse environmental impacts. Consequently, research efforts have focused on identifying technical solutions to reduce fuel and/or energy consumption. One promising approach involves the [...] Read more.
The systematic economic development of European Union member states has resulted in a dynamic increase in road transport, accompanied by adverse environmental impacts. Consequently, research efforts have focused on identifying technical solutions to reduce fuel and/or energy consumption. One promising approach involves the formation of homogeneous and heterogeneous vehicle platoons. This study presents the results of numerical simulations and analyses of aerodynamic and aeroacoustic phenomena generated by heterogeneous vehicle platoons composed of passenger cars, delivery vans, and trucks. A total of 54 numerical models were developed in various configurations, considering three vehicle speeds and three inter-vehicle distances. The analysis was conducted using Computational Fluid Dynamics (CFD) methods with the following two turbulence models: the k–ω Shear Stress Transport (SST) model and Large Eddy Simulation (LES), combined with the Ffowcs Williams–Hawkings acoustic analogy to determine sound pressure levels. Verification calculations were performed using methods dedicated to environmental noise analysis, supplemented by acoustic field measurements. The results conclusively demonstrate that vehicle movement in specific platoon configurations can lead to significant fuel and/or energy savings, as well as reductions in harmful emissions. This solution may be implemented in the future as an integral component of Intelligent Transportation Systems (ITSs) and Intelligent Environmental Management Systems (IEMSs). Full article
20 pages, 9190 KB  
Article
Nanostructured K- and Na-Substituted Aluminosilicates for Ni(II) Ions Removal from Liquid Media: Assessment of Sorption Performance and Mechanism
by Ekaterina Nekhludova, Nikita Ivanov, Sofia Yarusova, Oleg Shichalin, Yulia Parotkina, Alexander Karabtsov, Vitaly Mayorov, Natalya Ivanenko, Kirill Barkhudarov, Viktoriya Provatorova, Viktoriya Rinchinova, Vladimir Afonchenko, Sergei Savin, Vasilii Ivanovich Nemtinov, Anton Shurygin, Pavel Gordienko and Eugeniy Papynov
J. Compos. Sci. 2025, 9(10), 530; https://doi.org/10.3390/jcs9100530 - 1 Oct 2025
Viewed by 296
Abstract
The removal of nickel from industrial wastewater necessitates efficient sorbent materials. This study investigates nanostructured potassium- and sodium-substituted aluminosilicate-based nanocomposites for this application. Materials were synthesized and characterized using SEM-EDS, XPS, XRD, FTIR, low temperature N2 adsorption–desorption and Ni2+ adsorption experiments. [...] Read more.
The removal of nickel from industrial wastewater necessitates efficient sorbent materials. This study investigates nanostructured potassium- and sodium-substituted aluminosilicate-based nanocomposites for this application. Materials were synthesized and characterized using SEM-EDS, XPS, XRD, FTIR, low temperature N2 adsorption–desorption and Ni2+ adsorption experiments. SEM and XRD confirmed an X-ray amorphous structure attributable to fine crystallite size. The sodium-substituted material Na2Al2Si2O8 exhibited the lowest specific surface area (48.3 m2/g) among the tested composites. However, it demonstrated the highest Ni(II) sorption capacity (64.6 mg/g, 1.1 mmol/g) and the most favorable sorption kinetics, as indicated by a Morris-Weber coefficient of 0.067 ± 0.008 mmol/(g·min1/2). Potassium-substituted analogs with higher Si/Al ratios showed increased surface area but reduced capacity. Analysis by XPS and SEM-EDS established that Ni(II) uptake occurs through a complex mechanism, involving ion exchange, surface complexation, and chemisorption resulting in the formation of new nickel-containing composite surface phases. The results indicate that optimal sorption performance for Ni(II) is achieved with sodium-based aluminosilicates at a low Si/Al ratio (Si/Al = 1). The functional characteristics of Na2Al2Si2O8 compare favorably with other silicate-based sorbents, suggesting its potential utility for wastewater treatment. Further investigation is needed to elucidate the precise local coordination environment of the adsorbed nickel. Full article
(This article belongs to the Section Nanocomposites)
Show Figures

Figure 1

17 pages, 1627 KB  
Article
Synthetic Routes to, Stabilities and Transformations of, and Characterization of (Carbamoyl)disulfanyl Chlorides and Related Compounds1,2
by Phillip T. Goldblatt, Tracy R. Thompson, William W. Brennessel, Thomas G. Smith, Alex M. Schrader, Erik S. Goebel, Madeleine J. Henley, Alex Lovstedt, Victor G. Young and George Barany
Molecules 2025, 30(19), 3892; https://doi.org/10.3390/molecules30193892 - 26 Sep 2025
Viewed by 283
Abstract
Previously unobserved (carbamoyl)disulfanyl chlorides were prepared by (i) addition of limiting aromatic secondary amine to (chlorocarbonyl)disulfanyl chloride; (ii) Harris reactions of sulfur dichloride with appropriate O-alkyl N-methyl-N-arylthiocarbamates; and (iii) regiospecific chlorolysis of bis(N-methyl-N-arylcarbamoyl)disulfanes. The newly [...] Read more.
Previously unobserved (carbamoyl)disulfanyl chlorides were prepared by (i) addition of limiting aromatic secondary amine to (chlorocarbonyl)disulfanyl chloride; (ii) Harris reactions of sulfur dichloride with appropriate O-alkyl N-methyl-N-arylthiocarbamates; and (iii) regiospecific chlorolysis of bis(N-methyl-N-arylcarbamoyl)disulfanes. The newly synthesized unstable species were observed in situ by 1H NMR and were trapped with alkenes, thiocarbamates, and thiols using methods precedented by the chemistry of analogous (carbamoyl)sulfenyl chlorides. Furthermore, each of the trapped products was synthesized by an alternate route, reinforcing conclusions about their structures. While (N-methyl-N-phenylcarbamoyl)disulfanyl chloride was unstable and decomposed quickly or cyclized intramolecularly, introduction of the N,2,6-trimethylphenyl moiety led to significantly improved stability. As part of this study, an interesting, unexpectedly stable 1,2,4-dithiazinone was discovered and its structure was established by X-ray crystallography. The new heterocycle, with its twisted out-of-plane disulfide bond in a six-membered ring, readily donated a sulfur atom to triphenylphosphine; this reaction resulted in the formation of triphenylphosphine sulfide, along with the corresponding highly stable heterocycle in which the single sulfur that remains is part of a planar five-membered ring, fused to a co-planar aryl moiety. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

20 pages, 5964 KB  
Article
Synthesis and Characterization of Bioactive Coatings with Bone Regeneration Potential and Anti-Resorptive Effect
by Maxim V. Maximov, Lea Sleiman, Oana Cristina Maximov, Roxana Doina Trușcă, Ludmila Motelica, Angela Spoială, Denisa Ficai, Anton Ficai and Sorina Dinescu
Coatings 2025, 15(10), 1120; https://doi.org/10.3390/coatings15101120 - 26 Sep 2025
Viewed by 348
Abstract
Bioactive coatings are of great interest for orthopedic applications, as they combine mechanical stability with biological functionality. In this study, stainless steel discs were coated with 45S5 bioactive glass doped with 1.0 wt% samarium by spin coating, followed by surface functionalization with benfotiamine [...] Read more.
Bioactive coatings are of great interest for orthopedic applications, as they combine mechanical stability with biological functionality. In this study, stainless steel discs were coated with 45S5 bioactive glass doped with 1.0 wt% samarium by spin coating, followed by surface functionalization with benfotiamine through spraying. This strategy integrates three components: a metallic substrate as a stable and inexpensive support, a bioactive glass layer with well-known osteogenic potential, and a superficial organic layer of benfotiamine, a lipid-soluble analog of vitamin B1 with higher bioavailability. Samarium doping was selected based on previously reported antimicrobial potential against clinically relevant staphylococci, while the rationale for benfotiamine functionalization derives from literature describing vitamin B1 derivatives with anti-resorptive and osteogenic activity. The coatings were characterized by scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) microscopy. Bioactivity was assessed by immersion in simulated body fluid (SBF), where phosphate bands indicated the formation of calcium phosphate phases (CaPs). Wettability tests showed a reduced contact angle after benfotiamine functionalization. Cytocompatibility was evaluated by LDH and MTT assays with MC3T3-E1 cells, suggesting overall biocompatibility and enhanced cell viability after 7 days for the benfotiamine-functionalized coatings. The present findings support a simple and cost-effective route to multifunctional coatings with potential relevance for future orthopedic applications. Full article
(This article belongs to the Special Issue Films and Coatings with Biomedical Applications)
Show Figures

Figure 1

18 pages, 343 KB  
Article
Between Confucianism and Christianity: Epistemological and Syncretic Challenges in Constructing a Chinese Catholic Educational Discourse
by Andrea Porcarelli and Yao Liu
Religions 2025, 16(10), 1220; https://doi.org/10.3390/rel16101220 - 23 Sep 2025
Viewed by 553
Abstract
The relationship between Confucianism and Catholicism in contemporary Chinese Catholic educational settings is marked not only by significant cultural and philosophical differences, but also by profound analogies that open promising avenues for dialogue and mutual enrichment. Drawing on dialogical-interpretive methodology grounded in hermeneutic [...] Read more.
The relationship between Confucianism and Catholicism in contemporary Chinese Catholic educational settings is marked not only by significant cultural and philosophical differences, but also by profound analogies that open promising avenues for dialogue and mutual enrichment. Drawing on dialogical-interpretive methodology grounded in hermeneutic philosophy, the study explores core ontological and pedagogical concepts in both traditions. Confucianism conceives education as the ethical cultivation of virtue in alignment with cosmic and relational harmony, while Catholic pedagogy emphasizes the integral formation of the person in freedom, responsibility, and relationship with a personal God. Despite theological differences, both systems prioritize moral development, teacher exemplarity, and holistic human growth. The analysis proposes a critical pathway for creative inculturation, whereby Confucian relational ethics, contemplative practices, and communal sensibilities enrich Catholic educational practice without compromising doctrinal integrity. Such engagement contributes to the construction of a spiritually grounded, interculturally aware pedagogy responsive to pluralistic religious contexts. Full article
30 pages, 2555 KB  
Article
Developing Critical Success Factors (CSF) for Integrating Building Information Models (BIM) into Facility Management Systems (FMS)
by Ahmad Mohammad Ahmad, Shimaa Basheir Abdelkarim, Mohamed Adalbi, Rowaida Elnahhas and Khalid Naji
Buildings 2025, 15(19), 3434; https://doi.org/10.3390/buildings15193434 - 23 Sep 2025
Viewed by 418
Abstract
Current practices in the construction industry could negatively affect the long lifecycle of building management due to the lack of information and stakeholder management. The purpose of this paper is to identify the critical success factors (CSFs) of integrating BIM models into facility [...] Read more.
Current practices in the construction industry could negatively affect the long lifecycle of building management due to the lack of information and stakeholder management. The purpose of this paper is to identify the critical success factors (CSFs) of integrating BIM models into facility management systems (FMS). This paper conducted a series of semi-structured interviews with industry experts in the FM sector. It used a structured questionnaire to identify the hierarchy arrangement of the identified CSFs using statistical analogies. The findings demonstrated a robust consistency with significant correlation, alongside a strong correlation established using Spearman’s rank correlation coefficient and strong agreement using Kendall coefficient. Additionally, the Relative Importance Index (RII) was employed to prioritize factors according to the professionals’ assessments, yielding the subsequent impact ranking: (1) define the OIR, AIR, and FM information requirements; (2) acquire correct files, data, and formats; and (3) update of information requirements during the defect liability period (DLP). These findings would help in assisting the management of information during FM operations by establishing clear guidelines to be added into the EIR in the early project initiation stages for a successful integration of BIM-FMS for more efficient life cycle management, operation, and maintenance by the FM. Full article
Show Figures

Figure 1

30 pages, 12036 KB  
Article
Comparative Studies of Physics- and Machine Learning-Based Wave Buoy Analogy Models Under Various Ship Operating Conditions
by Jae-Hoon Lee, Donghyeong Ko and Ju-Hyuck Choi
J. Mar. Sci. Eng. 2025, 13(9), 1823; https://doi.org/10.3390/jmse13091823 - 20 Sep 2025
Viewed by 347
Abstract
This study presents a comparative analysis of wave buoy analogy models for sea state estimation. A nonparametric, response amplitude operator-based model is introduced as a physics-based approach, while a convolutional neural network is adopted as a machine learning approach. Using time-domain simulation data [...] Read more.
This study presents a comparative analysis of wave buoy analogy models for sea state estimation. A nonparametric, response amplitude operator-based model is introduced as a physics-based approach, while a convolutional neural network is adopted as a machine learning approach. Using time-domain simulation data of wave-induced ship motions under various operating conditions, the accuracy and reliability of each model’s estimation are evaluated. The sensitivity of the physics-based model to operating conditions is examined, along with optimization strategies such as hyperparameter tuning. In particular, regularization techniques based on bilinear and B-spline surface fitting are applied to the nonparametric model, and the effects of interpolation techniques on model performance are assessed. For the machine learning model, a parametric study is conducted to determine input data types and formats, including time series and spectral representations, as well as the required length of the time window and dataset volume. Finally, the feasibility of the proposed neural network in estimating not only sea state parameters but also loading and navigational information, such as ship speed and GM, is discussed. Full article
(This article belongs to the Special Issue Machine Learning for Prediction of Ship Motion)
Show Figures

Figure 1

21 pages, 3844 KB  
Article
Modelling Water Hammer Effects in Rising Pipeline Systems Using the PKP Method and the MOC
by Waldemar Sradomski, Aneta Nycz and Marek Skowroński
Energies 2025, 18(18), 5005; https://doi.org/10.3390/en18185005 - 20 Sep 2025
Viewed by 466
Abstract
Water hammer is a critical transient phenomenon in pumping systems, occurring when a sudden change in flow velocity generates pressure waves propagating along the pipeline. This study focuses on the dynamic response of a long rising pipeline subjected to an emergency pump shutdown, [...] Read more.
Water hammer is a critical transient phenomenon in pumping systems, occurring when a sudden change in flow velocity generates pressure waves propagating along the pipeline. This study focuses on the dynamic response of a long rising pipeline subjected to an emergency pump shutdown, with particular emphasis on the sudden release and propagation of hydraulic energy in the form of pressure waves. Such scenarios are typical for mine dewatering and water supply systems with high elevation differences. Two numerical approaches were investigated: the Method of Characteristics (MOC) implemented in TSNet as a reference model, and the Train Analogy Method (PKP) implemented in MATLAB R2024b/Simulink, where the fluid is represented as discrete masses connected by elastic links, enabling the inclusion of pump and motor dynamics. Simulations were performed for two configurations: first–with a check valve installed only at the pump discharge and second–with a check valve at the pump discharge and in the middle of the pipeline. The results demonstrate that both models capture the essential features of water hammer: a sharp initial pressure drop, the formation of transient waves, and pressure oscillations with decreasing amplitude. These oscillations reflect the propagation and gradual dissipation of hydraulic energy stored in the moving fluid, primarily due to frictional and elastic effects within the pipeline. The presence of a check valve accelerates the attenuation of oscillations, effectively reducing the impact of returning waves on the downstream pipeline. The novelty of this study lies in the use of the PKP method to simulate transient flow and energy exchange in long rising pipelines with dynamic pump behavior. The method offers a physically intuitive and modular approach that enables the modelling of local flow phenomena, pressure wave propagation, and system components such as pump–motor inertia and check valves. This makes PKP a valuable tool for investigating complex water hammer scenarios, as it enables the analysis of pressure wave propagation and damping, providing insight into the scale and evolution of energy released during sudden operational incidents, such as an emergency pump shutdown. The close agreement between the PKP and MOC results confirms that the PKP method implemented in Simulink is a reliable tool for predicting transient pressure behavior in hydraulic installations and supports its use for further validation and dynamic system analysis. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

23 pages, 7000 KB  
Article
Frog Skin Antimicrobial Peptide 3-13 and Its Analogs Alleviate Atherosclerosis Cholesterol Accumulation in Foam Cells via PPARγ Signaling Pathway
by Xue-Feng Yang, Zi-Meng Hao, Xin-Yu Cui, Wan-Qi Liu, Meng-Miao Li and De-Jing Shang
Cells 2025, 14(18), 1470; https://doi.org/10.3390/cells14181470 - 19 Sep 2025
Viewed by 676
Abstract
Atherosclerosis (AS), a major contributor to cardiovascular disease, hypertension, and stroke, is associated with significant morbidity and mortality. Antimicrobial peptides (AMPs) 3-13, W3R6, and chensinin-1b were engineered based on the sequence of chensinin-1, originally isolated from the skin secretion of Rana chensinensis. [...] Read more.
Atherosclerosis (AS), a major contributor to cardiovascular disease, hypertension, and stroke, is associated with significant morbidity and mortality. Antimicrobial peptides (AMPs) 3-13, W3R6, and chensinin-1b were engineered based on the sequence of chensinin-1, originally isolated from the skin secretion of Rana chensinensis. This study investigated their therapeutic potential in ApoE-/- AS mice and THP-1-derived foam cells, focusing on the regulation of cholesterol metabolism. AMP 3-13 markedly reduced body weight gain, aortic root plaque formation, and plasma cholesterol levels in ApoE-/- mice. Transcriptomic analysis revealed that AMP 3-13 significantly altered gene expression related to cholesterol metabolism and the PPAR signaling pathway. Specifically, AMP 3-13 upregulated PPARγ, ABCA1, and ABCG1, while downregulating CD36 in aortic root plaques. In THP-1-derived foam cells, AMP 3-13 and its analogs activated the PPARγ–ABCA1/ABCG1 axis, enhancing cholesterol efflux. Concurrently, they inhibited CD36 expression by competing with PPARγ for promoter binding, thereby reducing ox-LDL uptake. These findings suggested that AMP 3-13 and its analogs represented promising therapeutic agents for AS through their ability to reduce cholesterol accumulation in foam cell. Full article
Show Figures

Figure 1

36 pages, 17646 KB  
Article
Multifractal Characteristics of Heterogeneous Pore-Throat Structure and Insight into Differential Fluid Movability of Saline-Lacustrine Mixed Shale-Oil Reservoirs
by Wei Yang, Ming Xie, Haodong Hou, Zhenxue Jiang, Yan Song, Shujing Bao, Yingyan Li, Yang Gao, Shouchang Peng, Ke Miao and Weihao Sun
Fractal Fract. 2025, 9(9), 604; https://doi.org/10.3390/fractalfract9090604 - 18 Sep 2025
Viewed by 376
Abstract
The root causes forcing the differential pore-throat performances and crude oil recoverability in heterogeneous shale lithofacies of saline-lacustrine fine-grained mixed sedimentary sequences are still debated. Especially application cases of fractal theory in characterizing pore-throat heterogeneity are still lacking and the significance of differential [...] Read more.
The root causes forcing the differential pore-throat performances and crude oil recoverability in heterogeneous shale lithofacies of saline-lacustrine fine-grained mixed sedimentary sequences are still debated. Especially application cases of fractal theory in characterizing pore-throat heterogeneity are still lacking and the significance of differential multifractal distribution patterns on reservoir assessment remains controversial. This present study focuses on the shale-oil reservoirs in saline-lacustrine fine-grained mixed depositional sequences of the Middle Permian Lucaogou Formation (southern Junggar Basin, NW China), and presents a set of new results from petrographical investigation, field-emission scanning electron microscopy (FE-SEM) imaging, fluid injection experiments (low-pressure N2 adsorption and high-pressure mercury intrusion porosimetry (HMIP)), nuclear magnetic resonance (NMR) spectroscopy and T1-T2 mapping, directional spontaneous imbibition, as well as contact angle measurements. Our results demonstrated that the investigated lithofacies are mainly divided into a total of five lithofacies categories: felsic siltstones, sandy dolomitic sandstones, dolarenites, micritic dolomites, and dolomitic mudstones, respectively. More importantly, the felsic siltstone and sandy dolomitic siltstones can be identified as the most advantageous lithofacies categories exhibiting the strongest movable oil-bearing capacity owing to an acceptable complexity and heterogeneity of mesopore-throat structures, as evidenced by the corresponding moderate fractal dimension of mesopores (D2) from HMIP and apparently lower fractal dimension of movable fluids’ pores (D2) from NMR results. Particularly noteworthy is the relatively poor shale-oil movability recognized in the dolarenites, micritic dolomites, and dolomitic mudstones due to heterogeneous and unfavorable pore-throat systems, even though an acceptable micro-connectivity and a more oleophilic interfacial wettability prevails in crucial dolomitic components. Finally, a comprehensive and conceptual model is established for an effective and characteristic parameter system for assessing differential reservoir petrophysical properties, interfacial wettability, and shale-oil movability concerning heterogeneous lithofacies categories. Our achievements can serve as an analog for investigating saline-lacustrine mixed shale-oil reservoirs to gain a more comprehensive understanding of differential recoverability of dessert reservoir intervals, and to guide the assessment of “sweet spots” distribution and optimization of engineering technique schemes for commercial exploitation. Full article
(This article belongs to the Special Issue Analysis of Geological Pore Structure Based on Fractal Theory)
Show Figures

Figure 1

14 pages, 2239 KB  
Article
Mutations and Recombination at G4 DNA-Forming Sequences Exacerbated by CPT-Resistant Mutant Topoisomerase 1 Is Dependent on SUMOylation
by Shivani Singh, Xinji Zhu and Nayun Kim
Int. J. Mol. Sci. 2025, 26(18), 9017; https://doi.org/10.3390/ijms26189017 - 16 Sep 2025
Viewed by 303
Abstract
Topoisomerase 1 (Top1) removes transcription-related helical torsions and thus plays an important role in preventing genome instability instigated by the formation of non-canonical DNA secondary structures. The genetically tractable Saccharomyces cerevisiae model proved effective in defining the critical function of Top1 to prevent [...] Read more.
Topoisomerase 1 (Top1) removes transcription-related helical torsions and thus plays an important role in preventing genome instability instigated by the formation of non-canonical DNA secondary structures. The genetically tractable Saccharomyces cerevisiae model proved effective in defining the critical function of Top1 to prevent recombination and chromosomal rearrangement at G4-forming genomic loci and studying the human cancer-associated Top1 mutants through the expression of analogous yeast mutants. We previously showed that cleavage-defective Top1 mutants strongly elevate the rate of recombination at G4 DNA, which involves binding to G4 DNA and interaction with the protein nucleolin (Nsr1 in yeast). Here, we further explored the mechanism of genome instability induced by the yeast Top1Y740* mutant, analogous to the human Top1W765Stop mutant conferring resistance to CPT. We show that yTop1Y740* elevates duplications as well as recombination specifically at G4-forming sequences. Interestingly, SUMOylation of yTop1Y740*, which does not affect the G4 DNA-binding or Nsr1-interaction by this mutant, is necessary for such elevated G4-specific genome instability. Many tumors with mutations at the C-terminal residues of Top1, particularly W765, have significantly high G4-associated mutations, underscoring the importance of further investigation into how SUMOylation affects the function of these Top1 mutants at G4 DNA. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

14 pages, 5731 KB  
Article
Challenges and Strategies in Modeling Thin-Bedded Carbonate Reservoirs Based on Horizontal Well Data: A Case Study of Oilfield A in the Middle East
by Dawang Liu, Xinmin Song, Wenqi Zhang, Jingyi Wang, Yuning Wang, Ya Deng and Min Gao
Processes 2025, 13(9), 2951; https://doi.org/10.3390/pr13092951 - 16 Sep 2025
Viewed by 329
Abstract
Thin-bedded carbonate reservoirs face significant challenges in characterization and development due to their thin formation thickness, strong interlayer heterogeneity, and rapid sedimentary transformation. In recent years, horizontal wells have played an increasingly important role in improving the productivity of thin-bedded carbonate reservoirs. However, [...] Read more.
Thin-bedded carbonate reservoirs face significant challenges in characterization and development due to their thin formation thickness, strong interlayer heterogeneity, and rapid sedimentary transformation. In recent years, horizontal wells have played an increasingly important role in improving the productivity of thin-bedded carbonate reservoirs. However, building accurate geological models from horizontal well data is a major challenge for geoscientists. Using Middle East Oilfield A as a case study, this paper analyzes the specific challenges of horizontal well geomodeling and proposes a dedicated strategy for integrating horizontal well-derived constraints into the geological modeling workflow. To address the challenges of structural modeling constrained by horizontal well data, this study proposes three methodologies: stratigraphic layer iteration, virtual control point generation, and localized grid refinement. These techniques collectively enable the construction of a higher-fidelity structural framework that rigorously honors hard well data constraints while incorporating geological plausibility. To address the challenges posed by the spatial configuration of vertical and horizontal wells and the dominant trajectory patterns of horizontal wells, this study introduces two complementary approaches: the exclusion of horizontal well section data (relying solely on vertical wells) and the selective extraction of representative horizontal well section data for variogram derivation. These methods collectively enable the construction of a geologically realistic reservoir model that accurately captures the spatial distribution of reservoir properties. These methodologies not only effectively leverage the rich geological information from horizontal wells but also mitigate spatial clustering effects inherent to such data. Validation through development well production data confirms robust performance, providing transferable insights for reservoir characterization in analogous fields worldwide. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

24 pages, 4301 KB  
Article
Investigating SMR Peptide Interactions with Breast Cancer-Associated Proteins
by Ming-Bo Huang, Purushottam B. Tiwari, Aykut Üren, Martin N. Shelton, Dara Brena, Jennifer Y. Wu, Mahfuz B. Khan, Michael D. Powell, Jonathan K. Stiles, Erica L. Johnson, Fengxia Yan, Lily Yang and Vincent C. Bond
Int. J. Mol. Sci. 2025, 26(18), 8848; https://doi.org/10.3390/ijms26188848 - 11 Sep 2025
Viewed by 468
Abstract
Breast cancer (BC) is a major cause of cancer-related mortality. Mortalin and Vimentin—two proteins implicated in BC progression and metastasis—have been identified as binding partners of the Secretion Modification Region (SMR) peptide from the HIV Nef protein. These interactions disrupt exosome release and [...] Read more.
Breast cancer (BC) is a major cause of cancer-related mortality. Mortalin and Vimentin—two proteins implicated in BC progression and metastasis—have been identified as binding partners of the Secretion Modification Region (SMR) peptide from the HIV Nef protein. These interactions disrupt exosome release and offer novel therapeutic strategies. This study investigates the binding interactions between the SMR peptide, Mortalin, and Vimentin using surface plasmon resonance (SPR), co-immunoprecipitation (Co-IP), and Western blot assays. We also map the SMR binding sites on Mortalin through scanning peptide mapping and then identify a similar site on the Vimentin protein. Based on these data, we propose that the SMR peptide and its analogs interact with specific amino acid sequences in Mortalin and Vimentin, thereby disrupting cellular processes essential for Epithelial–Mesenchymal Transition (EMT) and tumor progression. SPR analysis revealed that the Nef protein exhibited the highest binding affinity to Vimentin (KD = 0.75 ± 1.1 nM) and Mortalin (KD = 3.16 ± 0.03 nM). The SMRwt peptide also demonstrated direct binding to both proteins with micromolar affinities (KD = 6.63 ± 0.74 µM for Vimentin; KD = 20.73 ± 2.33 µM for Mortalin), though the binding affinity was weaker than the full Nef protein. Co-IP experiments using MDA-MB-231, MCF-7, and BT474 BC cell lines confirmed that SMRwt, but not SMRmut, co-immunoprecipitated with Mortalin. Western blot analysis validated these interactions. Further, Mortalin peptide #56, derived from the substrate-binding domain, did not bind the SMR domain or inhibit Nef function. In contrast, peptides #61 and #62 from the C-terminal domain of Mortalin bound the SMR domain and effectively inhibited Nef activity. Notably, Mortalin peptide #61 inhibited SMRwt binding to both Mortalin and Vimentin, disrupting complex formation on the SPR sensor chip. These findings suggest that specific Mortalin-derived peptides can block SMR interactions, offering a potential therapeutic mechanism. Full article
(This article belongs to the Special Issue Molecular Research and Treatment of Breast Cancer: 3rd Edition)
Show Figures

Figure 1

22 pages, 2196 KB  
Review
Lysine: Sources, Metabolism, Physiological Importance, and Use as a Supplement
by Milan Holeček
Int. J. Mol. Sci. 2025, 26(18), 8791; https://doi.org/10.3390/ijms26188791 - 9 Sep 2025
Viewed by 1677
Abstract
This article provides a comprehensive review and explores the gaps in current knowledge of lysine metabolism in humans and its potential nutritional and therapeutic indications. The first part of this study examines lysine sources, requirements, transport through the plasma membrane, lysine catabolism, and [...] Read more.
This article provides a comprehensive review and explores the gaps in current knowledge of lysine metabolism in humans and its potential nutritional and therapeutic indications. The first part of this study examines lysine sources, requirements, transport through the plasma membrane, lysine catabolism, and its disorders. The central part is focused on post-translational modifications of lysine in proteins, primarily desmosine formation in elastin, hydroxylation in collagen, covalent bonds with glutamine, methylation, ubiquitination, sumoylation, neddylation, acylation, lactylation, carbamylation, and glycation. Special sections are devoted to using lysine as a substrate for homoarginine and carnitine synthesis and in nutrition and medicine. It is concluded that the identification and detailed knowledge of writers, readers, and erasers of specific post-translational modifications of lysine residues in proteins is needed for a better understanding of the role of lysine in epigenetic regulation. Further research is required to explore the influence of lysine availability on homoarginine formation and how the phenomenon of lysine–arginine antagonism can be used to influence immune and cardiovascular functions and cancer development. Of unique importance is the investigation of the use of lysine in osteoporosis therapy and in reducing the resorption of harmful substances in the kidneys, as well as the therapeutic potential of polylysine and lysine analogs. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Figure 1

53 pages, 8754 KB  
Review
Multi-Branch Towed Array System: Systematic Analysis of Modeling Methods, Environmental Responses and Mechanical Properties in Fracture Analysis
by Jin Yan, Kefan Yang, Shengqing Zeng, Keqi Yang, Dapeng Zhang and Keqiang Zhu
J. Mar. Sci. Eng. 2025, 13(9), 1697; https://doi.org/10.3390/jmse13091697 - 2 Sep 2025
Viewed by 603
Abstract
Multi-branch towed array systems are an important component of subsea information collection, which is increasingly required for subsea pipeline laying and offshore platform construction as ocean energy is exploited. However, the complexity of underwater conditions poses challenges for marine towing systems when collecting [...] Read more.
Multi-branch towed array systems are an important component of subsea information collection, which is increasingly required for subsea pipeline laying and offshore platform construction as ocean energy is exploited. However, the complexity of underwater conditions poses challenges for marine towing systems when collecting information, including the possibility of towing cable collisions with protruding seabed or submerged organisms during towing system travel, or towing cable interactions during torsion. These collisions can affect and interfere with the collection of information by the towing system, and can cause damage to the towing system or even cause the towing cable to break. After the failure and detachment of the outboard guide cable of a multi-branch towing cable array, the formation of the towing system changes, and these changes are complex and related to the prevailing sea state. To study the important condition of the damaged towing system, this paper draws an analogy between the towing system and the trawl net, and speculates the formation change and mechanical response of the multi-branch towed array system after damage by combining the influencing factors of the deployment of the towing system. Full article
Show Figures

Figure 1

Back to TopTop