Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = angular and perpendicular rapidities

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2100 KiB  
Article
Special Relativity in Terms of Hyperbolic Functions with Coupled Parameters in 3+1 Dimensions
by Nikolai S. Akintsov, Artem P. Nevecheria, Gennadii F. Kopytov, Yongjie Yang and Tun Cao
Symmetry 2024, 16(3), 357; https://doi.org/10.3390/sym16030357 - 15 Mar 2024
Cited by 5 | Viewed by 1928
Abstract
This paper presents a method for parameterizing new Lorentz spacetime coordinates based on coupled parameters. The role of symmetry in rapidity in special relativity is explored, and invariance is obtained for new spacetime intervals with respect to the Lorentz transformation. Using the Euler–Hamilton [...] Read more.
This paper presents a method for parameterizing new Lorentz spacetime coordinates based on coupled parameters. The role of symmetry in rapidity in special relativity is explored, and invariance is obtained for new spacetime intervals with respect to the Lorentz transformation. Using the Euler–Hamilton equations, an additional angular rapidity and perpendicular rapidity are obtained, and the Hamiltonian and Lagrangian of a relativistic particle are expanded into rapidity spectra. A so-called passage to the limit is introduced that makes it possible to decompose physical quantities into spectra in terms of elementary functions when explicit decomposition is difficult. New rapidity-dependent Lorentz spacetime coordinates are obtained. The descriptions of particle motion using the old and new Lorentz spacetime coordinates as applied to plane laser pulses are compared in terms of the particle kinetic energy. Based on a classical model of particle motion in the field of a plane monochromatic electromagnetic wave and that of a plane laser pulse, rapidity-dependent spectral decompositions into elementary functions are presented, and the Euler–Hamilton equations are derived as rapidity functions in 3+1 dimensions. The new and old Lorentz spacetime coordinates are compared with the Fermi spacetime coordinates. The proper Lorentz groups SO(1,3) with coupled parameters using the old and new Lorentz spacetime coordinates are also compared. As a special case, the application of Lorentz spacetime coordinates to a relativistic hydrodynamic system with coupled parameters in 1+1 dimensions is demonstrated. Full article
(This article belongs to the Special Issue Lorentz Symmetry and General Relativity)
Show Figures

Figure 1

24 pages, 15369 KiB  
Article
Simultaneous Trajectory and Speed Planning for Autonomous Vehicles Considering Maneuver Variants
by Maksym Diachuk and Said M. Easa
Appl. Sci. 2024, 14(4), 1579; https://doi.org/10.3390/app14041579 - 16 Feb 2024
Viewed by 1244
Abstract
The paper presents a technique of motion planning for autonomous vehicles (AV) based on simultaneous trajectory and speed optimization. The method includes representing the trajectory by a finite element (FE), determining trajectory parameters in Frenet coordinates, composing a model of vehicle kinematics, defining [...] Read more.
The paper presents a technique of motion planning for autonomous vehicles (AV) based on simultaneous trajectory and speed optimization. The method includes representing the trajectory by a finite element (FE), determining trajectory parameters in Frenet coordinates, composing a model of vehicle kinematics, defining optimization criteria and a cost function, forming a set of constraints, and adapting the Gaussian N-point scheme for quadrature numerical integration. The study also defines a set of minimum optimization parameters sufficient for making motion predictions with smooth functions of the trajectory and speed. For this, piecewise functions with three degrees of freedom (DOF) in FE’s nodes are implemented. Therefore, the high differentiability of the trajectory and speed functions is ensured to obtain motion criteria such as linear and angular speeds, acceleration, and jerks used in the cost function and constraints. To form the AV roadway position, the Frenet coordinate system and two variable parameters are used: the reference path length and the lateral displacement perpendicular to reference line’s tangent. The trajectory shape, then, depends only on the final position of the AV’s mass center and the final reference’s curvature. The method uses geometric, kinematic, dynamic, and physical constraints, some of which are related to hard restrictions and some to soft restrictions. The planning technique involves parallel forecasting for several variants of the AV maneuver followed by selecting the one corresponding to a specified criterion. The sequential quadratic programming (SQP) technique is used to find the optimal solution. Graphs of trajectories, speeds, accelerations, jerks, and other parameters are presented based on the simulation results. Finally, the efficiency, rapidity, and prognosis quality are evaluated. Full article
(This article belongs to the Special Issue Intelligent Vehicles and Autonomous Driving)
Show Figures

Figure 1

19 pages, 3085 KiB  
Article
Study of Centrifugal Stiffening on the Free Vibrations and Dynamic Response of Offshore Wind Turbine Blades
by Amna Algolfat, Weizhuo Wang and Alhussein Albarbar
Energies 2022, 15(17), 6120; https://doi.org/10.3390/en15176120 - 23 Aug 2022
Cited by 14 | Viewed by 2879
Abstract
Due to their large and increasing size and the corrosive nature of salt water and high wind speeds, offshore wind turbines are required to be more robust, more rugged and more reliable than their onshore counterparts. The dynamic characteristics of the blade and [...] Read more.
Due to their large and increasing size and the corrosive nature of salt water and high wind speeds, offshore wind turbines are required to be more robust, more rugged and more reliable than their onshore counterparts. The dynamic characteristics of the blade and its response to applied forces may be influenced dramatically by rotor rotational speed, which may even threaten the stability of the wind turbine. An accurate and computationally efficient structural dynamics model is essential for offshore wind turbines. A comprehensive model that takes the centrifugal stiffening effect into consideration could make rapid and accurate decisions with live data sensed from the structure. Moreover, this can enhance both the performance and reliability of wind turbines. When a rotating blade deflects in its plane of rotation or perpendicular to it, the centrifugal force exerts an inertia force that increases the natural frequencies and changes the mode shapes, leading to changes in the dynamic response of the blade. However, in the previous literature, studies of centrifugal stiffening are rarely found. This study investigates the influence of centrifugal stiffening on the free vibrations and dynamic response of offshore wind turbine blades. The National Renewable Energy Laboratory (NREL) 5 MW blade benchmark was considered to study the effect of angular speed in the flap-wise and edge-wise directions. The results demonstrate that the angular speed directly affects the modal features, which directly impacts the dynamic response. The results also show that the angular velocity effect in the flap-wise direction is more significant than its effect in the edge-wise direction. Full article
Show Figures

Figure 1

Back to TopTop