Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (17,742)

Search Parameters:
Keywords = antibacterial

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 8693 KB  
Article
Formaldehyde Fumigation: Antibacterial Profile and Toxic Effects on Hatching Eggs
by Pedro Henrique Gomes de Sá Santos, Gabriel da Silva Oliveira, Liz de Albuquerque Cerqueira, José Luiz de Paula Rôlo Jivago, Susana Suely Rodrigues Milhomem Paixão, Márcio Botelho de Castro, Concepta McManus and Vinícius Machado dos Santos
Toxics 2025, 13(10), 851; https://doi.org/10.3390/toxics13100851 (registering DOI) - 9 Oct 2025
Abstract
Previous studies have linked formaldehyde (FA) fumigation to significant risks to animal health, highlighting, among other effects, its cytotoxic and genotoxic potential. Literature includes several studies on the use of FA for fumigating hatching eggs, but studies employing in-depth methodological approaches are scarce. [...] Read more.
Previous studies have linked formaldehyde (FA) fumigation to significant risks to animal health, highlighting, among other effects, its cytotoxic and genotoxic potential. Literature includes several studies on the use of FA for fumigating hatching eggs, but studies employing in-depth methodological approaches are scarce. As a result, the effects of practices involving this chemical remain insufficiently characterized. The present study aimed to investigate the antibacterial effects and potential toxicity resulting from the fumigation of hatching eggs with FA. The three FA concentrations (2.5, 5, and 10 g/m3) exhibit effective antibacterial activity, but this effect does not translate into long-term benefits. FA affected hatchability and demonstrated embryotoxic effects, with repercussions on chicks depending on the concentration used. The overall quality of poultry and the losses from eggs fumigated with FA remain questionable. Despite its efficacy as an egg fumigant, the observed toxicity suggests that its use violates safety standards and should be reconsidered. If its use cannot be avoided, the lowest possible concentrations should be prioritized to minimize toxic effects. Full article
Show Figures

Graphical abstract

24 pages, 3575 KB  
Article
Methylcellulose Bionanocomposite Films Incorporated with Zein Nanoparticles Containing Propolis and Curcumin for Functional Packaging
by Michael Ramos Nunes, Cleonice Gonçalves da Rosa, Gabriel Salvador, Sarah Cardoso de Oliveira Teixeira, Maria Clara Marinho da Costa, Aline da Rosa Almeida, Vanessa Valgas dos Santos, Ana Emília Siegloch, Fernando Domingo Zinger, Jaqueline Suave and Dachamir Hotza
Polysaccharides 2025, 6(4), 91; https://doi.org/10.3390/polysaccharides6040091 (registering DOI) - 9 Oct 2025
Abstract
The increasing demand for sustainable alternatives to non-biodegradable plastic packaging is driving the development of active packaging based on biopolymers such as methylcellulose. In this study, innovative methylcellulose nanocomposite films incorporating zein nanoparticles loaded with propolis and curcumin were developed for active packaging [...] Read more.
The increasing demand for sustainable alternatives to non-biodegradable plastic packaging is driving the development of active packaging based on biopolymers such as methylcellulose. In this study, innovative methylcellulose nanocomposite films incorporating zein nanoparticles loaded with propolis and curcumin were developed for active packaging applications. The zein nanoparticles revealed excellent physicochemical properties, with a zeta potential above 30 mV, suggesting adequate stability. Transmission electron microscopy confirmed nanoparticles containing curcumin and propolis with uniform sizes ranging from approximately 130 to 140 nm with low polydispersity. Release studies revealed that approximately 25% of the curcumin and 35% of the propolis were released from the nanoparticles within 24 h. The release mechanism was best described by the Korsmeyer–Peppas model, suggesting a sustained release profile. The nanoparticles reduced the hydrophobicity and rigidity of the films, as evidenced by a lower elastic modulus and higher percentage elongation, thereby suggesting greater flexibility. Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed the incorporation of bioactive compounds in the polymer matrix. Differential scanning calorimetry (DSC) revealed the thermal parameters of the synthesized films. Furthermore, the films exhibited antibacterial and antioxidant activities, making them highly suitable for use as biodegradable active packaging. Full article
21 pages, 3245 KB  
Article
Green Methodology for Producing Bioactive Nanocomposites of Mesoporous Silica Support for Silver and Gold Nanoparticles Against E. coli and S. aureus
by Una Stamenović, Dijana Mašojević, Maja Kokunešoski, Mojca Otoničar, Slađana Davidović, Srečo Škapin, Tanja Barudžija, Dejan Pjević, Tamara Minović Arsić and Vesna Vodnik
Technologies 2025, 13(10), 458; https://doi.org/10.3390/technologies13100458 (registering DOI) - 9 Oct 2025
Abstract
This study considered and compared silver, gold, and their combination of nanoparticles (AgNPs, AuNPs, and Au-AgNPs) with biocompatible material mesoporous silica SBA-15 as potential antibacterial agents. A facile, one-pot “green” methodology, utilizing L-histidine as a reducing agent and bridge between components, was employed [...] Read more.
This study considered and compared silver, gold, and their combination of nanoparticles (AgNPs, AuNPs, and Au-AgNPs) with biocompatible material mesoporous silica SBA-15 as potential antibacterial agents. A facile, one-pot “green” methodology, utilizing L-histidine as a reducing agent and bridge between components, was employed to obtain Ag@SBA-15, Au@SBA-15, and Au-Ag@SBA-15 nanocomposites without the use of external additives. Various physicochemical tools (UV-Vis, TEM, SAED, FESEM, XPS, BET, XRD, and FTIR) presented SBA-15 as a good carrier for spherical AgNPs, AuNPs, and Au-AgNPs with average diameters of 8.5, 16, and 9 nm, respectively. Antibacterial evaluations of Escherichia coli and Staphylococcus aureus showed that only Ag@SBA-15, at a very low Ag concentration (1 ppm) during 2 h of contact, completely reduced the growth (99.99%) of both strains, while the Au@SBA-15 nanocomposite required higher concentrations (5 ppm) and time (4 h) to reduce 99.98% E. coli and 94.54% S. aureus. However, Au introduction in Ag@SBA-15 to form Au-Ag@SBA-15 negatively affected its antibacterial potential, lowering it due to the galvanic replacement reaction. Nevertheless, the rapid and effective combating of two bacteria at low NPs concentrations, through the synergistic effects of mesoporous silica and AgNPs or AuNPs, in Ag@SBA-15 and Au@SBA-15 nanocomposites, provides a potential substitute for existing bacterial disinfectants. Full article
(This article belongs to the Section Environmental Technology)
19 pages, 3921 KB  
Article
Curcumin-Functionalized Ag and ZnO Nanoparticles: A Nanotherapeutic Approach for Treating Infections in Diabetic Wounds
by Mahboubeh Dolatyari, Parisa Rostami, Mahya Rostami, Ali Rostami and Hamit Mirtagioglu
Bioengineering 2025, 12(10), 1090; https://doi.org/10.3390/bioengineering12101090 - 9 Oct 2025
Abstract
Chronic wounds, such as diabetic ulcers, remain a significant clinical challenge due to high infection risk and delayed healing. This study presents a comprehensive evaluation of a novel wound dressing incorporating curcumin-functionalized silver–zinc oxide (Ag-ZnO) nanoparticles. The formulation was rationally designed based on [...] Read more.
Chronic wounds, such as diabetic ulcers, remain a significant clinical challenge due to high infection risk and delayed healing. This study presents a comprehensive evaluation of a novel wound dressing incorporating curcumin-functionalized silver–zinc oxide (Ag-ZnO) nanoparticles. The formulation was rationally designed based on molecular docking simulations that identified curcumin as a high-affinity ligand for Staphylococcus aureus Protein A. The synthesized nanoparticles demonstrated potent, broad-spectrum antibacterial activity, achieving complete inhibition of multidrug-resistant pathogens, including MRSA, within 60 s. A critical comparative assessment, incorporating an unloaded Ag-ZnO nanoparticle control group, was conducted in both a rabbit wound model and a randomized clinical trial (n = 75 patients). This design confirmed that the enhanced wound-healing efficacy is specifically attributable to the synergistic effect of curcumin combined with the nanoparticles. The curcumin-loaded Ag-ZnO treatment group showed a statistically significant reduction in healing time compared to both standard care and unloaded nanoparticle controls (e.g., medium wounds: 19.6 days vs. 90.6, p < 0.001). These findings demonstrate that curcumin-functionalized Ag-ZnO nanoparticles offer a safe and highly effective therapeutic strategy, providing robust antibacterial action and significantly accelerated wound healing. Full article
Show Figures

Graphical abstract

14 pages, 4433 KB  
Article
Saucerneol D Suppresses the Growth of Helicobacter pylori and Their Virulence Factors
by Su Man Kim, Hyun Jun Woo, Zhongduo Yang, Tiankun Zhao, Ji Yeong Yang and Sa-Hyun Kim
Curr. Issues Mol. Biol. 2025, 47(10), 828; https://doi.org/10.3390/cimb47100828 (registering DOI) - 9 Oct 2025
Abstract
Helicobacter pylori infects the human stomach and causes various gastrointestinal diseases. Saucerneol D is a type of lignan, which is a polyphenol compound that exists naturally in plants, and it is abundant in flaxseed, sesame seeds, whole grains, vegetables, and fruits. Saucerneol D [...] Read more.
Helicobacter pylori infects the human stomach and causes various gastrointestinal diseases. Saucerneol D is a type of lignan, which is a polyphenol compound that exists naturally in plants, and it is abundant in flaxseed, sesame seeds, whole grains, vegetables, and fruits. Saucerneol D is found in Saurus chinensis extract and has been reported to exert a variety of effects, such as antioxidant and anti-inflammatory abilities. However, its antibacterial effect against H. pylori has not been reported; therefore, we analyzed the effect of saucerneol D on H. pylori in the present study. Changes in the expression of pathogenic factors and gene transcription in H. pylori were observed after treatment with saucerneol D using Western blotting and RT-PCR. It was confirmed that saucerneol D suppressed the growth of H. pylori by decreasing the expression of the genes dnaN and polA, which are required for bacterial replication. Saucerneol D also reduced the secretion of the major pathogenic toxin protein, CagA, by downregulating the expression of type IV secretion system-composing proteins. Furthermore, saucerneol D reduced ammonia production by inhibiting the expression of urease proteins, which are essential for the survival of H. pylori in the acidic gastric environment. Additionally, saucerneol D decreased the expression of flaB, potentially reducing motility. Finally, it was confirmed that the expression of the sabA gene, associated with cell adhesion, was reduced. These results suggest that saucerneol D inhibits the growth of H. pylori and the expression of several pathogenic factors, indicating that saucerneol D has an antimicrobial effect against H. pylori. Full article
Show Figures

Graphical abstract

28 pages, 1420 KB  
Review
Ethnoveterinary Potential of Acacia (Vachellia and Senegalia) Species for Managing Livestock Health in Africa: From Traditional Uses to Therapeutic Applications
by Nokwethemba N. P. Msimango, Adeyemi O. Aremu, Stephen O. Amoo and Nqobile A. Masondo
Plants 2025, 14(19), 3107; https://doi.org/10.3390/plants14193107 - 9 Oct 2025
Abstract
In Africa, the folkloric practices involving plant-based remedies play a crucial role in livestock farming, often attributed to the limited access to modern veterinary services. The use of Acacia species (including those reclassified as Vachellia species) in ethnoveterinary medicine has garnered increasing interest [...] Read more.
In Africa, the folkloric practices involving plant-based remedies play a crucial role in livestock farming, often attributed to the limited access to modern veterinary services. The use of Acacia species (including those reclassified as Vachellia species) in ethnoveterinary medicine has garnered increasing interest due to their high protein content and medicinal (including anti-parasitic) properties, offering a sustainable source of fodder particularly in arid and semi-arid regions. However, scientific assessment of their efficacy and safety remains limited. This systematic review examines the ethnoveterinary uses, biological efficacy and safety of Acacia species across Africa. A literature search was conducted using PubMed, Google Scholar and Scopus, yielding 519 relevant studies published between 2001 and 2024. After applying the inclusion and exclusion criteria, 43 eligible studies were analyzed based on their relevance, geographical location and livestock disease applications. Plants of the World online database was used to validate the names of the species and authority. Ethiopia had the highest usage of Acacia species (25%), then Nigeria (20%) followed by both South Africa (15%) and Namibia (15%). Vachellia nilotica (Acacia nilotica) was the most frequently cited species (26.3%), followed by Vachellia karroo (Acacia karroo) (15.8%). Ethnobotanical records indicate that the different Acacia species have been traditionally used to treat conditions such as diarrhea, wound infections and complications such as retained placenta. Pharmacological studies corroborate the therapeutic benefits of Acacia species with evidence of their antimicrobial, anti-inflammatory, antioxidant and anthelmintic effects, though some toxicity concerns exist at high dosages. The systematic review revealed the efficacy and safety (to some extent) of Acacia species in livestock disease management, emphasizing their potential integration into veterinary medicine. However, the dearth of in vivo studies underscores the need for pre-clinical and clinical trials to establish safe and effective dosages for use in livestock. Full article
Show Figures

Figure 1

19 pages, 1370 KB  
Article
Screening of Basidiomycete Strains Capable of Synthesizing Antibacterial and Antifungal Metabolites
by Valeria Lysakova, Aleksey Streletskiy, Olga Sineva, Elena Isakova and Larissa Krasnopolskaya
Int. J. Mol. Sci. 2025, 26(19), 9802; https://doi.org/10.3390/ijms26199802 - 8 Oct 2025
Abstract
Recently, the search for new antimicrobial compounds, including the secondary metabolites of basidiomycetes, has become increasingly important. Representatives of this division of higher fungi have high biosynthetic abilities, which contributes to their use as producers. In this work, extracts of culture liquids and [...] Read more.
Recently, the search for new antimicrobial compounds, including the secondary metabolites of basidiomycetes, has become increasingly important. Representatives of this division of higher fungi have high biosynthetic abilities, which contributes to their use as producers. In this work, extracts of culture liquids and submerged mycelia from 18 strains representing three different orders of basidiomycetes were studied. For this purpose, the submerged cultivation of strains, extraction of biological material, and evaluation of the extract’s antimicrobial activity using the agar well diffusion method were carried out. The minimum inhibitory concentration was determined for extracts with strong activity. The most promising ones were analyzed using HPLC-MS. As a result, it was found that 16 strains contained antimicrobial metabolites. Thus, the strains selected for further work were Hericium corraloides 4, which showed not only the antibacterial but also antifungal activity of cultural liquid and submerged mycelia extracts, and Fomitopsis betulina 3, Fomitopsis pinicola 2, Hericium erinaceus 1, and Laetiporus sulphureus 4, whose cultural liquid extracts exhibited high antibacterial activity against Gram-positive and Gram-negative test cultures. For these strains, metabolic profiles were obtained using the method HPLC-MS. Using this method, two metabolites were preliminary identified: hericerin in H. erinaceus 1 and sulfureuine H in L. sulphureus 4. Full article
(This article belongs to the Special Issue Plant-Derived Bioactive Compounds for Pharmacological Applications)
Show Figures

Figure 1

17 pages, 2692 KB  
Article
Chemical Composition and Biological Activities of the Essential Oils from Different Parts of Rosa bracteata J.C.Wendl
by Shiyu Song, Yifang Chen, Hongrui Chen, Qinglei Han and Pengxiang Lai
Molecules 2025, 30(19), 4021; https://doi.org/10.3390/molecules30194021 - 8 Oct 2025
Abstract
Rosa bracteata J.C.Wendl. is a thorny, clump-forming or trailing perennial evergreen shrub native to China. The current analysis was designed to explore the chemical constituents and determine the in vitro antimicrobial, cytotoxic, and antioxidant properties of the essential oils (EOs) of the stems, [...] Read more.
Rosa bracteata J.C.Wendl. is a thorny, clump-forming or trailing perennial evergreen shrub native to China. The current analysis was designed to explore the chemical constituents and determine the in vitro antimicrobial, cytotoxic, and antioxidant properties of the essential oils (EOs) of the stems, leaves, and flowers of Rosa bracteata for the first time. The chemical composition of the essential oils obtained through hydro-distillation was characterized by means of gas chromatography–mass spectrometry (GC–MS) and gas chromatography with a flame ionization detector (GC–FID). Thirty-seven, thirty-six, and forty-two constituents were identified from leaf oil (LEO), stem oil (SEO), and flower oil (FEO), representing 96.3%, 95.9%, and 97.4% of the total oil constituents, respectively. The LEO was mainly composed of 1-pentadecene, α-cadinol, and hexadecanoic acid. However, the main identified components of SEO were (E)-nerolidol, phytol, and benzyl benzoate, and the main components of the flower oil were ethyl octanoate, octanoic acid, and α-cadinol. All of the EOs exhibited antibacterial activities against both Gram-positive and Gram-negative bacteria with MIC values ranging from 40.00 to 640.00 μg/mL. In addition, the checkerboard method demonstrates potent synergistic effects of Rosa bracteata EOs when combined with commercial antibiotics (chloramphenicol and streptomycin). In the MTT test, SEO (IC50: 37.91 ± 2.10 to 51.15 ± 6.42 μg/mL) showed stronger cytotoxic activity against four cancer cell lines (MCF-7, A549, HepG2, and HCT-116) during the incubation time of 48 h in comparison to the EOs isolated from the other plant parts. Overall, these findings reveal the chemical composition and significant bioactivity of R. bracteata EOs for the first time, suggesting their potential as promising natural agents for therapeutic applications, especially in combination therapies to combat antibiotic resistance. Full article
(This article belongs to the Special Issue Chemical Composition and Biological Evaluation of Essential Oils)
Show Figures

Graphical abstract

28 pages, 2360 KB  
Article
Cobalt(II) Complexes of 4′-Bromo-Fenamic Acid: Antioxidant Properties, Antibacterial Activity, and Interaction with DNA and Albumins
by Georgios Malis, Christina N. Banti, Alexia Tialiou, Michael R. Reithofer, Antonios G. Hatzidimitriou, Sotiris K. Hadjikakou, Konstantina C. Fylaktakidou and George Psomas
Int. J. Mol. Sci. 2025, 26(19), 9787; https://doi.org/10.3390/ijms26199787 - 8 Oct 2025
Abstract
The reaction of 4′–bromo-fenamic acid, a bromo-derivative of fenamic acid (the scaffold of the fenamate non-steroidal anti-inflammatory drugs), with Co(II) in the absence or presence of various nitrogen-donor ligands yielded nine novel, neutral mononuclear Co(II) complexes. These complexes were characterized by physicochemical and [...] Read more.
The reaction of 4′–bromo-fenamic acid, a bromo-derivative of fenamic acid (the scaffold of the fenamate non-steroidal anti-inflammatory drugs), with Co(II) in the absence or presence of various nitrogen-donor ligands yielded nine novel, neutral mononuclear Co(II) complexes. These complexes were characterized by physicochemical and spectroscopic techniques and single-crystal X-ray crystallography. The biological evaluation of the compounds focused on their antioxidant and antimicrobial efficacy, as well as their interaction with calf-thymus DNA, pBR322 plasmid DNA (in the absence or presence of diverse irradiations) and serum albumins. The complexes have shown significant antioxidant activity since they can scavenge 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radicals (up to 96.48 ± 0.07%) and reduce H2O2 (up to 96.93 ± 0.53%). Antimicrobial testing revealed that the complexes were more active than free 4′-bromo-fenamic acid with four of them classified as bactericidal agents against selected bacterial strains. The compounds can interact with calf-thymus DNA via intercalation, and the calculated DNA-binding constants are on the 106 M−1 order. The plasmid DNA-cleavage ability of the compounds is strongly enhanced under UVA irradiation (photocleavage > 90%). In addition, the compounds can bind tightly and reversibly to serum albumins with binding constants in the 105 M−1 range. Full article
(This article belongs to the Special Issue Focus on Antioxidants and Human Diseases)
Show Figures

Figure 1

21 pages, 2799 KB  
Article
Development and Characterization of Sustainable Antimicrobial Food Packaging Films with Incorporated Silver Nanoparticles Synthesized from Olive Oil Mill By-Products
by Christina M. Gkaliouri, Nikolas Rigopoulos, Zacharias Ioannou, Efstathios Giaouris, Konstantinos P. Giannakopoulos and Kosmas Ellinas
Sustainability 2025, 17(19), 8916; https://doi.org/10.3390/su17198916 - 8 Oct 2025
Abstract
The growing accumulation of non-biodegradable petrochemical plastics and increasing food waste present urgent environmental and public health challenges. This study addresses both issues by developing biodegradable food packaging films from agar and starch, enhanced with antimicrobial properties by incorporating silver nanoparticles. The innovation [...] Read more.
The growing accumulation of non-biodegradable petrochemical plastics and increasing food waste present urgent environmental and public health challenges. This study addresses both issues by developing biodegradable food packaging films from agar and starch, enhanced with antimicrobial properties by incorporating silver nanoparticles. The innovation of this work is the synthesis of novel agar–starch–silver nanoparticle coatings, where the contained nanoparticles were produced via green methods using two agro-industrial by-products of Greek olive oil production—olive stone extract and olive mill wastewater—as reducing agents. The morphology of the novel coatings was confirmed using transmission electron microscopy combined with energy-dispersive X-ray spectroscopy, revealing nanoscale particles with variable sizes. Additional film characterization was performed through Fourier-transform infrared spectroscopy, scanning electron microscopy coupled with energy-dispersive spectroscopy, and surface profilometry. Infrared spectroscopy analysis suggested the presence of functional groups responsible for nanoparticle stabilization, while energy-dispersive X-ray spectroscopy revealed silver aggregation in both olive stone extract and olive mill wastewater-derived films. Profilometry showed that films with olive mill wastewater-based nanoparticles had a rougher surface than those synthesized from olive stone extract. Antibacterial efficacy was tested against Escherichia coli (Gram-negative) and Staphylococcus epidermidis (Gram-positive) using a spot-on-film assay with high (106 CFU/film) and low (103 CFU/film) bacterial loads. After 72 h of incubation at 4 °C, both film types showed strong antibacterial activity at high bacterial concentrations, demonstrating their potential for active food packaging. These findings highlight a promising approach to sustainable food packaging within the circular economy, utilizing agricultural waste to create biodegradable materials with effective antimicrobial functionality. Full article
Show Figures

Figure 1

22 pages, 3540 KB  
Article
Design, Structural Stability, Membrane Binding, and Antibacterial Activity of Novel Antimicrobial Peptides Derived from Wuchuanin-A1
by Rizki A. Putri, Ahmad Habibie, Prajnaparamita Dhar, Krzysztof Kuczera, Respati Tri Swasono, Muhammad Saifur Rohman, Tri Joko Raharjo and Teruna J. Siahaan
Life 2025, 15(10), 1568; https://doi.org/10.3390/life15101568 - 8 Oct 2025
Abstract
Antibiotic resistance is a major health problem globally, highlighting the need for alternative antimicrobials that may potentially reduce the emergence of resistance compared to conventional antibiotics. Antimicrobial peptides (AMPs) are promising candidates because of their broad-spectrum activity. In this study, we designed three [...] Read more.
Antibiotic resistance is a major health problem globally, highlighting the need for alternative antimicrobials that may potentially reduce the emergence of resistance compared to conventional antibiotics. Antimicrobial peptides (AMPs) are promising candidates because of their broad-spectrum activity. In this study, we designed three derivatives (i.e., Analog-1, -2, and -3) of the native peptide, Wuchuanin-A1, for improving their antibacterial activity against Staphylococcus aureus and Escherichia coli. The hypothesis is that the antibacterial activity of these peptides can be improved by increasing their amphipathicity (evaluated using hydrophobic moment analysis), α-helical stability, and membrane binding properties. In this case, the residues of native peptide were mutated to form an amphipathic peptide, referred to here as Analog-1. Then, the N- and C-termini of Analog-1 were capped with acetyl and amide groups, respectively, to produce Analog-2. Finally, the Asp and Arg residues in Analog-2 were mutated to Glu and Lys residues, respectively, in Analog-3. Circular dichroism (CD) spectra in trifluoroethanol (TFE) or methanol (MeOH) showed that Analog-3 has the highest α-helical stability, followed by Analog-2 and Analog-1. Two-dimensional nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations studies indicated that Analog-2 and -3 have a stable continuous α-helical structure. Both Analog-2 and -3 can form dimer or oligomer at higher concentrations. All three analogs can bind to model membranes of Gram-positive and Gram-negative bacteria, with Analog-3 as the best membrane binding affinity through Langmuir monolayer analysis. Both Analog-2 and -3 have better antibacterial activities against S. aureus and E. coli compared to Analog-1 and the native peptide, with minimum inhibitory concentration (MIC) values 3.91 µg/mL against S. aureus and 62.5 µg/mL against E. coli, which are 2–32-fold lower than those of Analog-1. In addition, Analog-2 and -3 have better activity against S. aureus than E. coli bacteria. We proposed that the increase in antibacterial activity of Analog-2 and -3 was due to the α-helical stability, amphipathic structure, and membrane binding properties. Full article
(This article belongs to the Section Biochemistry, Biophysics and Computational Biology)
Show Figures

Figure 1

21 pages, 850 KB  
Article
From Chemistry to Bioactivity: HS-SPME-GC-MS Profiling and Bacterial Growth Inhibition of Three Different Propolis Samples from Romania, Australia, and Uruguay
by Radosław Balwierz, Katarzyna Kasperkiewicz, Martyna Straszak, Daria Siodłak, Katarzyna Pokajewicz, Ibtissem Ben Hammouda, Piotr P. Wieczorek, Anna Kurek-Górecka, Zenon P. Czuba and Tomasz Baj
Molecules 2025, 30(19), 4014; https://doi.org/10.3390/molecules30194014 - 8 Oct 2025
Abstract
Propolis is a valuable natural product whose chemical composition and bioactivity are strongly dependent on its geographical and botanical origin. This study presents a comprehensive comparative analysis of the volatile profiles and antibacterial properties of propolis from Romania, Australia, and Uruguay, benchmarked against [...] Read more.
Propolis is a valuable natural product whose chemical composition and bioactivity are strongly dependent on its geographical and botanical origin. This study presents a comprehensive comparative analysis of the volatile profiles and antibacterial properties of propolis from Romania, Australia, and Uruguay, benchmarked against previously published data from samples from Poland and Turkey. Volatile compounds were profiled using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. The resulting data were interrogated using multivariate chemometric analyses (HCA, PCA), and antibacterial activity was assessed via the disk diffusion method against five bacterial strains. Chemometric analysis revealed a clear demarcation into two primary chemotypes: a European type (Poland, Romania, Turkey) dominated by aromatic compounds such as benzoic acid, and a non-European type (Australia, Uruguay) characterized by a high abundance of terpenes. The Australian propolis exhibited a complex terpene profile rich in α-copaene and pinenes, while the Uruguayan sample was distinguished by an exceptionally high concentration of α-pinene. All active extracts showed selective, concentration-dependent inhibition against Gram-positive Staphylococcus aureus and Streptococcus mutans. The terpene-rich Australian propolis displayed the highest antibacterial potency, particularly against S. mutans. Crucially, Pearson correlation analysis revealed a counter-intuitive relationship: the most abundant terpenes in the non-European samples (e.g., α-pinene, verbenone) were significantly negatively correlated with antibacterial activity (r ≈ −0.99). Conversely, less abundant compounds, including linalool and acetic acid, were identified as strong positive predictors of inhibition (r > 0.90). These findings underscore a complex geography-chemotype-bioactivity relationship, where the overall synergistic effect of a mixed chemical profile, rather than the dominance of a single compound, determines antibacterial potency. The initially proposed markers provide a basis for origin-based standardization and highlight Australian propolis as a promising source of natural antibacterial agents. Full article
(This article belongs to the Special Issue Bee Products: Recent Progress in Health Benefits Studies, 2nd Edition)
Show Figures

Figure 1

34 pages, 3377 KB  
Review
Progress in the Study of Extraction Methods and Pharmacological Effects of Traditional Chinese Medicine-Derived Carbon Dots
by Xiaohang Zhou, Junxiang Zhou, Junling Ren, Zhongyuan Qu and Tianlei Zhang
Molecules 2025, 30(19), 4015; https://doi.org/10.3390/molecules30194015 - 8 Oct 2025
Abstract
Traditional Chinese medicine-derived carbon dots (TCM-CDs) are prepared by top-down or bottom-up synthesis methods using TCM or their active ingredients as precursors, and the size of TCM-CDs is usually less than 10 nm. It has the advantages of easy preparation, low toxicity, and [...] Read more.
Traditional Chinese medicine-derived carbon dots (TCM-CDs) are prepared by top-down or bottom-up synthesis methods using TCM or their active ingredients as precursors, and the size of TCM-CDs is usually less than 10 nm. It has the advantages of easy preparation, low toxicity, and high compatibility. Compared with traditional Chinese medicines, it shows more outstanding performance in antioxidant, hemostatic, antibacterial, and other aspects, thus having good development prospects. This paper systematically reviews the synthesis methods of carbon dots, focusing on the influence of different traditional Chinese medicine precursors on the formation of carbon dots during the processing process, and analyzes the performance of carbon dots in enhancing the efficacy of original medicinal materials, exerting multi-target synergistic effects, improving bioavailability, and generating new medicinal effects. It is expected to provide a theoretical basis and reference direction for the in-depth research and development of traditional Chinese medicine carbon dots in the field of medicinal value. Full article
Show Figures

Figure 1

18 pages, 9390 KB  
Article
Effects of TaN Cap Layer on the Tribological and Antibacterial Properties of TaN-(Ag,Cu) Nanocomposite Thin Films
by Jang Hsing Hsieh, Anwesha Dey, Chuan Li and You Jen Cho
Coatings 2025, 15(10), 1175; https://doi.org/10.3390/coatings15101175 - 8 Oct 2025
Abstract
Reactive co-sputtering was applied to deposit TaN-(Ag,Cu) nanocomposite films on Si and tool steels. Prior to post-deposition annealing, the films were deposited with TaN cap (diffusion barrier) layers in various thicknesses in order to slow down the nucleation and growth of emerging Ag [...] Read more.
Reactive co-sputtering was applied to deposit TaN-(Ag,Cu) nanocomposite films on Si and tool steels. Prior to post-deposition annealing, the films were deposited with TaN cap (diffusion barrier) layers in various thicknesses in order to slow down the nucleation and growth of emerging Ag and Cu particles. The thickness of the cap layers was set at 5, 10, 20, or 50 nm. The films were then annealed using Rapid Thermal Annealing (RTA) at 400 °C to induce the nucleation and growth of Ag and Cu nanoparticles. These films’ surface morphologies and structures were examined. The samples were tested for their anti-wear and antibacterial behaviors against Gram-positive S. aureus and Gram-negative E. coli, with a variation in cap layer thickness. It is found that, through the application of TaN cap layers, the out-diffusion of Ag and Cu atoms may be slowed down. The surface concentrations of Ag and Cu might decrease from 35 at.% and 17 at.% to 18 at.% and 6 at.%, respectively, when the cap layer thickness increases to 50 nm (after being annealed for 12 min). The diffusion mechanism is proposed to explain the formation of nanoparticles on the surface through boundary diffusion. Antibacterial behaviors against both bacteria, as well as tribological properties, could still be effective but become less significant with an increase in the cap layer thickness. The antibacterial efficiency after 3 h testing decreased from 99% to 5% and 8% against E. coli and S. aureus, respectively. At 12 h, all the samples reached >99% antibacterial efficiency, despite the variation in cap thickness. For sliding wear, the wear rate was doubled when the cap thickness increased to 50 nm (when the normal load was 1 N). On the other hand, the difference was minor when the normal load was changed to 5 N. The sliding lifetime of the samples was studied using a tribometer. The total lifetime may increase with an increase in the cap thickness. The wear is found to be due to the oxidation of Ag and Cu nanoparticles, which results in the loss of low coefficient behaviors. Full article
(This article belongs to the Special Issue Advanced Thin Film Fabrication by Sputtering)
Show Figures

Figure 1

17 pages, 2320 KB  
Article
Virucidal and Antibacterial Chitosan–NanoCu Film-Coating-Based Technology: Complete Analysis of Its Performance on Various Surfaces
by Victoria Belen Ayala-Peña, María Julia Martin, Jessica Otarola, Florencia Favatela, Jimena Soledad Gonzalez, Ana Lucía Conesa, Cybele Carina García, Claudia Soledad Sepúlveda, Vera Alejandra Alvarez and Verónica Leticia Lassalle
Viruses 2025, 17(10), 1347; https://doi.org/10.3390/v17101347 - 7 Oct 2025
Abstract
The transmission of viruses and bacteria via surfaces remains a persistent challenge for healthcare systems, leading to high public health costs and significant environmental impact due to the widespread use and disposal of single-use products. This study aims to evaluate the feasibility of [...] Read more.
The transmission of viruses and bacteria via surfaces remains a persistent challenge for healthcare systems, leading to high public health costs and significant environmental impact due to the widespread use and disposal of single-use products. This study aims to evaluate the feasibility of using surface-covering films, based on biopolymers and inorganic nanoparticles, with strong antiviral and antibacterial properties, as a strategy to prevent infection transmission while offering a sustainable alternative to disposable materials. To this end, we developed a sprayable chitosan-based solution embedded with copper oxide nanoparticles (CH.CA@Cu). The solution demonstrated antibacterial activity against both Gram-positive and Gram-negative bacteria as well as virucidal activity, predominantly within one minute of exposure, against a wide range of viruses. After spraying various materials, the resulting film surfaces exhibited excellent adherence and uniform coverage, maintaining their integrity after contact. A field trial conducted in high-traffic environments confirmed the coating’s effectiveness. This long-lasting antiviral action supports their implementation, since the coated surface can continuously deactivate viruses regardless of infective doses of exposure, thereby reducing viral transmission. These findings will expand biopolymers’ current applicability while guiding us toward the adoption of green and eco-friendly technologies, thus reducing waste production. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

Back to TopTop