Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,035)

Search Parameters:
Keywords = antibacterial materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 776 KB  
Article
Effects of Thymoquinone on Cell Proliferation, Oxidative Damage, and Toll-like Signaling Pathway Genes in H1650 Lung Adenocarcinoma Cell Line
by Selen Karaoğlanoğlu and Gonca Gülbay
Medicina 2025, 61(10), 1835; https://doi.org/10.3390/medicina61101835 - 14 Oct 2025
Abstract
Background and Objectives: Lung cancer is the leading cause of cancer-related mortality worldwide. In most cases, lung cancer is diagnosed at an advanced stage. For advanced-stage disease, treatment options are generally systemic and while novel treatment approaches offer hope, they may also [...] Read more.
Background and Objectives: Lung cancer is the leading cause of cancer-related mortality worldwide. In most cases, lung cancer is diagnosed at an advanced stage. For advanced-stage disease, treatment options are generally systemic and while novel treatment approaches offer hope, they may also lead to significant adverse effects. Therefore, alternative therapeutic strategies have been investigated for many years. Thymoquinone (TQ) is one such candidate. Previous studies have demonstrated its antioxidant, anti-inflammatory, antibacterial, and immunomodulatory properties. In our study, we aimed to evaluate the roles of TQ in the progression of H1650 lung adenocarcinoma cells. Materials and Methods: In this study, the antiproliferative effect of TQ on H1650 lung cancer cells was evaluated using MTT assay, its effect on oxidative damage was determined using 8-OHdG, and total antioxidant status (TAS), total oxidant status (TOS), and its effect on apoptosis were demonstrated using caspase-3 ELISA method. In addition, total RNA was extracted from both control and treatment groups, cDNA was synthesized, and mRNA expression changes of Toll-like receptor related genes (TLR) were analyzed using RT-PCR. Results: The decrease in the viability of H1650 lung cancer cells was observed in a time- and dose-dependent manner. The IC50 dose of TQ in the H1650 lung cancer cell line at 48 h was 26.59 µM. TQ treatment decreased the level of TOS and increased the level of TAS in H1650 lung cancer cells. Oxidative stress index decreased in the TQ-treated dose group in H1650 lung cancer cells. Elisa 8-OHdG and caspase-3 levels were not statistically significant. Compared to the control group, no statistically significant changes were observed in TLR1, TLR2, TLR3, TLR4, TLR6, TLR7, TLR8, and TLR9 gene expressions in the treatment group treated with 26.59 µM TQ for 48 h. Conclusions: TQ shows potential as an anticancer agent and may contribute to the development of therapeutic approaches for lung cancers. Full article
(This article belongs to the Section Pulmonology)
Show Figures

Figure 1

29 pages, 3284 KB  
Systematic Review
From Tea Fermentation to New Technologies: Multisectoral Applications of Kombucha SCOBY Through the Lens of Methodi Ordinatio
by Nicole de M. Vianna, Gabriel Albagli, Adejanildo da S. Pereira and Priscilla F. F. Amaral
Fermentation 2025, 11(10), 589; https://doi.org/10.3390/fermentation11100589 (registering DOI) - 14 Oct 2025
Abstract
The Symbiotic Culture of Bacteria and Yeast (SCOBY) is a cellulose-based biofilm resulting from the fermentation of sweetened tea by a microbial consortium of acetic acid bacteria and yeasts. This study applies the Methodi Ordinatio technique to systematically identify, rank, and analyze the [...] Read more.
The Symbiotic Culture of Bacteria and Yeast (SCOBY) is a cellulose-based biofilm resulting from the fermentation of sweetened tea by a microbial consortium of acetic acid bacteria and yeasts. This study applies the Methodi Ordinatio technique to systematically identify, rank, and analyze the most relevant scientific publications on the applications of SCOBY. A comprehensive search in SCOPUS and Web of Science yielded 179 articles, after manual filtration. The InOrdinatio index, which combines citation count, publication year, and journal impact factor, was used for ranking to select a representative sample of the most important contributions (117 articles). The highest-ranked article scored 128.9, and the lowest 42.6. China led in scientific output (14.01%), followed by India (11.46%), the UK and USA (5.10% each), and Brazil (4.46%). The International Journal of Biological Macromolecules was the most frequently used journal for publications in this field. “Bacterial cellulose” was the most cited keyword (61 times), followed by “kombucha” (41) and “fermentation” (29). A consistent rise in publications has been observed over the past five years. Four main application areas were identified: bacterial cellulose (BC) (38%), biosustainable materials (28%), biomedical (17%), and food-related uses (17%). Most of the studies related to BC production (52%) searched for alternative substrates, and 18% focused on the isolation and identification of the most productive microorganisms within SCOBY. For biomedical applications, a unifying theme is the development of SCOBY-based materials with intrinsic antibacterial properties. These findings emphasize SCOBY’s emerging role in sustainable innovation and circular economic frameworks. Full article
(This article belongs to the Special Issue Fermentation and Circular Economy in Food Sustainability)
Show Figures

Figure 1

12 pages, 1225 KB  
Article
Resensitizing the Untreatable: Zidovudine and Polymyxin Combinations to Combat Pan-Drug-Resistant Klebsiella pneumoniae
by Jan Naseer Kaur, Jack F. Klem, Gebremedhin S. Hailu, Nader N. Nasief, Yang Liu, Allison Hanna, Albert Chen, Patricia Holden, Shivali Kapoor, Nicholas M. Smith, Mark Sutton, Jian Li and Brian T. Tsuji
Pharmaceuticals 2025, 18(10), 1531; https://doi.org/10.3390/ph18101531 - 11 Oct 2025
Viewed by 104
Abstract
Background: The emergence of pan-drug-resistant (PDR) Klebsiella pneumoniae has compromised the efficacy of last-line agents, leaving few therapeutic options. Repurposing zidovudine, an FDA-approved thymidine analog with antibacterial activity, may enhance existing therapies, but pharmacodynamic data under clinically relevant conditions are scarce. This study [...] Read more.
Background: The emergence of pan-drug-resistant (PDR) Klebsiella pneumoniae has compromised the efficacy of last-line agents, leaving few therapeutic options. Repurposing zidovudine, an FDA-approved thymidine analog with antibacterial activity, may enhance existing therapies, but pharmacodynamic data under clinically relevant conditions are scarce. This study addresses this gap using static and dynamic in vitro models. Materials/methods: A PDR strain of Klebsiella pneumoniae harboring blaNDM-1blaCMY-6, blaCTX-M-15, blaSHV-2, and disrupted mgrB was used in this study. Minimum inhibitory concentrations (MICs) followed by static time-kills were performed to investigate the synergistic interplay between zidovudine and last-line antibiotics (ceftazidime/avibactam, polymyxin B). To simulate human pharmacokinetics, a hollow-fiber infection model (HFIM) was employed using steady-state concentrations of zidovudine (4 mg/L), polymyxin B (4 mg/L), and avibactam (22 mg/L). Structural and morphological effects on bacterial cells were examined via fluorescence microscopy following glutaraldehyde fixation. Results: In this study, the PDR K. pneumoniae showed a ~5-fold reduction in polymyxin MIC when combined with zidovudine (from >4 µg/mL to 0.25 µg/mL). Time-kill assays demonstrated ≥2.5 log10 CFU/mL bacterial reduction with zidovudine-based combinations, whereas monotherapies failed to inhibit bacterial growth. In the HFIM, the triple combination achieved rapid bactericidal activity (>3 log10 CFU/mL reduction within 4 h) and sustained killing (>5–6 log10 reduction maintained through 216 h), with bacterial counts remaining below 1 CFU/mL. In contrast, dual combinations initially reduced bacterial burden (1–3 log10 reduction) but failed to maintain suppression, with significant regrowth (>1010 CFU/mL) observed by 168 h. Microscopy corroborated these findings, revealing extensive cellular damage in the zidovudine-containing treatment arms. These HFIM results underscore the potential of zidovudine-based triple therapy in overcoming resistance to last-line antibiotics in K. pneumoniae. Conclusions: Our results provide promising unprecedented insight into novel zidovudine-based combination therapies against difficult-to-treat MBL Gram-negatives. The observed synergy in MIC reduction, rapid killing in time-kill assays, and near-complete eradication in the HFIM underscore the therapeutic potential of this triple combination. Future studies will focus on broadening the application of these novel combinations to other ‘superbugs’, such as highly resistant strains of Acinetobacter baumannii and Pseudomonas aeruginosa. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

21 pages, 3245 KB  
Article
Green Methodology for Producing Bioactive Nanocomposites of Mesoporous Silica Support for Silver and Gold Nanoparticles Against E. coli and S. aureus
by Una Stamenović, Dijana Mašojević, Maja Kokunešoski, Mojca Otoničar, Slađana Davidović, Srečo Škapin, Tanja Barudžija, Dejan Pjević, Tamara Minović Arsić and Vesna Vodnik
Technologies 2025, 13(10), 458; https://doi.org/10.3390/technologies13100458 - 9 Oct 2025
Viewed by 108
Abstract
This study considered and compared silver, gold, and their combination of nanoparticles (AgNPs, AuNPs, and Au-AgNPs) with biocompatible material mesoporous silica SBA-15 as potential antibacterial agents. A facile, one-pot “green” methodology, utilizing L-histidine as a reducing agent and bridge between components, was employed [...] Read more.
This study considered and compared silver, gold, and their combination of nanoparticles (AgNPs, AuNPs, and Au-AgNPs) with biocompatible material mesoporous silica SBA-15 as potential antibacterial agents. A facile, one-pot “green” methodology, utilizing L-histidine as a reducing agent and bridge between components, was employed to obtain Ag@SBA-15, Au@SBA-15, and Au-Ag@SBA-15 nanocomposites without the use of external additives. Various physicochemical tools (UV-Vis, TEM, SAED, FESEM, XPS, BET, XRD, and FTIR) presented SBA-15 as a good carrier for spherical AgNPs, AuNPs, and Au-AgNPs with average diameters of 8.5, 16, and 9 nm, respectively. Antibacterial evaluations of Escherichia coli and Staphylococcus aureus showed that only Ag@SBA-15, at a very low Ag concentration (1 ppm) during 2 h of contact, completely reduced the growth (99.99%) of both strains, while the Au@SBA-15 nanocomposite required higher concentrations (5 ppm) and time (4 h) to reduce 99.98% E. coli and 94.54% S. aureus. However, Au introduction in Ag@SBA-15 to form Au-Ag@SBA-15 negatively affected its antibacterial potential, lowering it due to the galvanic replacement reaction. Nevertheless, the rapid and effective combating of two bacteria at low NPs concentrations, through the synergistic effects of mesoporous silica and AgNPs or AuNPs, in Ag@SBA-15 and Au@SBA-15 nanocomposites, provides a potential substitute for existing bacterial disinfectants. Full article
(This article belongs to the Section Environmental Technology)
18 pages, 1370 KB  
Article
Screening of Basidiomycete Strains Capable of Synthesizing Antibacterial and Antifungal Metabolites
by Valeria Lysakova, Aleksey Streletskiy, Olga Sineva, Elena Isakova and Larissa Krasnopolskaya
Int. J. Mol. Sci. 2025, 26(19), 9802; https://doi.org/10.3390/ijms26199802 - 8 Oct 2025
Viewed by 311
Abstract
Recently, the search for new antimicrobial compounds, including the secondary metabolites of basidiomycetes, has become increasingly important. Representatives of this division of higher fungi have high biosynthetic abilities, which contributes to their use as producers. In this work, extracts of culture liquids and [...] Read more.
Recently, the search for new antimicrobial compounds, including the secondary metabolites of basidiomycetes, has become increasingly important. Representatives of this division of higher fungi have high biosynthetic abilities, which contributes to their use as producers. In this work, extracts of culture liquids and submerged mycelia from 18 strains representing three different orders of basidiomycetes were studied. For this purpose, the submerged cultivation of strains, extraction of biological material, and evaluation of the extract’s antimicrobial activity using the agar well diffusion method were carried out. The minimum inhibitory concentration was determined for extracts with strong activity. The most promising ones were analyzed using HPLC-MS. As a result, it was found that 16 strains contained antimicrobial metabolites. Thus, the strains selected for further work were Hericium corraloides 4, which showed not only the antibacterial but also antifungal activity of cultural liquid and submerged mycelia extracts, and Fomitopsis betulina 3, Fomitopsis pinicola 2, Hericium erinaceus 1, and Laetiporus sulphureus 4, whose cultural liquid extracts exhibited high antibacterial activity against Gram-positive and Gram-negative test cultures. For these strains, metabolic profiles were obtained using the method HPLC-MS. Using this method, two metabolites were preliminary identified: hericerin in H. erinaceus 1 and sulfureuine H in L. sulphureus 4. Full article
(This article belongs to the Special Issue Plant-Derived Bioactive Compounds for Pharmacological Applications)
Show Figures

Figure 1

21 pages, 2799 KB  
Article
Development and Characterization of Sustainable Antimicrobial Food Packaging Films with Incorporated Silver Nanoparticles Synthesized from Olive Oil Mill By-Products
by Christina M. Gkaliouri, Nikolas Rigopoulos, Zacharias Ioannou, Efstathios Giaouris, Konstantinos P. Giannakopoulos and Kosmas Ellinas
Sustainability 2025, 17(19), 8916; https://doi.org/10.3390/su17198916 - 8 Oct 2025
Viewed by 501
Abstract
The growing accumulation of non-biodegradable petrochemical plastics and increasing food waste present urgent environmental and public health challenges. This study addresses both issues by developing biodegradable food packaging films from agar and starch, enhanced with antimicrobial properties by incorporating silver nanoparticles. The innovation [...] Read more.
The growing accumulation of non-biodegradable petrochemical plastics and increasing food waste present urgent environmental and public health challenges. This study addresses both issues by developing biodegradable food packaging films from agar and starch, enhanced with antimicrobial properties by incorporating silver nanoparticles. The innovation of this work is the synthesis of novel agar–starch–silver nanoparticle coatings, where the contained nanoparticles were produced via green methods using two agro-industrial by-products of Greek olive oil production—olive stone extract and olive mill wastewater—as reducing agents. The morphology of the novel coatings was confirmed using transmission electron microscopy combined with energy-dispersive X-ray spectroscopy, revealing nanoscale particles with variable sizes. Additional film characterization was performed through Fourier-transform infrared spectroscopy, scanning electron microscopy coupled with energy-dispersive spectroscopy, and surface profilometry. Infrared spectroscopy analysis suggested the presence of functional groups responsible for nanoparticle stabilization, while energy-dispersive X-ray spectroscopy revealed silver aggregation in both olive stone extract and olive mill wastewater-derived films. Profilometry showed that films with olive mill wastewater-based nanoparticles had a rougher surface than those synthesized from olive stone extract. Antibacterial efficacy was tested against Escherichia coli (Gram-negative) and Staphylococcus epidermidis (Gram-positive) using a spot-on-film assay with high (106 CFU/film) and low (103 CFU/film) bacterial loads. After 72 h of incubation at 4 °C, both film types showed strong antibacterial activity at high bacterial concentrations, demonstrating their potential for active food packaging. These findings highlight a promising approach to sustainable food packaging within the circular economy, utilizing agricultural waste to create biodegradable materials with effective antimicrobial functionality. Full article
Show Figures

Figure 1

34 pages, 3377 KB  
Review
Progress in the Study of Extraction Methods and Pharmacological Effects of Traditional Chinese Medicine-Derived Carbon Dots
by Xiaohang Zhou, Junxiang Zhou, Junling Ren, Zhongyuan Qu and Tianlei Zhang
Molecules 2025, 30(19), 4015; https://doi.org/10.3390/molecules30194015 - 8 Oct 2025
Viewed by 397
Abstract
Traditional Chinese medicine-derived carbon dots (TCM-CDs) are prepared by top-down or bottom-up synthesis methods using TCM or their active ingredients as precursors, and the size of TCM-CDs is usually less than 10 nm. It has the advantages of easy preparation, low toxicity, and [...] Read more.
Traditional Chinese medicine-derived carbon dots (TCM-CDs) are prepared by top-down or bottom-up synthesis methods using TCM or their active ingredients as precursors, and the size of TCM-CDs is usually less than 10 nm. It has the advantages of easy preparation, low toxicity, and high compatibility. Compared with traditional Chinese medicines, it shows more outstanding performance in antioxidant, hemostatic, antibacterial, and other aspects, thus having good development prospects. This paper systematically reviews the synthesis methods of carbon dots, focusing on the influence of different traditional Chinese medicine precursors on the formation of carbon dots during the processing process, and analyzes the performance of carbon dots in enhancing the efficacy of original medicinal materials, exerting multi-target synergistic effects, improving bioavailability, and generating new medicinal effects. It is expected to provide a theoretical basis and reference direction for the in-depth research and development of traditional Chinese medicine carbon dots in the field of medicinal value. Full article
Show Figures

Figure 1

17 pages, 2320 KB  
Article
Virucidal and Antibacterial Chitosan–NanoCu Film-Coating-Based Technology: Complete Analysis of Its Performance on Various Surfaces
by Victoria Belen Ayala-Peña, María Julia Martin, Jessica Otarola, Florencia Favatela, Jimena Soledad Gonzalez, Ana Lucía Conesa, Cybele Carina García, Claudia Soledad Sepúlveda, Vera Alejandra Alvarez and Verónica Leticia Lassalle
Viruses 2025, 17(10), 1347; https://doi.org/10.3390/v17101347 - 7 Oct 2025
Viewed by 409
Abstract
The transmission of viruses and bacteria via surfaces remains a persistent challenge for healthcare systems, leading to high public health costs and significant environmental impact due to the widespread use and disposal of single-use products. This study aims to evaluate the feasibility of [...] Read more.
The transmission of viruses and bacteria via surfaces remains a persistent challenge for healthcare systems, leading to high public health costs and significant environmental impact due to the widespread use and disposal of single-use products. This study aims to evaluate the feasibility of using surface-covering films, based on biopolymers and inorganic nanoparticles, with strong antiviral and antibacterial properties, as a strategy to prevent infection transmission while offering a sustainable alternative to disposable materials. To this end, we developed a sprayable chitosan-based solution embedded with copper oxide nanoparticles (CH.CA@Cu). The solution demonstrated antibacterial activity against both Gram-positive and Gram-negative bacteria as well as virucidal activity, predominantly within one minute of exposure, against a wide range of viruses. After spraying various materials, the resulting film surfaces exhibited excellent adherence and uniform coverage, maintaining their integrity after contact. A field trial conducted in high-traffic environments confirmed the coating’s effectiveness. This long-lasting antiviral action supports their implementation, since the coated surface can continuously deactivate viruses regardless of infective doses of exposure, thereby reducing viral transmission. These findings will expand biopolymers’ current applicability while guiding us toward the adoption of green and eco-friendly technologies, thus reducing waste production. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

24 pages, 1249 KB  
Systematic Review
Evaluation of Factors Affecting Fluoride Release from Fluoride Varnishes: A Systematic Review
by Maciej Dobrzyński, Agnieszka Kotela, Sylwia Klimas, Zuzanna Majchrzak, Julia Kensy, Marzena Laszczyńska, Mateusz Michalak, Zbigniew Rybak, Magdalena Fast and Jacek Matys
Materials 2025, 18(19), 4603; https://doi.org/10.3390/ma18194603 - 4 Oct 2025
Viewed by 480
Abstract
Introduction: Fluoride varnishes are widely used in caries prevention, but the rate and duration of fluoride ion release differ depending on material composition and environmental factors. Objectives: This systematic review synthesized evidence from in vitro studies on human teeth to identify key factors [...] Read more.
Introduction: Fluoride varnishes are widely used in caries prevention, but the rate and duration of fluoride ion release differ depending on material composition and environmental factors. Objectives: This systematic review synthesized evidence from in vitro studies on human teeth to identify key factors influencing fluoride release. Methods: A systematic literature search was conducted in July 2025 in PubMed, Scopus, Web of Science, Embase, and the Cochrane Library using the terms “fluoride release” AND “varnish” in titles and abstracts. Study selection followed PRISMA 2020 guidelines, predefined eligibility criteria, and was structured according to the PICO framework. Of 484 retrieved records, 15 studies met the inclusion criteria and were analyzed qualitatively. Results: The primary outcome was the magnitude and duration of fluoride release from varnishes. Most studies reported peak release within the first 24 h, followed by a marked decline, although some formulations (e.g., Clinpro XT and Duraphat) maintained more stable long-term release. Substantial methodological heterogeneity was observed across studies, including differences in sample type, storage medium, pH, temperature, and measurement protocols, which influenced fluoride release dynamics. Reported secondary outcomes included enamel remineralization, changes in surface properties, and antibacterial activity, with bioactive additives such as CPP–ACP and TCP enhancing preventive effects. Acidic conditions consistently increased fluoride release. Conclusions: The magnitude and persistence of fluoride release from varnishes depend on both intrinsic material properties and external environmental conditions. Bioactive additives may prolong fluoride availability and provide additional preventive benefits. Full article
(This article belongs to the Special Issue Advanced Dental Materials: From Design to Application, Third Edition)
Show Figures

Graphical abstract

17 pages, 1818 KB  
Article
pH-Sensitive Release of Functionalized Chiral Carbon Dots from PLGA Coatings on Titanium Alloys for Biomedical Applications
by Roberto López-Muñoz, Pascale Chevallier, Francesco Copes, Rafik Naccache and Diego Mantovani
Polymers 2025, 17(19), 2667; https://doi.org/10.3390/polym17192667 - 2 Oct 2025
Viewed by 379
Abstract
Titanium and its alloys are the most widely used metallic materials for bone contact implants. However, despite advances in implant technology, these alloys are still susceptible to post-operative clinical complications such as inflammation, which is often joined by infections and biofilm formation. A [...] Read more.
Titanium and its alloys are the most widely used metallic materials for bone contact implants. However, despite advances in implant technology, these alloys are still susceptible to post-operative clinical complications such as inflammation, which is often joined by infections and biofilm formation. A number of coatings were studied to overcome the drawbacks of these complications, but the controlled release of bioactive molecules over the first few days and the adhesion of the coating to the substrate remain recognized challenges. Carbon dots and the antibacterial potential of chiral carbon dots (CCDs) were recently reported, and their chirality was identified as a major contribution to the bactericidal effect. This study aimed to achieve a stimuli-responsive medium-term controlled release for up to one month. Two types of chiral carbon dots (CCDs) with distinct functional groups were incorporated into a stable and adherent biodegradable polymer coating, i.e., poly(lactic-co-glycolic acid) (PLGA). To enhance the coating adhesion, the titanium alloy surfaces were pre-treated and activated. The wettability, morphology, and surface composition of the coatings were characterized by contact angle, profilometry, SEM, and XPS, respectively. Coating degradation, adhesion, and CCDs release were studied at physiological pH (7.4) and at an acidic pH characteristic of an inflammatory site (pH 3.0) for up to one month. Their biological performances and blood compatibility were assessed as well. Degradation studies conducted over 28 days revealed a slow mass loss of approximately 10%, with maximum release rates for CCDs-OH and CCDs-NH2 of 67% and 45% at pH 7.4, respectively. At pH 3.0 an inverse trend was observed with 49% and 59% maximum release after 28 days. Furthermore, the coatings did not exhibit any cytotoxic and hemolytic effects. These findings demonstrate the potential of this approach to providing titanium implants with pH-sensitive controlled release of bioactive CCDs lasting up to one month, which could address key challenges in implant-associated complications. Full article
(This article belongs to the Special Issue Smart and Functional Biopolymers)
Show Figures

Figure 1

12 pages, 2053 KB  
Article
Nano-Emulsification Potentiates Tea Tree Oil Bioactivity: High-Stability Formulation for Dual Antimicrobial and Antioxidant Food Preservation
by Congnan Cen, Xinxuan Wang, Huan Li, Song Miao, Jian Chen and Yanbo Wang
Foods 2025, 14(19), 3405; https://doi.org/10.3390/foods14193405 - 1 Oct 2025
Viewed by 360
Abstract
Essential oils play important roles in the modern food industry as additives and spices. At the same time, most essential oils have broad-spectrum bacteriostatic properties and can be used as natural antimicrobial materials. However, the application of essential oils is limited due to [...] Read more.
Essential oils play important roles in the modern food industry as additives and spices. At the same time, most essential oils have broad-spectrum bacteriostatic properties and can be used as natural antimicrobial materials. However, the application of essential oils is limited due to their strong volatility and insolubility in aqueous substrates. In this study, we used ultrasonic emulsification, carboxymethyl chitosan, and Tween 80 to formulate tea tree essential oil (TTO) nanoemulsions with high stability. With a minimum diameter of about 51 nm (PDI = 0.236 ± 0.021) post-emulsification, the TTO nanoemulsions disperse effectively in the drainage system and exhibit good stability after 14 days of storage. In addition, the bioactivity (antibacterial and antioxidant) of TTO nanoemulsions was significantly enhanced following emulsification, as evidenced by MIC and DPPH assays, indicating that nano-emulsification is beneficial to the development of various essential oils. TTO nanoemulsions can be used as a new food preservative to control the growth of bacteria and prevent the deterioration of food via oxidation. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

35 pages, 11521 KB  
Article
Multifunctional Electrospun Materials from Poly(Vinyl Alcohol)/Chitosan and Polylactide Incorporating Rosmarinic Acid and Lidocaine with Antioxidant and Antimicrobial Properties
by Milena Ignatova, Dilyana Paneva, Selin Kyuchyuk, Nevena Manolova, Iliya Rashkov, Milena Mourdjeva and Nadya Markova
Polymers 2025, 17(19), 2657; https://doi.org/10.3390/polym17192657 - 30 Sep 2025
Viewed by 259
Abstract
Novel multifunctional fibrous materials were prepared by simultaneous dual spinneret electrospinning of two separate solutions differing in composition. This technique allowed for the preparation of materials built of two types of fibers: fibers from poly(vinyl alcohol) (PVA), chitosan (Ch), and rosmarinic acid (RA), [...] Read more.
Novel multifunctional fibrous materials were prepared by simultaneous dual spinneret electrospinning of two separate solutions differing in composition. This technique allowed for the preparation of materials built of two types of fibers: fibers from poly(vinyl alcohol) (PVA), chitosan (Ch), and rosmarinic acid (RA), and poly(L-lactide) (PLA) fibers containing lidocaine hydrochloride (LHC). Confocal laser scanning microscopy (CLSM) analyses showed that both types of fibers are present on the surface and in the bulk of the new materials. The presence of all components and some interactions between them were proven by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. RA and LHC were in an amorphous state in the fibers, and their presence affected the temperature characteristics and the crystallinity, as detected by differential scanning calorimetry (DSC) and X-ray diffraction analyses (XRD). The presence of PVA/Ch/RA fibers enabled the hydrophilization of the surface of the multifunctional fibrous materials (the water contact angle value was 0°). The newly developed materials demonstrated adequate mechanical properties, making them suitable for use in wound dressing applications. The RA-containing fibrous mats possessed high radical-scavenging activity (ca. 93%), and the combining with LHC led to an enhancement of this effect (ca. 98.5%). RA-containing fibrous mats killed all the pathogenic bacteria S. aureus and E. coli and decreased the titer of fungi C. albicans by ca. 0.4 log for a contact time of 24 h. Therefore, the new materials are prospective as antibacterial and atraumatic functional wound dressings, as systems for local drug delivery, and in medical skincare. Full article
(This article belongs to the Special Issue Electrospinning of Polymer Systems)
Show Figures

Graphical abstract

19 pages, 1118 KB  
Review
Local Infections Associated with Ventricular Assist Devices: Materials-Related Challenges and Emerging Solutions
by Klaudia Cholewa, Przemysław Kurtyka, Agnieszka Szuber-Dynia, Artur Kapis and Maciej Gawlikowski
Materials 2025, 18(19), 4541; https://doi.org/10.3390/ma18194541 - 30 Sep 2025
Viewed by 464
Abstract
Although heart transplantation remains the gold standard in the treatment of advanced heart failure, the limited availability of donor organs and the growing number of patients requiring long-term care have necessitated wider implementation of mechanical circulatory support (MCS). Ventricular assist devices (VADs) substantially [...] Read more.
Although heart transplantation remains the gold standard in the treatment of advanced heart failure, the limited availability of donor organs and the growing number of patients requiring long-term care have necessitated wider implementation of mechanical circulatory support (MCS). Ventricular assist devices (VADs) substantially improve survival and quality of life, yet their clinical use is still constrained by serious complications, most notably local infections at percutaneous exit sites. This challenge persists across all device generations, from extracorporeal pulsatile pumps to contemporary continuous-flow systems. While fourth-generation concepts based on transcutaneous energy transfer are under development, unresolved issues such as thermal tissue injury continue to impede their adoption. This review critically examines current evidence on local infections, with particular emphasis on the role of biomaterials in bacterial colonization. The clinical burden and microbial etiology, dominated by Staphylococcus aureus and Staphylococcus epidermidis, are outlined, together with the limitations of existing material solutions, which lack durable antimicrobial activity. These infections frequently result in tissue necrosis, sepsis, rehospitalization, and elevated treatment costs, and their management is further complicated by the global rise in antimicrobial resistance. By synthesizing available data and identifying key shortcomings of current materials, this review underscores the urgent need for next-generation biomaterials with enhanced biocompatibility, resistance to microbial adhesion, and intrinsic or functionalized antimicrobial activity. Such advances are essential to improve the long-term safety and clinical outcomes of MCS therapy. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

15 pages, 2414 KB  
Article
Mechanical and Antimicrobial Evaluation of Chitosan-Coated Elastomeric Orthodontic Modules
by Lucía Gabriela Beltrán-Novelo, Fernando Javier Aguilar-Pérez, Myriam Angélica De La Garza-Ramos, Arturo Abraham Cienfuegos-Sarmiento, José Rubén Herrera-Atoche, Martha Gabriela Chuc-Gamboa, Jacqueline Adelina Rodríguez-Chávez and Juan Valerio Cauich-Rodríguez
Dent. J. 2025, 13(10), 447; https://doi.org/10.3390/dj13100447 - 29 Sep 2025
Viewed by 197
Abstract
Background/Objectives: Orthodontic appliances disrupt oral biofilm homeostasis, leading to an increase in plaque and disease risk. Elastomeric modules (EMs) promote bacterial growth due to their material composition. Surface coatings have been developed to reduce bacterial colonization. We evaluated the mechanical, antimicrobial, and [...] Read more.
Background/Objectives: Orthodontic appliances disrupt oral biofilm homeostasis, leading to an increase in plaque and disease risk. Elastomeric modules (EMs) promote bacterial growth due to their material composition. Surface coatings have been developed to reduce bacterial colonization. We evaluated the mechanical, antimicrobial, and cell viability properties of a chitosan coating for EMs. Methods: EMs were coated with chitosan (CS) and chitosan-glutaraldehyde (CS-GTA) to assess antimicrobial and cell viability. Uncoated EMs were used as a control. These surface-coated modules were characterized and analyzed with Fourier transform infrared (FTIR) and Raman spectroscopy, and tensile testing. Antibacterial activity was assessed by colony-forming units (CFU) counts after incubation. Cell viability was tested with gingival fibroblasts using the MTT assay. ANOVA, Tukey, Kolmogorov–Smirnov, and Kruskal–Wallis tests were used for statistical analysis. Results: Raman spectra of the chitosan coatings showed characteristic molecular vibration bands. ANOVA revealed a significant difference in mechanical properties between the materials and between the control and the CS-GTA groups, confirmed by the Tukey post hoc test. No significant difference was observed between the groups in the Yield Stress test. All the coated groups showed reduced CFU counts in the antibacterial assay. The average cell viability of the coated groups was 85% and 89%. Conclusions: We synthesized CS and GTA-cross-linked chitosan coatings. The coatings did not affect the mechanical properties of the elastomeric modules. The chitosan and glutaraldehyde-cross-linked CS coatings inhibited bacterial growth. No significant differences were observed in antibacterial activity between the CS and the GTA-crosslinked chitosan coatings. Full article
Show Figures

Figure 1

36 pages, 20275 KB  
Article
Development and Physico-Chemical and Antibacterial Characterization of Chromium-Doped Hydroxyapatite in a Chitosan Matrix Coating
by Daniela Predoi, Carmen Steluta Ciobanu, Simona Liliana Iconaru, Roxana Alexandra Petre, Krzysztof Rokosz, Steinar Raaen and Mihai Valentin Predoi
Polymers 2025, 17(19), 2633; https://doi.org/10.3390/polym17192633 - 29 Sep 2025
Viewed by 222
Abstract
Chromium-doped hydroxyapatite (7CrHAp) and chromium-doped hydroxyapatite in chitosan matrix (7CrHAp-CH) coatings were synthesized in order to address the need for biomaterials with improved physico-chemical and biological properties for biomedical applications. Both chromium-doped hydroxyapatite (7CrHAp) and chromium-doped hydroxyapatite in chitosan matrix (7CrHAp-CH) coatings could [...] Read more.
Chromium-doped hydroxyapatite (7CrHAp) and chromium-doped hydroxyapatite in chitosan matrix (7CrHAp-CH) coatings were synthesized in order to address the need for biomaterials with improved physico-chemical and biological properties for biomedical applications. Both chromium-doped hydroxyapatite (7CrHAp) and chromium-doped hydroxyapatite in chitosan matrix (7CrHAp-CH) coatings could represent promising materials for biomedical applications due to their superior properties. This study aims to evaluate the physico-chemical and in vitro biological properties of 7CrHAp and 7CrHAp-CH coatings to determine the impact of chitosan incorporation on the physico-chemical and biological features. The results reported in this study indicate that addition of chitosan improves surface uniformity and biological properties, highlighting their potential for uses in biomedical applications. In this study, coatings of chromium-doped hydroxyapatite (7CrHAp, with xCr = 0.07) and its composite variant embedded in a chitosan matrix (7CrHAp-CH) were systematically analyzed using a suite of characterization techniques: X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and metallographic microscopy (MM). The results of the XRD analysis revealed that the average crystal size was 19.63 nm for 7CrHAp and 16.29 nm for 7CrHAp-CH, indicating a decrease in crystallite size upon CH incorporation. The films were synthesized via the dip coating method using stable suspensions, whose stability was assessed through ultrasonic measurements (double-distilled water serving as the reference medium). The values obtained for the stability parameter were 2.59·10−6 s−1 for 7CrHAp, 8.64·10−7 s−1 for 7CrHAp-CH, and 3.14·10−7 s−1 for chitosan (CH). These data underline that all samples are stable: CH is extremely stable, followed by 7CrHAp-CH (very stable) and 7CrHAp (stable). The in vitro biocompatibility of the 7CrHAp and 7CrHAp-CH coatings was evaluated with the aid of the MG63 cell line. The cytotoxic potential of these coatings towards MG63 cells was quantified using the MTT assay after 24 and 48 h of incubation. Our results highlight that both 7CrHAp and 7CrHAp-CH coatings exhibit high biocompatibility with MG63 cells, maintaining cell viability above 90% at both incubation times, thus supporting osteoblast-like cell proliferation. Furthermore, the antimicrobial efficacy of both 7CrHAp and 7CrHAp-CH samples was evaluated in vitro against the Pseudomonas aeruginosa 27853 ATCC (P. aeruginosa) reference strain. The in vitro antibacterial activity of the 7CrHAp and 7CrHAp-CH coatings was further evaluated against Pseudomonas aeruginosa 27853 ATCC (P. aeruginosa), Escherichia coli ATCC 25922 (E. coli) and Staphylococcus aureus ATCC 25923 (S. aureus) reference strains. In addition, atomic force microscopy (AFM) analysis was also used to investigate the ability of P. aeruginosa, E. coli and S. aureus cells to adhere and to develop colonies on the surfaces of the 7CrHAp and 7CrHAp-CH coatings. The results from the biological assays indicate that both coatings exhibit promising antibacterial properties, highlighting their potential for being used in biomedical applications, particularly in the development of novel antimicrobial devices. Full article
(This article belongs to the Special Issue Polysaccharides: Synthesis, Properties and Applications)
Show Figures

Figure 1

Back to TopTop