Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,321)

Search Parameters:
Keywords = antimicrobial material

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 691 KB  
Article
One-Pot Synthesis of Thiochromen-4-ones from 3-(Arylthio)propanoic Acids
by Kahlia S. Simpkins, Maggie Y. Guo, Toniyah D. Smith, Holden A. Hankerson and Fenghai Guo
Chemistry 2025, 7(5), 163; https://doi.org/10.3390/chemistry7050163 - 6 Oct 2025
Abstract
Thiochromen-4-ones are known to possess useful optical properties and rich bioactivities, including antioxidant, antimicrobial, and anticancer properties. They are known to inhibit tumor cell growth, induce apoptosis, and have antiplatelet aggregation effects. Thiochromen-4-ones are also used as synthons and precursors in organic synthesis [...] Read more.
Thiochromen-4-ones are known to possess useful optical properties and rich bioactivities, including antioxidant, antimicrobial, and anticancer properties. They are known to inhibit tumor cell growth, induce apoptosis, and have antiplatelet aggregation effects. Thiochromen-4-ones are also used as synthons and precursors in organic synthesis for bioactive agents. Although many synthetic approaches to oxygen-containing counterparts, chromones, have been reported, research on the synthesis of thiochromen-4-ones is scarce. The synthesis of thiochromen-4-ones can be challenging due to the inherent nature of sulfur, including its multiple oxidation states and tendency to form diverse bonding patterns. Here, we report the one-pot synthesis of thiochromen-4-ones, where two transformations of the starting material, 3-(arylthio)propanoic acid, are performed within a single reaction vessel, eliminating the need for an intermediate purification step. This one-pot reaction worked well with a variety of substrates with both electron-withdrawing and donating groups on the aromatic ring of 3-(arylthio)propanoic acids to give thiochromen-4-ones with good yields (up to 81%). This approach offers advantages like time and cost savings, increased efficiency, and reduced waste. This synthetic approach will allow access to a broader scope of thiochromen-4-ones due to the readily available thiophenols. Full article
(This article belongs to the Special Issue Organic Chalcogen Chemistry: Recent Advances)
Show Figures

Figure 1

19 pages, 1254 KB  
Review
Silver Nanoparticle–Silk Protein Nanocomposites: A Synergistic Biomimetic Approach for Advanced Antimicrobial Applications
by Mauro Pollini, Fabiana D’Urso, Francesco Broccolo and Federica Paladini
Biomimetics 2025, 10(10), 669; https://doi.org/10.3390/biomimetics10100669 - 5 Oct 2025
Abstract
The escalating global crisis of antimicrobial resistance demands innovative therapeutic strategies that transcend conventional approaches. This comprehensive review examines the groundbreaking synergistic integration of silver nanoparticles (AgNPs) with silk proteins (fibroin and sericin from Bombyx mori) to create advanced nanocomposite materials for [...] Read more.
The escalating global crisis of antimicrobial resistance demands innovative therapeutic strategies that transcend conventional approaches. This comprehensive review examines the groundbreaking synergistic integration of silver nanoparticles (AgNPs) with silk proteins (fibroin and sericin from Bombyx mori) to create advanced nanocomposite materials for biomedical applications. While extensive literature exists for AgNPs and silk proteins individually, a limited number of studies have explored their synergistic combination. This review consolidates this fragmented knowledge to establish the foundational framework for an emerging field. The unique properties of silk proteins as natural reducing, stabilizing, and capping agents enable environmentally friendly AgNPs synthesis while creating intelligent therapeutic platforms with emergent properties. These hybrid materials demonstrate superior performance in terms of antimicrobial efficacy, biocompatibility, and accelerated wound healing compared to the individual components. The nanocomposites exhibit broad-spectrum activity against multidrug-resistant pathogens while maintaining exceptional biocompatibility and promoting tissue regeneration. This integration represents a promising evolution toward biomimetic therapeutic platforms that work in harmony with biological systems, offering sustainable solutions to contemporary healthcare challenges. Full article
(This article belongs to the Special Issue Mechanical Properties and Functions of Bionic Materials/Structures)
Show Figures

Figure 1

18 pages, 1472 KB  
Article
Cassava Starch–Onion Peel Powder Biocomposite Films: Functional, Mechanical, and Barrier Properties for Biodegradable Packaging
by Assala Torche, Toufik Chouana, Soufiane Bensalem, Meyada Khaled, Fares Mohammed Laid Rekbi, Elyes Kelai, Şükran Aşgın Uzun, Furkan Türker Sarıcaoğlu, Maria D’Elia and Luca Rastrelli
Polymers 2025, 17(19), 2690; https://doi.org/10.3390/polym17192690 - 4 Oct 2025
Abstract
This study valorizes onion peel, an agro-industrial by-product rich in phenolic compounds and structural carbohydrates, for the development of cassava starch-based biodegradable films. The films were prepared using the solution casting method; a cassava starch matrix was mixed with a 2.5% glycerol solution [...] Read more.
This study valorizes onion peel, an agro-industrial by-product rich in phenolic compounds and structural carbohydrates, for the development of cassava starch-based biodegradable films. The films were prepared using the solution casting method; a cassava starch matrix was mixed with a 2.5% glycerol solution and heated to 85 °C for 30 min. A separate solution of onion peel powder (OPP) in distilled water was prepared at 25 °C. The two solutions were then combined and stirred for an additional 2 min before 25 mL of the final mixture was cast to form the films. Onion peel powder (OPP) incorporation produced darker and more opaque films, suitable for packaging light-sensitive foods. Film thickness increased with OPP content (0.138–0.218 mm), while moisture content (19.2–32.6%) and solubility (24.0–25.2%) decreased. Conversely, water vapor permeability (WVP) significantly increased (1.69 × 10−9–2.77 × 10−9 g·m−1·s−1·Pa−1; p < 0.0001), reflecting the hydrophilic nature of OPP. Thermal analysis (TGA/DSC) indicated stability up to 245 °C, supporting applications as food coatings. Morphological analysis (SEM) revealed OPP microparticles embedded in the starch matrix, with FTIR and XRD suggesting electrostatic and hydrogen–bond interactions. Mechanically, tensile strength improved (up to 2.71 MPa) while elongation decreased (14.1%), indicating stronger but less flexible films. Biodegradability assays showed slightly reduced degradation (29.0–31.8%) compared with the control (38.4%), likely due to antimicrobial phenolics inhibiting soil microbiota. Overall, OPP and cassava starch represent low-cost, abundant raw materials for the formulation of functional biopolymer films with potential in sustainable food packaging. Full article
(This article belongs to the Special Issue Applications of Biopolymer-Based Composites in Food Technology)
Show Figures

Figure 1

34 pages, 3132 KB  
Review
Innovative Applications of Hydrogels in Contemporary Medicine
by Maciej Rybicki, Karolina Czajkowska, Agata Grochowska, Bartłomiej Białas, Michał Dziatosz, Igor Karolczak, Julia Kot, Radosław Aleksander Wach and Karol Kamil Kłosiński
Gels 2025, 11(10), 798; https://doi.org/10.3390/gels11100798 - 3 Oct 2025
Abstract
Hydrogels are hydrophilic, soft polymer networks with high water content and mechanical properties that are tunable; they are also biocompatible. Therefore, as biomaterials, they are of interest to modern medicine. In this review, the main applications of hydrogels in essential clinical applications are [...] Read more.
Hydrogels are hydrophilic, soft polymer networks with high water content and mechanical properties that are tunable; they are also biocompatible. Therefore, as biomaterials, they are of interest to modern medicine. In this review, the main applications of hydrogels in essential clinical applications are discussed. Chemical, physical, or hybrid crosslinking of either synthetic or natural polymers allow for the precise control of hydrogels’ physicochemical properties and their specific characteristics for certain applications, such as stimuli-responsiveness, drug retention and release, and biodegradability. Hydrogels are employed in gynecology to regenerate the endometrium, treat infections, and prevent pregnancy. They show promise in cardiology in myocardial infarction therapy through injectable scaffolds, patches in the heart, and medication delivery. In rheumatoid arthritis, hydrogels act as drug delivery systems, lubricants, scaffolds, and immunomodulators, ensuring effective local treatment. They are being developed, among other applications, as antimicrobial coatings for stents and radiotherapy barriers for urology. Ophthalmology benefits from the use of hydrogels in contact lenses, corneal bandages, and vitreous implants. They are used as materials for chemoembolization, tumor models, and drug delivery devices in cancer therapy, with wafers of Gliadel presently used in clinics. Applications in abdominal surgery include hydrogel-coated meshes for hernia repair or Janus-type hydrogels to prevent adhesions and aid tissue repair. Results from clinical and preclinical studies illustrate hydrogels’ diversity, though problems remain with mechanical stability, long-term safety, and mass production. Hydrogels are, in general, next-generation biomaterials for regenerative medicine, individualized treatment, and new treatment protocols. Full article
(This article belongs to the Special Issue Polymer Hydrogels and Networks)
Show Figures

Figure 1

19 pages, 1283 KB  
Article
Antioxidant and Antiviral Potential of Cold-Brewed and Cold-Concentrated Plant Extracts
by Paulina Janicka, Damian Maksimowski, Aleksandra Chwirot, Maciej Oziembłowski, Katarzyna Michalczyk, Agnieszka Nawirska-Olszańska, Piotr Poręba, Sylwia Baluta, Ewa Kaczmar, Dominika Stygar and Barbara Bażanów
Int. J. Mol. Sci. 2025, 26(19), 9617; https://doi.org/10.3390/ijms26199617 - 2 Oct 2025
Abstract
Norovirus (NoV) is a symptomatic virus that is the leading cause of gastrointestinal disease. It spreads easily through the fecal–oral route and contact with contaminated food or surfaces. Maintaining a high level of hygiene in food industry settings and refocusing food production on [...] Read more.
Norovirus (NoV) is a symptomatic virus that is the leading cause of gastrointestinal disease. It spreads easily through the fecal–oral route and contact with contaminated food or surfaces. Maintaining a high level of hygiene in food industry settings and refocusing food production on isolating and testing natural compounds that exhibit antimicrobial and antioxidant properties are important elements in preventing NoVs infection. This study evaluated plant extracts prepared by cold brew and cold concentrate techniques for their antioxidant and antiviral activity. The extracts obtained demonstrated high antioxidant activity, with notable variation depending on the plant material, ranging from moderate to very strong levels. Correspondingly, high antiviral potential was observed, reaching the nearly complete inactivation of the virus. Remarkably, the highest virucidal effects were already achieved at relatively elevated, but not maximal, antioxidant activity levels. The results of the study indicate that cold water extraction techniques allow for the obtention of plant extracts showing strong virus-inactivating activity and favorable antioxidant activity. Full article
Show Figures

Figure 1

55 pages, 6540 KB  
Review
Green-Synthesized Nanomaterials for Water Disinfection: Mechanisms, Efficacy, and Environmental Safety
by Jannatul Ferdush, Md. Mahbubur Rahman, Md Mahadi Hassan Parvez, Md. Abdullah Al Mohotadi and Md. Nizam Uddin
Nanomaterials 2025, 15(19), 1507; https://doi.org/10.3390/nano15191507 - 1 Oct 2025
Abstract
Safe drinking water is essential, yet millions of people remain exposed to contaminated supplies. Conventional treatments such as chlorination and UV light can kill microbes, but they also create harmful byproducts, face resistance issues, and are not always sustainable. Green-synthesized nanomaterials (GSNMs) are [...] Read more.
Safe drinking water is essential, yet millions of people remain exposed to contaminated supplies. Conventional treatments such as chlorination and UV light can kill microbes, but they also create harmful byproducts, face resistance issues, and are not always sustainable. Green-synthesized nanomaterials (GSNMs) are emerging as an eco-friendly alternative. Produced with plants, microbes, algae, and natural polymers, these materials merge nanotechnology with green chemistry. Among them, silver, zinc oxide, copper oxide, titanium dioxide, and graphene-based nanomaterials show strong antimicrobial effects by disrupting membranes, generating reactive oxygen species (ROS), and damaging genetic material. Compared with chemically made nanoparticles, GSNMs are often safer, cheaper, and more environmentally compatible. Nevertheless, concerns about toxicity, environmental fate, and large-scale use remain. This review highlights recent progress in GSNM synthesis, antimicrobial mechanisms, and safety considerations, highlighting their potential to enable sustainable water disinfection while identifying critical areas for further research. Full article
Show Figures

Figure 1

12 pages, 2053 KB  
Article
Nano-Emulsification Potentiates Tea Tree Oil Bioactivity: High-Stability Formulation for Dual Antimicrobial and Antioxidant Food Preservation
by Congnan Cen, Xinxuan Wang, Huan Li, Song Miao, Jian Chen and Yanbo Wang
Foods 2025, 14(19), 3405; https://doi.org/10.3390/foods14193405 - 1 Oct 2025
Abstract
Essential oils play important roles in the modern food industry as additives and spices. At the same time, most essential oils have broad-spectrum bacteriostatic properties and can be used as natural antimicrobial materials. However, the application of essential oils is limited due to [...] Read more.
Essential oils play important roles in the modern food industry as additives and spices. At the same time, most essential oils have broad-spectrum bacteriostatic properties and can be used as natural antimicrobial materials. However, the application of essential oils is limited due to their strong volatility and insolubility in aqueous substrates. In this study, we used ultrasonic emulsification, carboxymethyl chitosan, and Tween 80 to formulate tea tree essential oil (TTO) nanoemulsions with high stability. With a minimum diameter of about 51 nm (PDI = 0.236 ± 0.021) post-emulsification, the TTO nanoemulsions disperse effectively in the drainage system and exhibit good stability after 14 days of storage. In addition, the bioactivity (antibacterial and antioxidant) of TTO nanoemulsions was significantly enhanced following emulsification, as evidenced by MIC and DPPH assays, indicating that nano-emulsification is beneficial to the development of various essential oils. TTO nanoemulsions can be used as a new food preservative to control the growth of bacteria and prevent the deterioration of food via oxidation. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

14 pages, 279 KB  
Article
Molecular Epidemiology of Different Bacterial Pathogens and Their Antimicrobial Resistance Genes Among Patients Suffering from Surgical Site Infections in Lebanon
by Inass Kawtharani, Ghassan Ghssein, Ola Srour, Abdul Amir Chaaban and Pascale Salameh
Microbiol. Res. 2025, 16(10), 216; https://doi.org/10.3390/microbiolres16100216 - 1 Oct 2025
Abstract
Background: Antimicrobial resistance (AMR) is a major global health threat, particularly in surgical site infections (SSIs), where multidrug-resistant (MDR) pathogens complicate treatment. Objective: This study aimed to identify antimicrobial resistance genes and assess their prevalence in bacterial species causing SSIs in Lebanon. Materials [...] Read more.
Background: Antimicrobial resistance (AMR) is a major global health threat, particularly in surgical site infections (SSIs), where multidrug-resistant (MDR) pathogens complicate treatment. Objective: This study aimed to identify antimicrobial resistance genes and assess their prevalence in bacterial species causing SSIs in Lebanon. Materials and Methods: The present research is a multicenter and prospective study that included patients who developed SSIs after surgery in seven hospitals, within the period of January 2024–September 2024. Bacterial isolates from wound swabs or tissue samples were identified using standard microbiological methods. Antimicrobial susceptibility was tested by disk diffusion, and resistance genes were detected by PCR. Data were analyzed using Statistical Package for the Social Sciences (SPSS). Results: Among 6933 surgical patients, 63 developed SSIs (0.91%; 95% CI [0.70–1.15]). Gram-negative bacteria predominated (73%), mainly Escherichia coli and Pseudomonas aeruginosa, while Gram-positive isolates accounted for 27%, mostly Staphylococcus aureus. MDR was observed in 71% of Gram-positive and 61% of Gram-negative isolates. The most frequent genes were mecA in S. aureus (100%) and coagulase-negative staphylococci (83.3%); blaCTX-M in E. coli, Klebsiella pneumoniae, and Enterobacter cloacae (100%); and blaNDM in E. cloacae (100%) and Acinetobacter baumannii (60%). blaKPC was less common, and no isolates carried Imipenemase (IMP), Verona integron-encoded metallo-β-lactamase (VIM), and Oxacillinase-48-like β-lactamase (OXA-48). Conclusions: This study highlights the high prevalence of antibiotic resistance in agents causing SSIs in Lebanese hospitals. Resistance genes, particularly mecA, blaCTX-M, and blaNDM, were highly prevalent in SSI pathogens, underscoring the urgent need for surveillance and judicious antibiotic use in Lebanese hospitals. Full article
36 pages, 8611 KB  
Article
Multifunctional Electrospun Materials from Poly(Vinyl Alcohol)/Chitosan and Polylactide Incorporating Rosmarinic Acid and Lidocaine with Antioxidant and Antimicrobial Properties
by Milena Ignatova, Dilyana Paneva, Selin Kyuchyuk, Nevena Manolova, Iliya Rashkov, Milena Mourdjeva and Nadya Markova
Polymers 2025, 17(19), 2657; https://doi.org/10.3390/polym17192657 - 30 Sep 2025
Abstract
Novel multifunctional fibrous materials were prepared by simultaneous dual spinneret electrospinning of two separate solutions differing in composition. This technique allowed for the preparation of materials built of two types of fibers: fibers from poly(vinyl alcohol) (PVA), chitosan (Ch), and rosmarinic acid (RA), [...] Read more.
Novel multifunctional fibrous materials were prepared by simultaneous dual spinneret electrospinning of two separate solutions differing in composition. This technique allowed for the preparation of materials built of two types of fibers: fibers from poly(vinyl alcohol) (PVA), chitosan (Ch), and rosmarinic acid (RA), and poly(L-lactide) (PLA) fibers containing lidocaine hydrochloride (LHC). Confocal laser scanning microscopy (CLSM) analyses showed that both types of fibers are present on the surface and in the bulk of the new materials. The presence of all components and some interactions between them were proven by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. RA and LHC were in an amorphous state in the fibers, and their presence affected the temperature characteristics and the crystallinity, as detected by differential scanning calorimetry (DSC) and X-ray diffraction analyses (XRD). The presence of PVA/Ch/RA fibers enabled the hydrophilization of the surface of the multifunctional fibrous materials (the water contact angle value was 0°). The newly developed materials demonstrated adequate mechanical properties, making them suitable for use in wound dressing applications. The RA-containing fibrous mats possessed high radical-scavenging activity (ca. 93%), and the combining with LHC led to an enhancement of this effect (ca. 98.5%). RA-containing fibrous mats killed all the pathogenic bacteria S. aureus and E. coli and decreased the titer of fungi C. albicans by ca. 0.4 log for a contact time of 24 h. Therefore, the new materials are prospective as antibacterial and atraumatic functional wound dressings, as systems for local drug delivery, and in medical skincare. Full article
(This article belongs to the Special Issue Electrospinning of Polymer Systems)
19 pages, 1817 KB  
Article
Urinary Tract Infections in a Single-Center Bulgarian Hospital: Trends in Etiology, Antibiotic Resistance, and the Impact of the COVID-19 Pandemic (2017–2022)
by Milena Yancheva Rupcheva, Kostadin Kostadinov, Yordan Kalchev, Petya Gardzheva, Eli Hristozova, Zoya Rachkovska, Gergana Lengerova, Andreana Angelova, Marianna Murdjeva and Michael M. Petrov
Antibiotics 2025, 14(10), 982; https://doi.org/10.3390/antibiotics14100982 - 30 Sep 2025
Abstract
Background: Urinary tract infections (UTIs) are among the most common hospital- and community-acquired infections, creating a substantial healthcare burden due to recurrence, complications, and rising antimicrobial resistance. Accurate diagnosis and timely antimicrobial therapy are essential. This study aimed to identify trends in [...] Read more.
Background: Urinary tract infections (UTIs) are among the most common hospital- and community-acquired infections, creating a substantial healthcare burden due to recurrence, complications, and rising antimicrobial resistance. Accurate diagnosis and timely antimicrobial therapy are essential. This study aimed to identify trends in the etiology, treatment, and resistance patterns of UTIs through a retrospective analysis of urine isolates processed at the Laboratory of Microbiology at University Hospital St. George in Plovdiv, the largest tertiary care and reference microbiology center in Bulgaria, between 2017 and 2022. Materials and Methods: A retrospective single-center study was performed at the hospital’s Microbiology Laboratory. During the study period, 74,417 urine samples from 25,087 hospitalized patients were screened with the HB&L UROQUATTRO system. Positive specimens were cultured on blood agar, Eosin-Methylene Blue, and chromogenic media. Identification was performed using biochemical assays, MALDI-TOF MS, and the Vitek 2 Compact system. Antimicrobial susceptibility testing included disk diffusion, MIC determination, broth microdilution (for colistin), and Vitek 2 Compact, interpreted according to EUCAST standards. Descriptive analysis and temporal resistance trends were evaluated with regression models, and interrupted time-series analysis was applied to assess COVID-19-related effects. Results: Out of 10,177 isolates, Gram-negative bacteria predominated (73%), with Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis as the leading pathogens. Among Gram-positives, Enterococcus faecalis was the most frequent. In the post-COVID-19 period, ESBL production increased in E. coli (34–38%), K. pneumoniae (66–77%), and P. mirabilis (13.5–24%). Carbapenem resistance rose in K. pneumoniae (to 40.6%) and P. aeruginosa (to 24%), while none was detected in E. coli. Colistin resistance increased in K. pneumoniae but remained absent in E. coli and P. aeruginosa. High-level aminoglycoside resistance in E. faecalis was stable (~70%), and vancomycin resistance in E. faecium rose from 4.6% to 8.9%. Conclusions: Both community- and hospital-acquired UTIs in Southeastern Bulgaria are increasingly linked to multidrug-resistant pathogens, particularly ESBL-producing and carbapenem-resistant Enterobacterales. Findings from the region’s largest referral center highlight the urgent need for continuous surveillance, rational antibiotic use, and novel therapeutic approaches. Full article
Show Figures

Figure 1

20 pages, 3103 KB  
Article
Agro-Industrial Residues as Cost-Effective and Sustainable Substrates for the Cultivation of Epicoccum nigrum, with Insights into Growth Kinetic Characteristics and Biological Activities
by Zlatka Ganeva, Bogdan Goranov, Mariya Brazkova, Denica Blazheva, Radka Baldzhieva, Petya Stefanova, Anton Slavov, Rositsa Denkova-Kostova, Stefan Bozhkov and Galena Angelova
Appl. Sci. 2025, 15(19), 10571; https://doi.org/10.3390/app151910571 - 30 Sep 2025
Abstract
A significant quantity of agro-industrial waste is generated globally across various agricultural sectors and food industries. Composed primarily of cellulose, hemicellulose, and lignin—known as lignocellulosic materials—this waste holds significant potential and can be repurposed as a nutrient-rich substrate for mushroom cultivation. Therefore, mushroom [...] Read more.
A significant quantity of agro-industrial waste is generated globally across various agricultural sectors and food industries. Composed primarily of cellulose, hemicellulose, and lignin—known as lignocellulosic materials—this waste holds significant potential and can be repurposed as a nutrient-rich substrate for mushroom cultivation. Therefore, mushroom cultivation can be regarded as a promising biotechnological approach for the reduction and valorization of agro-industrial waste. This investigation is the first to explore the utilization of agro-industrial waste- and by-products for the cultivation of Epicoccum nigrum for the production of extracts with valuable biological activities. The logistic curve and autocatalytic growth models were applied to study the kinetics of the growth process on wheat bran, sunflower cake, wheat straw, pine sawdust, and steam-distilled lavender straw substrates. Through mathematical modeling, the optimal composition of a nutrient medium containing the selected substrates was determined and successfully validated in experimental conditions. Biologically active water extracts were obtained after solid-state cultivation with α-amylase and cellulase activity up to 10.6 ± 0.6 U/mL and 0.52 ± 0.03 U/g, respectively. The extracts exhibited antimicrobial activity against fungal strains from six different species, and the most susceptible was the phytopathogen Sclerotinia sclerotiorum, with a minimum inhibitory concentration of 0.156–0.313 mg/mL. Full article
Show Figures

Figure 1

19 pages, 1118 KB  
Review
Local Infections Associated with Ventricular Assist Devices: Materials-Related Challenges and Emerging Solutions
by Klaudia Cholewa, Przemysław Kurtyka, Agnieszka Szuber-Dynia, Artur Kapis and Maciej Gawlikowski
Materials 2025, 18(19), 4541; https://doi.org/10.3390/ma18194541 - 30 Sep 2025
Abstract
Although heart transplantation remains the gold standard in the treatment of advanced heart failure, the limited availability of donor organs and the growing number of patients requiring long-term care have necessitated wider implementation of mechanical circulatory support (MCS). Ventricular assist devices (VADs) substantially [...] Read more.
Although heart transplantation remains the gold standard in the treatment of advanced heart failure, the limited availability of donor organs and the growing number of patients requiring long-term care have necessitated wider implementation of mechanical circulatory support (MCS). Ventricular assist devices (VADs) substantially improve survival and quality of life, yet their clinical use is still constrained by serious complications, most notably local infections at percutaneous exit sites. This challenge persists across all device generations, from extracorporeal pulsatile pumps to contemporary continuous-flow systems. While fourth-generation concepts based on transcutaneous energy transfer are under development, unresolved issues such as thermal tissue injury continue to impede their adoption. This review critically examines current evidence on local infections, with particular emphasis on the role of biomaterials in bacterial colonization. The clinical burden and microbial etiology, dominated by Staphylococcus aureus and Staphylococcus epidermidis, are outlined, together with the limitations of existing material solutions, which lack durable antimicrobial activity. These infections frequently result in tissue necrosis, sepsis, rehospitalization, and elevated treatment costs, and their management is further complicated by the global rise in antimicrobial resistance. By synthesizing available data and identifying key shortcomings of current materials, this review underscores the urgent need for next-generation biomaterials with enhanced biocompatibility, resistance to microbial adhesion, and intrinsic or functionalized antimicrobial activity. Such advances are essential to improve the long-term safety and clinical outcomes of MCS therapy. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

15 pages, 803 KB  
Article
Mechanical and Antimicrobial Evaluation of Chitosan-Coated Elastomeric Orthodontic Modules
by Lucía Gabriela Beltrán-Novelo, Fernando Javier Aguilar-Pérez, Myriam Angélica De La Garza-Ramos, Arturo Abraham Cienfuegos-Sarmiento, José Rubén Herrera-Atoche, Martha Gabriela Chuc-Gamboa, Jacqueline Adelina Rodríguez-Chávez and Juan Valerio Cauich-Rodríguez
Dent. J. 2025, 13(10), 447; https://doi.org/10.3390/dj13100447 - 29 Sep 2025
Abstract
Background/Objectives: Orthodontic appliances disrupt oral biofilm homeostasis, leading to an increase in plaque and disease risk. Elastomeric modules (EMs) promote bacterial growth due to their material composition. Surface coatings have been developed to reduce bacterial colonization. We evaluated the mechanical, antimicrobial, and [...] Read more.
Background/Objectives: Orthodontic appliances disrupt oral biofilm homeostasis, leading to an increase in plaque and disease risk. Elastomeric modules (EMs) promote bacterial growth due to their material composition. Surface coatings have been developed to reduce bacterial colonization. We evaluated the mechanical, antimicrobial, and cell viability properties of a chitosan coating for EMs. Methods: EMs were coated with chitosan (CS) and chitosan-glutaraldehyde (CS-GTA) to assess antimicrobial and cell viability. Uncoated EMs were used as a control. These surface-coated modules were characterized and analyzed with Fourier transform infrared (FTIR) and Raman spectroscopy, and tensile testing. Antibacterial activity was assessed by colony-forming units (CFU) counts after incubation. Cell viability was tested with gingival fibroblasts using the MTT assay. ANOVA, Tukey, Kolmogorov–Smirnov, and Kruskal–Wallis tests were used for statistical analysis. Results: Raman spectra of the chitosan coatings showed characteristic molecular vibration bands. ANOVA revealed a significant difference in mechanical properties between the materials and between the control and the CS-GTA groups, confirmed by the Tukey post hoc test. No significant difference was observed between the groups in the Yield Stress test. All the coated groups showed reduced CFU counts in the antibacterial assay. The average cell viability of the coated groups was 85% and 89%. Conclusions: We synthesized CS and GTA-cross-linked chitosan coatings. The coatings did not affect the mechanical properties of the elastomeric modules. The chitosan and glutaraldehyde-cross-linked CS coatings inhibited bacterial growth. No significant differences were observed in antibacterial activity between the CS and the GTA-crosslinked chitosan coatings. Full article
36 pages, 20275 KB  
Article
Development and Physico-Chemical and Antibacterial Characterization of Chromium-Doped Hydroxyapatite in a Chitosan Matrix Coating
by Daniela Predoi, Carmen Steluta Ciobanu, Simona Liliana Iconaru, Roxana Alexandra Petre, Krzysztof Rokosz, Steinar Raaen and Mihai Valentin Predoi
Polymers 2025, 17(19), 2633; https://doi.org/10.3390/polym17192633 - 29 Sep 2025
Abstract
Chromium-doped hydroxyapatite (7CrHAp) and chromium-doped hydroxyapatite in chitosan matrix (7CrHAp-CH) coatings were synthesized in order to address the need for biomaterials with improved physico-chemical and biological properties for biomedical applications. Both chromium-doped hydroxyapatite (7CrHAp) and chromium-doped hydroxyapatite in chitosan matrix (7CrHAp-CH) coatings could [...] Read more.
Chromium-doped hydroxyapatite (7CrHAp) and chromium-doped hydroxyapatite in chitosan matrix (7CrHAp-CH) coatings were synthesized in order to address the need for biomaterials with improved physico-chemical and biological properties for biomedical applications. Both chromium-doped hydroxyapatite (7CrHAp) and chromium-doped hydroxyapatite in chitosan matrix (7CrHAp-CH) coatings could represent promising materials for biomedical applications due to their superior properties. This study aims to evaluate the physico-chemical and in vitro biological properties of 7CrHAp and 7CrHAp-CH coatings to determine the impact of chitosan incorporation on the physico-chemical and biological features. The results reported in this study indicate that addition of chitosan improves surface uniformity and biological properties, highlighting their potential for uses in biomedical applications. In this study, coatings of chromium-doped hydroxyapatite (7CrHAp, with xCr = 0.07) and its composite variant embedded in a chitosan matrix (7CrHAp-CH) were systematically analyzed using a suite of characterization techniques: X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and metallographic microscopy (MM). The results of the XRD analysis revealed that the average crystal size was 19.63 nm for 7CrHAp and 16.29 nm for 7CrHAp-CH, indicating a decrease in crystallite size upon CH incorporation. The films were synthesized via the dip coating method using stable suspensions, whose stability was assessed through ultrasonic measurements (double-distilled water serving as the reference medium). The values obtained for the stability parameter were 2.59·10−6 s−1 for 7CrHAp, 8.64·10−7 s−1 for 7CrHAp-CH, and 3.14·10−7 s−1 for chitosan (CH). These data underline that all samples are stable: CH is extremely stable, followed by 7CrHAp-CH (very stable) and 7CrHAp (stable). The in vitro biocompatibility of the 7CrHAp and 7CrHAp-CH coatings was evaluated with the aid of the MG63 cell line. The cytotoxic potential of these coatings towards MG63 cells was quantified using the MTT assay after 24 and 48 h of incubation. Our results highlight that both 7CrHAp and 7CrHAp-CH coatings exhibit high biocompatibility with MG63 cells, maintaining cell viability above 90% at both incubation times, thus supporting osteoblast-like cell proliferation. Furthermore, the antimicrobial efficacy of both 7CrHAp and 7CrHAp-CH samples was evaluated in vitro against the Pseudomonas aeruginosa 27853 ATCC (P. aeruginosa) reference strain. The in vitro antibacterial activity of the 7CrHAp and 7CrHAp-CH coatings was further evaluated against Pseudomonas aeruginosa 27853 ATCC (P. aeruginosa), Escherichia coli ATCC 25922 (E. coli) and Staphylococcus aureus ATCC 25923 (S. aureus) reference strains. In addition, atomic force microscopy (AFM) analysis was also used to investigate the ability of P. aeruginosa, E. coli and S. aureus cells to adhere and to develop colonies on the surfaces of the 7CrHAp and 7CrHAp-CH coatings. The results from the biological assays indicate that both coatings exhibit promising antibacterial properties, highlighting their potential for being used in biomedical applications, particularly in the development of novel antimicrobial devices. Full article
(This article belongs to the Special Issue Polysaccharides: Synthesis, Properties and Applications)
Show Figures

Figure 1

28 pages, 4404 KB  
Article
Nanostructured Dual-Delivery System with Antioxidant and Synergistic Approach for Targeted Dermal Treatment
by Lucia Dzurická, Julie Hoová, Barbora Dribňáková, Petra Skoumalová, Paola Rappelli and Ivana Márová
Int. J. Mol. Sci. 2025, 26(19), 9485; https://doi.org/10.3390/ijms26199485 - 28 Sep 2025
Abstract
Biocompatible nanofibrous dressings integrating bioactive compounds with antioxidative and antimicrobial properties offer a promising solution for effective wound healing. In the presented study, we developed a novel dual-delivery system by combining forcespun nanofibres with poly(3-hydroxybutyrate) (PHB)-liposomes to enhance bioavailability and enable targeted release [...] Read more.
Biocompatible nanofibrous dressings integrating bioactive compounds with antioxidative and antimicrobial properties offer a promising solution for effective wound healing. In the presented study, we developed a novel dual-delivery system by combining forcespun nanofibres with poly(3-hydroxybutyrate) (PHB)-liposomes to enhance bioavailability and enable targeted release of bioactive agents (eugenol, thymol, curcumin, ampicillin, streptomycin, gentamicin). These agents exhibited notable antioxidant activity (2.27–2.33 mmol TE/g) and synergistic or partially synergistic antimicrobial effects against E. coli, M. luteus, S. epidermidis, and P. aeruginosa ( Fractional Inhibitory Concentration index 0.09–0.73). The most potent combinations, particularly thymol, eugenol, and ampicillin, were encapsulated in the nanofibre–liposomal matrix. The successful preparation of a new combined delivery system was confirmed by structural analysis using Electron and Fluorescence Microscopy. The dual-composite materials retained the antimicrobial properties of the individual compounds upon release, with the highest increases of ~73.56% against S. epidermidis. Cell viability and in vitro immunology assays using the human keratinocyte cell line (HaCaT) showed a slight decrease in viability and immune response stimulation, while not impairing wound re-epithelisation. These findings highlight the potential of firstly reported novel carrier utilising both PHB-nanofibres and PHB-liposomes, exhibiting simultaneous antioxidant and antimicrobial activity as promising candidates for the treatment of infected wounds under oxidative stress. Full article
(This article belongs to the Special Issue Bioactive Compounds and Their Antioxidant Role: 2nd Edition)
Show Figures

Figure 1

Back to TopTop