Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,723)

Search Parameters:
Keywords = appearance attributes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5073 KB  
Article
Microstructure and Properties of Binderless μWC Obtained Using the Electroconsolidation Method
by Edvin Hevorkian, Waldemar Samociuk, Miroslaw Rucki, Zbigniew Krzysiak, Daniel Pieniak, Volodymyr Nerubatskyi, Volodymyr Chyshkala, Serhii Lytovchenko, Leszek Chalko, Dmitrij Morozow, Jacek Caban and Vitalii Kulich
Materials 2025, 18(20), 4646; https://doi.org/10.3390/ma18204646 (registering DOI) - 10 Oct 2025
Viewed by 168
Abstract
This paper contributes to the knowledge of binderless tungsten carbide (WC), which attracts the attention of many engineers and scientists for its superior properties, but its application is limited due to difficulties with the consolidation of initial powders. In the present study, the [...] Read more.
This paper contributes to the knowledge of binderless tungsten carbide (WC), which attracts the attention of many engineers and scientists for its superior properties, but its application is limited due to difficulties with the consolidation of initial powders. In the present study, the microstructure and mechanical properties of binderless WC, sintered with the electroconsolidation technique from the initial powder of a grain size of 100–200 nm, were investigated. The material was compared with nWC sintered with the same method from a nanopowder with particles of size ca. 70 nm. The binderless μWC demonstrated hardness of HV = 30.06 ± 0.09 GPa, which is almost 14% higher than that of nWC, but its fracture toughness was lower (KIC = 6.59 ± 0.46 MPa·m1/2 under 1 kg load). These differences can be attributed to the improved homogeneity of the μWC microstructure, where no large agglomerates appeared to be present in nWC. The measured plastic properties, with no signs of brittle fracture, further confirm the applicability of the binderless WC under contact stress conditions. Full article
Show Figures

Figure 1

17 pages, 664 KB  
Review
Influence of Ultrasonic Activation of Endodontic Irrigants on Microbial Reduction and Postoperative Pain: A Scoping Review of In Vivo Studies
by Jacob Marx, Corban Ward, Bayler Gunnell, Zachary Marx, Alicia Parry, Samuel Dyal, Amir Mohajeri and Man Hung
Dent. J. 2025, 13(10), 459; https://doi.org/10.3390/dj13100459 - 8 Oct 2025
Viewed by 176
Abstract
Objective: Root canal irrigation plays a critical role in achieving effective chemomechanical disinfection during endodontic therapy. Conventional syringe irrigation, typically using sodium hypochlorite, ethylenediaminetetraacetic acid, and chlorhexidine, is limited by its delivery method and often fails to adequately penetrate complex canal anatomies, compromising [...] Read more.
Objective: Root canal irrigation plays a critical role in achieving effective chemomechanical disinfection during endodontic therapy. Conventional syringe irrigation, typically using sodium hypochlorite, ethylenediaminetetraacetic acid, and chlorhexidine, is limited by its delivery method and often fails to adequately penetrate complex canal anatomies, compromising disinfection. Advancements such as ultrasonic and multisonic irrigation systems aim to address these limitations. This scoping review compares the clinical effectiveness of ultrasonic irrigation techniques with conventional syringe irrigation, focusing exclusively on in vivo studies conducted within the oral environment. Methods: A comprehensive scoping review was conducted using PubMed, Scopus, Dentistry & Oral Sciences Source, and Google Scholar. Peer-reviewed, full-text articles published in English between 2015 and 2025 were screened by four independent reviewers based on predefined inclusion and exclusion criteria. Eligible studies were thematically analyzed. Results: Of 312 records screened, eleven studies met the inclusion criteria. Ultrasonic irrigation was associated with improved clinical outcomes, particularly greater reductions in bacterial load and endotoxins; however, findings regarding its effect on postoperative pain were inconsistent, with some studies reporting a benefit while others observed no significant difference. These outcomes were attributed to mechanisms such as acoustic streaming and cavitation, which enhance irrigant penetration, promote fluid dynamics, and facilitate debridement in anatomically complex regions. Conclusions: Ultrasonic irrigation appears to hold promise for enhancing the efficacy and efficiency of root canal treatment. Existing in vivo studies suggest potential clinical advantages over conventional syringe irrigation, underscoring the need for further high-quality clinical research to more definitively establish its benefits. Full article
Show Figures

Graphical abstract

15 pages, 6275 KB  
Article
The Influence of Mineralized Microorganisms on the Mechanics and Pore Structure of Marine Sandy Formation
by Shaojun Zheng, Chengxiang Tang, Tianle Liu, Shunbo Qin, Zihang Wang and Hourun Lai
J. Mar. Sci. Eng. 2025, 13(10), 1917; https://doi.org/10.3390/jmse13101917 - 6 Oct 2025
Viewed by 225
Abstract
Well cementing is an important step in oil and gas development. It uses cement to seal the formation and the casing, preventing fluid leakage. However, when conducting offshore oil well cementing operations, deep-water formations are usually weakly consolidated soils, and it is difficult [...] Read more.
Well cementing is an important step in oil and gas development. It uses cement to seal the formation and the casing, preventing fluid leakage. However, when conducting offshore oil well cementing operations, deep-water formations are usually weakly consolidated soils, and it is difficult to form a good cementation between the cement and formation. Therefore, enhancing the strength of the formation is one of the effective measures. This study uses the microbial-induced carbonate precipitation technology to cement sandy formations containing clay minerals. The triaxial tests were conducted to evaluate the consolidation effectiveness in the presence of three clay minerals: montmorillonite, illite, and kaolinite. X-ray computed tomography was utilized to characterize microscopic pore parameters, while thermogravimetric analysis, X-ray diffraction, and surface potential measurements were applied to analyze the mechanisms of clay minerals affecting microbial consolidation. The results showed that microbial mineralization mainly affects the cohesion of the samples. The cohesion of the montmorillonite sample increased from 20 kPa to 65.4 kPa, an increase of up to 3.27 times. The other two samples (illite and kaolinite) had increases of only 0.33 times and 1.82 times. Although the strength of the montmorillonite sample increased the most, unexpected large pores appeared with a diameter of over 120 µm, accounting for 7.1%. This is mainly attributed to the mineral expansion property. The expansion of the minerals will trap more microorganisms in the sample, thereby generating more calcium carbonate. And it also reduced the gaps between sand particles, creating favorable conditions for the connection of calcium carbonate. Although the surface charge of the minerals also affects the attachment of microorganisms, all three minerals have negative charges and a difference of no more than 0.84 mV (pH = 9). Therefore, the expansion property of the minerals is the dominant factor affecting the mechanical and microstructure of the sample. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 1303 KB  
Article
Marine Mammals’ Fauna Detection via eDNA Methodology in Pagasitikos Gulf (Greece)
by Elena Akritopoulou, Athanasios Exadactylos, Anastasia Komnenou, Joanne Sarantopoulou, Christos Domenikiotis and Georgios A. Gkafas
Diversity 2025, 17(10), 692; https://doi.org/10.3390/d17100692 - 3 Oct 2025
Viewed by 908
Abstract
Marine mammals are important ecological bio-indicators of marine ecosystems impacted by a plethora of anthropogenic and environmental threats. Genomics detects genetic variation, adaptation to environmental shifts, and susceptibility to diseases in marine mammal species. In this study, eDNA was utilized for the first [...] Read more.
Marine mammals are important ecological bio-indicators of marine ecosystems impacted by a plethora of anthropogenic and environmental threats. Genomics detects genetic variation, adaptation to environmental shifts, and susceptibility to diseases in marine mammal species. In this study, eDNA was utilized for the first time in the Pagasitikos Gulf over three consecutive years (2022–2024) in order to detect marine mammal species. Additionally, visual monitoring and eDNA results were compared to reveal the pros and cons of the two methodologies. The gulf was zoned into five different areas with respect to oceanographic features for sampling. DNA extraction was assessed by using a standard protocol of phenol–chloroform followed by PCR amplification using the 16S rRNA gene. A total of 5,209,613 highly filtered sequence reads were attributed to 108 species. Among these, Monachus monachus, Tursiops truncatus, and Ziphius cavirostris species were detected. This novel detection of Z. cavirostris in the relatively shallow waters of the Gulf of Pagasitikos raised the question of whether it was a random event or a new ecological trend. Z. cavirostris and M. monachus appeared to share the same marine areas within the gulf. In the era of the climate crisis, eDNA provides essential information on marine mammals’ ecological status, yields novel detections, and predicts behavioral changes essential to deep-diving species. Full article
Show Figures

Figure 1

17 pages, 312 KB  
Review
The Science and Evolutionary Perspective of Beautiful Skin
by Fernando Valenzuela, Daniza Bilicic, Dan Hartmann and Catalina Retamal
Cosmetics 2025, 12(5), 216; https://doi.org/10.3390/cosmetics12050216 - 2 Oct 2025
Viewed by 570
Abstract
Quality skin has long been a symbol of health and attractiveness, reflecting both genetic and environmental influences. Multiple elements contribute to beautiful skin. This complex topic influences modern dermatological practices and skincare approaches. This article reviews and explores the characteristics that define beautiful [...] Read more.
Quality skin has long been a symbol of health and attractiveness, reflecting both genetic and environmental influences. Multiple elements contribute to beautiful skin. This complex topic influences modern dermatological practices and skincare approaches. This article reviews and explores the characteristics that define beautiful skin, integrating physical attributes with the scientific foundations that underpin them. It also delves into the evolutionary significance of skin appearance and the impact of visible skin conditions on social and psychological well-being. Additionally, it reviews advances in dermatological treatments and preventive measures aimed at achieving beautiful skin. Full article
(This article belongs to the Section Cosmetic Dermatology)
20 pages, 3117 KB  
Article
Physicochemical and Rheological Properties of Floury Rice Powder with Different Particle Sizes: Effects on Gluten-Free Sponge Cake Qualities
by Hyebin Jeon, Jungae Lee, Tae Gyu Nam, Hyunwook Choi and Hyun-Seok Kim
Gels 2025, 11(10), 789; https://doi.org/10.3390/gels11100789 - 1 Oct 2025
Viewed by 277
Abstract
This study investigated the physicochemical and rheological properties of floury rice powder (FRP) with different particle sizes and their effects on the quality characteristics of gluten-free butter sponge cake. Soft rice grain (Baromi2 variety) was dry-milled and sieved into four fractions: FR1 (60 [...] Read more.
This study investigated the physicochemical and rheological properties of floury rice powder (FRP) with different particle sizes and their effects on the quality characteristics of gluten-free butter sponge cake. Soft rice grain (Baromi2 variety) was dry-milled and sieved into four fractions: FR1 (60 mesh overs), FR2 (60–80 mesh), FR3 (80–100 mesh), and FR4 (100 mesh throughs). FRP fractions were analyzed for chemical composition, swelling power, solubility, gelatinization, pasting viscosity, and viscoelastic property. Gluten-free cakes made using a whole-egg foam method were evaluated for morphological structure, baking loss, moisture, specific volume and firmness. With decreasing FRP particle size, there were increasing trends in solubility, pasting viscosity, resistance to deformation, viscoelastic attributes (G′ and G″), and gel rigidity. FR3 and FR4 cakes exhibited flat and puffy loaves compared to FR1 and FR2 cakes with loaf collapses. The finer FRP enhanced the morphological balances of the cakes. Increasing trends in specific volume and firmness were observed as FRP particle size decreased. These results paralleled the solubility, pasting, rheological, and gelling properties of FRP itself. Overall, the results suggest that the rheological and gelling properties of FRP may play a role in determining the quality of gluten-free sponge cakes. In addition, FRP with a particle size of 80–100 mesh appears most appropriate for gluten-free sponge cake. Full article
Show Figures

Figure 1

17 pages, 2637 KB  
Article
Effects of a Ready-to-Drink Hydrolyzed Collagen from Sea Bass Skin on Skin Health: A 30-Day Clinical Trial
by Suttiwan Wunnoo, Chanawee Jakkawanpitak, Rajeev Shankar Rajagopal and Thanaporn Amnuaikit
Sci 2025, 7(4), 134; https://doi.org/10.3390/sci7040134 - 1 Oct 2025
Viewed by 632
Abstract
Food waste from fish processing contributes significantly to environmental pollution, and fish skin is often discarded despite being a rich collagen source. This study evaluated the efficacy and consumer satisfaction of a ready-to-drink collagen supplement made from hydrolyzed collagen derived from seabass skin. [...] Read more.
Food waste from fish processing contributes significantly to environmental pollution, and fish skin is often discarded despite being a rich collagen source. This study evaluated the efficacy and consumer satisfaction of a ready-to-drink collagen supplement made from hydrolyzed collagen derived from seabass skin. The compositional analysis of this study revealed α-amino groups, hydroxyproline, and amino acids essential for skin elasticity, hydration, and tissue repair. A 30-day clinical trial was conducted in 36 Thai volunteers who were aged between 20 to 70 years, and their skin condition was assessed using a facial skin analyzer and a moisture analyzer on days 0, 15, and 30. Participants also completed self-perception and sensory satisfaction questionnaires. The results showed improved skin moisture, reduced pore size, and smoother skin texture. Participants reported high satisfaction, especially regarding increased moisture and skin smoothness. Sensory score evaluation showed favorable scores for color and taste; however, odor was the least preferred attribute with the lowest score. Notably, no adverse effects were reported throughout this study. The findings suggest that fish skin-derived collagen supplements can enhance skin appearance while offering a sustainable approach that converts fish by-products into functional skincare solutions aligned with global sustainability goals. Full article
Show Figures

Figure 1

22 pages, 1227 KB  
Article
Theoretically Based Dynamic Regression (TDR)—A New and Novel Regression Framework for Modeling Dynamic Behavior
by Derrick K. Rollins, Marit Nilsen-Hamilton, Kendra Kreienbrink, Spencer Wolfe, Dillon Hurd and Jacob Oyler
Stats 2025, 8(4), 89; https://doi.org/10.3390/stats8040089 - 28 Sep 2025
Viewed by 261
Abstract
The theoretical modeling of a dynamic system will have derivatives of the response (y) with respect to time (t). Two common physical attributes (i.e., parameters) of dynamic systems are dead-time (θ) and lag (τ). Theoretical [...] Read more.
The theoretical modeling of a dynamic system will have derivatives of the response (y) with respect to time (t). Two common physical attributes (i.e., parameters) of dynamic systems are dead-time (θ) and lag (τ). Theoretical dynamic modeling will contain physically interpretable parameters such as τ and θ with physical constraints. In addition, the number of unknown model-based parameters can be considerably smaller than empirically based (i.e., lagged-based) approaches. This work proposes a Theoretically based Dynamic Regression (TDR) modeling approach that overcomes critical lagged-based modeling limitations as demonstrated in three large, multiple input, highly dynamic, real data sets. Dynamic Regression (DR) is a lagged-based, empirical dynamic modeling approach that appears in the statistics literature. However, like all empirical approaches, the model structures do not contain first-principle interpretable parameters. Additionally, several time lags are typically needed for the output, y, and input, x, to capture significant dynamic behavior. TDR uses a simplistic theoretically based dynamic modeling approach to transform xt into its dynamic counterpart, vt, and then applies the methods and tools of static regression to vt. TDR is demonstrated on the following three modeling problems of freely existing (i.e., not experimentally designed) real data sets: 1. the weight variation in a person (y) with four measured nutrient inputs (xi); 2. the variation in the tray temperature (y) of a distillation column with nine inputs and eight test data sets over a three year period; and 3. eleven extremely large, highly dynamic, subject-specific models of sensor glucose (y) with 12 inputs (xi). Full article
Show Figures

Figure 1

15 pages, 361 KB  
Article
Natural Additives for Sustainable Meat Preservation: Salicornia ramosissima and Acerola Extract in Mertolenga D.O.P. Meat
by Gonçalo Melo, Joana Paiva, Carla Gonçalves, Sónia Saraiva, Madalena Faria, Tânia Silva-Santos, Márcio Moura-Alves, Juan García-Díez, José M. M. M. de Almeida, Humberto Rocha and Cristina Saraiva
Resources 2025, 14(10), 153; https://doi.org/10.3390/resources14100153 - 28 Sep 2025
Viewed by 302
Abstract
The search for natural additives from underutilized halophytes and fruit by-products aligns with circular economy principles, addressing consumer demand for healthier and more sustainable alternatives to salt and synthetic antioxidants in foods. Salicornia ramosissima, a halophytic plant rich in minerals, and Malpighia [...] Read more.
The search for natural additives from underutilized halophytes and fruit by-products aligns with circular economy principles, addressing consumer demand for healthier and more sustainable alternatives to salt and synthetic antioxidants in foods. Salicornia ramosissima, a halophytic plant rich in minerals, and Malpighia emarginata (acerola), a fruit rich in bioactive compounds, were selected for their potential to enhance meat preservation while reducing reliance on conventional salt and chemical additives. This study evaluated the effects of replacing salt with S. ramosissima powder (1% and 2%) and adding acerola extract (0.3%) in Mertolenga D.O.P. beef hamburgers. Control, 1% salt, acerola, and salicornia formulations were analyzed over 10 days for the following: (1) microbial counts (mesophiles, psychrotrophics, Enterobacteriaceae, Pseudomonas spp., Brochothrix thermosphacta, lactic acid bacteria, fungi, Salmonella spp., and E. coli); (2) physicochemical parameters (pH, aw, and CIE-Lab color); and (3) sensory attributes (odor, color, and freshness). Higher Salicornia concentrations negatively affected color (lower a* values) and sensory perception (darker appearance). Acerola extract improved color stability and delayed the development of off-odors, contributing to higher freshness scores throughout storage. No significant differences in microbial counts were observed between treatments. Overall, acerola and low-dose Salicornia showed potential as natural ingredients for meat preservation, with minimal impact on physicochemical and microbiological quality. These findings support the use of halophytes and fruit extracts in sustainable meat preservation strategies. Full article
Show Figures

Figure 1

14 pages, 10266 KB  
Article
Color Mechanism of Blue Myanmar Jadeite Jade: The Role of Trace Elements and Mineralogical Characteristics
by Shangzhan Dai, Yu Zhang, Guanghai Shi and Taafee Long
Crystals 2025, 15(10), 843; https://doi.org/10.3390/cryst15100843 - 27 Sep 2025
Viewed by 342
Abstract
Myanmar blue jadeite jade is a rare and highly prized gemstone, yet its coloration and formative mechanisms remain poorly understood. In this study, petrographic analysis, ultraviolet–visible (UV–Vis) spectroscopy, electron probe microanalysis (EPMA), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were performed [...] Read more.
Myanmar blue jadeite jade is a rare and highly prized gemstone, yet its coloration and formative mechanisms remain poorly understood. In this study, petrographic analysis, ultraviolet–visible (UV–Vis) spectroscopy, electron probe microanalysis (EPMA), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were performed on a sample of Myanmar blue jadeite with small white blocks to investigate its mineral composition, trace element distribution, and coloration mechanisms. Most of the sample was found to be blue, with surrounding white areas occurring in small ball-shaped blocks. The main mineral component in both the blue and white domains was jadeite. Although both areas underwent recrystallization, their textures differed significantly. The blue areas retained primary structural features within a medium- to fine-grained texture, reflecting relatively weaker recrystallization. The white areas, however, were recrystallized into a micro-grained texture, reflecting relatively stronger recrystallization, with the superimposed effects of external stress producing a fragmented appearance. The blue jadeite had relatively higher contents of Ti, Fe, Ca, and Mg, while the white jadeite contained compositions close to those of near-end-member jadeite. It was noted that, while white jadeite may have a high Ti content, its Fe content is low. UV–Vis spectra showed a broad absorption band at 610 nm associated with Fe2+-Ti4+ charge transfer and a gradually increasing absorption band starting at 480 nm related to V4+. Combining the chemical composition and the characteristics of the UV–Vis spectra, we infer that the blue coloration of jadeite is attributed to Fe2+-Ti4+ charge transfer; i.e., the presence of both Ti and Fe in blue jadeite plays a key role in its color formation. V4+ exhibited no significant linear correlation with the development of blue coloration. Prominent oscillatory zoning was observed in the jadeite, transitioning from NaAlSi2O6-dominant cores to Ca-Mg-Fe-Ti-enriched rims, reflecting the trend of fluid evolution during blue jadeite crystallization. Petrographic analysis indicated that the formation of the Myanmar blue jadeite occurred in two or three stages, with the blue regions forming earlier than the white regions. The blue jadeite also underwent significant recrystallization. Our findings contribute to the understanding of the formation of blue jadeite and the diversity of colors in jadeite jade. Full article
(This article belongs to the Section Mineralogical Crystallography and Biomineralization)
Show Figures

Figure 1

29 pages, 1758 KB  
Article
Liquid Crystallinity in Epoxy Networks: A Systematic Study of Thermal Conductivity and Structure
by Elias Chalwatzis, Peng Lan and Frank Schönberger
Polymers 2025, 17(19), 2596; https://doi.org/10.3390/polym17192596 - 25 Sep 2025
Viewed by 463
Abstract
Epoxy resins are valuable in aerospace, electronics, and high-performance industries; however, their inherently low thermal conductivity (TC) limits applications requiring effective heat dissipation. Recent reports suggest that certain liquid crystalline or partially crystalline epoxy formulations can achieve higher TC, even exceeding 1 W/(m·K). [...] Read more.
Epoxy resins are valuable in aerospace, electronics, and high-performance industries; however, their inherently low thermal conductivity (TC) limits applications requiring effective heat dissipation. Recent reports suggest that certain liquid crystalline or partially crystalline epoxy formulations can achieve higher TC, even exceeding 1 W/(m·K). To investigate this, 17 epoxy formulations were prepared, including the commonly used diglycidyl ether of bisphenol A (DGEBA) and two custom-synthesized diepoxides: TME4, which contains rigid aromatic ester linkages with a C4 aliphatic spacer, and LCE-DP, featuring rigid imine bonds. Thermal conductivity was measured using four techniques: laser flash analysis (LFA), modified transient plane source (MTPS), time-domain thermoreflectance (TDTR), and displacement thermo-optic phase spectroscopy (D-TOPS). Additionally, small-angle and wide-angle X-ray scattering (SAXS/WAXS) were performed to detect crystalline or liquid crystalline domains. All formulations exhibited TC values ranging from 0.13 to 0.32 W/(m·K). The TME4–DDS systems, previously reported to be near 1 W/(m·K), consistently measured between 0.26 and 0.30 W/(m·K). Thus, under our synthesis and curing conditions, the elevated TC reported in prior studies was not reproduced, and no strong evidence of crystallinity was observed; indications of local ordering did not translate into higher conductivity. Variations in TC among methods often matched or exceeded the gains attributed to mesophase formation. More broadly, evidence for crystallinity in epoxy thermosets appears weak, consistent with the notion that crosslinking suppresses long-range ordering. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

21 pages, 2747 KB  
Review
The Role of CRABS CLAW Transcription Factor in Floral Organ Development in Plants
by Piotr Szymczyk, Jadwiga Nowak and Małgorzata Majewska
Int. J. Mol. Sci. 2025, 26(19), 9377; https://doi.org/10.3390/ijms26199377 - 25 Sep 2025
Viewed by 451
Abstract
CRABS CLAW (CRC) is a member of the plant-specific YABBY transcription factor family, defined by the presence of a C2C2 zinc-finger domain and a C-terminal YABBY domain. CRC is essential for proper floral development, functioning in the termination of the floral meristem, maintenance [...] Read more.
CRABS CLAW (CRC) is a member of the plant-specific YABBY transcription factor family, defined by the presence of a C2C2 zinc-finger domain and a C-terminal YABBY domain. CRC is essential for proper floral development, functioning in the termination of the floral meristem, maintenance of adaxial–abaxial polarity within the gynoecium, and regulation of nectary and leaf morphogenesis. CRC orchestrates its diverse regulatory functions through interaction networks comprising other transcription factors and plant developmental regulators, including chromatin-modifying enzymes and proteins involved in auxin biosynthesis, transport, and signaling. The roles of genes and proteins interacting with CRC or CRC have been characterized in several model plant species, and the number of identified CRC/CRC-associated interactions continues to expand, revealing both species-specific and conserved functional roles across angiosperms. Many functions of CRC and its interacting partners have been elucidated through the analysis of anatomical and physiological phenotypes associated with specific gene mutations. The functional roles of CRC in plant development appear to have been acquired progressively through evolutionary diversification. These evolutionary changes have been associated with the relative conservation of CRC gene copy number and a predominant role of mutations occurring in non-coding regulatory regions. These properties are attributed to the relatively limited number of genes comprising the CRC regulatory network and the capacity to induce dosage-dependent effects via the emergence of novel proteins with overlapping or analogous functions. The identification and functional characterization of CRC transcription factors across diverse plant species has advanced rapidly in recent years, yet a comprehensive synthesis of these findings has not been presented in a dedicated article. Therefore, this study reviews the current knowledge on CRC transcription factors, with a focus on their identification, expression patterns, and functional roles in plant development. Full article
Show Figures

Figure 1

13 pages, 1239 KB  
Article
Outcome of Metastatic Biliary Tract Cancer Harbouring IDH1 or FGFR2 Alterations: A Retrospective Observational Real-World Study from a French Cohort
by Jean-Baptiste Barbe-Richaud, Fabien Moinard-Butot, Mathieu Cotton, Cécile Bigot, Pierre Rivière, Christine Belletier, Erwan Pencreach, Dan Karouby, Pascale Chiappa, Lauriane Eberst, Jean-Emmanuel Kurtz and Meher Ben Abdelghani
J. Clin. Med. 2025, 14(19), 6759; https://doi.org/10.3390/jcm14196759 - 24 Sep 2025
Viewed by 297
Abstract
Background: Biliary tract cancer (BTC) management has undergone tremendous changes, benefiting from the identification of highly actionable molecular alterations. Among these, IDH1 mutations and FGFR2 fusions are the most common alterations detected and are classified as ESCAT tier 1 in BTC. However, [...] Read more.
Background: Biliary tract cancer (BTC) management has undergone tremendous changes, benefiting from the identification of highly actionable molecular alterations. Among these, IDH1 mutations and FGFR2 fusions are the most common alterations detected and are classified as ESCAT tier 1 in BTC. However, their prognostic value in real-world settings remains uncertain. Objective: To explore overall survival (OS) in patients harbouring locally advanced or metastatic BTC (mBTC) with IDH1 or FGFR2 alterations, compared to those with wild-type tumours. Methods: This retrospective, multicentre study included patients with mBTC treated between 2020 and 2023 across five French centres. Patients were categorized into two cohorts based on molecular profiling: those with IDH1 or FGFR2 alterations, and those with wild-type tumours (WT-mBTC). Results: 119 consecutive patients were included. 18 were classified as altered (IDH1 = 13; FGFR2 = 5). Sixty-four pts underwent no molecular testing. The median OS of the entire cohort was 11.9 months (10.3–14.3). The median OS was 24.2 months (12.3–NA) versus 10.8 months (7.9–12.9), p = 0.02, in the altered and WT-mBTC cohorts, respectively. The Cox regression model conducted depicted an HR for death of 0.46 (CI95%, 0.2–0.9) for IDH1 or FGFR2 alterations. There were no diffence in PFS for first-line. Conclusions: Our cohort suggests that IDH1 or FGFR2 alterations may be associated with prognostic differences in patients with metastatic BTC, although they do not appear to influence outcomes under first-line treatment. These findings are consistent with trends observed in clinical trials. Whether improved survival is solely attributable to targeted therapies remains questionable. In line with ESMO recommendations, systematic molecular profiling should be considered in patients with mBTC. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

24 pages, 393 KB  
Review
High Intensity Functional Training in Hybrid Competitions: A Scoping Review of Performance Models and Physiological Adaptations
by Paula Villarroel López and Daniel Juárez Santos-García
J. Funct. Morphol. Kinesiol. 2025, 10(4), 365; https://doi.org/10.3390/jfmk10040365 - 24 Sep 2025
Viewed by 974
Abstract
High-Intensity Functional Training (HIFT) is a training method that has garnered increasing attention due to the rise in hybrid competitions such as CrossFit or Hyrox, a race format combining strength and endurance tasks in a fixed structure. Therefore, an integrative approach is needed [...] Read more.
High-Intensity Functional Training (HIFT) is a training method that has garnered increasing attention due to the rise in hybrid competitions such as CrossFit or Hyrox, a race format combining strength and endurance tasks in a fixed structure. Therefore, an integrative approach is needed to help us understand which physiological capacities this training method enhances. Objectives: This scoping review aimed to map the current scientific literature related to HIFT, with a particular focus on physiological and psychobiological determinants of performance in hybrid competition contexts. Methods: Following the methodological framework of Arksey and O’Malley and the PRISMA-ScR guidelines, a systematic search was conducted in Web of Science, Scopus, and PubMed. Thirty-nine studies published between 2015 and 2025 were included. Results: HIFT was found to improve key physical attributes such as aerobic capacity, muscular strength, anaerobic power, and fatigue tolerance. Increases in VO2max ranging from 8% to 15% and strength gains of 10% to 20% in major lifts were commonly reported. Improvements in local muscular endurance, power output, and recovery capacity were also observed. The physiological benefits appeared more pronounced in trained individuals, especially those with greater resistance training volume. In addition, psychobiological responses, including perceived exertion, cognitive control, and motivation, were explored in several studies, with more experienced athletes showing higher fatigue tolerance and better performance consistency under stress. Conclusions: HIFT enhances essential physical attributes applicable to hybrid events. The findings support the use of HIFT as a foundational method for training athletes involved in demanding multi-domain fitness settings, without attributing these benefits specifically to any single competitive event. Full article
(This article belongs to the Section Physical Exercise for Health Promotion)
Show Figures

Figure 1

23 pages, 699 KB  
Article
Who Is Most Responsible for the Mitigation of Climate Change? An Intercultural Study in Central Europe, Central Asia, and the Middle East
by Anna Kwiatkowska, Magdalena Mosanya, Patrycja Uram, Dilbar Urazbayeva, Baxtigul Nurullayeva, Vita Mikuličiūtė, Rūta Sargautytė and Konstantin Karpinskij
Land 2025, 14(9), 1914; https://doi.org/10.3390/land14091914 - 19 Sep 2025
Viewed by 392
Abstract
Researchers observed that even if one’s environmental concern was high, people would delegate others to take responsibility for climate change mitigation and undertake sustainable actions. In this study, we explored how citizens of different countries in Central Europe, Central Asia, and the Middle [...] Read more.
Researchers observed that even if one’s environmental concern was high, people would delegate others to take responsibility for climate change mitigation and undertake sustainable actions. In this study, we explored how citizens of different countries in Central Europe, Central Asia, and the Middle East perceived responsibility for mitigating and reducing climate change consequences of various collective and individual agents. Also, we asked about the role of cultural values, environmental worldviews, and beliefs in the intractability of climate change in the prediction of the responsibility distribution. The total sample consisted of n = 1267 participants from Belarus, Lithuania, Poland, the United Arab Emirates, and Uzbekistan. We created the list of 11 collective and individual entities as accountable for mitigation and sustainable activities. We used the Collindex scale to measure collectivistic and individualistic values, the NEP scale to measure anthropocentric and ecocentric worldviews, and two questions concerning the intractability beliefs. Results showed that participants attributed more responsibility to collective agents than to individuals across countries. The predictors’ patterns indicated that ecocentric worldviews consistently increased perceived responsibility of both collective and individual actors, whereas anthropocentrism reduced the attribution of collectives’ responsibility. Collectivistic values appeared to foster greater expectations of individuals. Also, differences between national samples were observed. Full article
Show Figures

Figure 1

Back to TopTop