Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,681)

Search Parameters:
Keywords = aqueous conditions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2273 KiB  
Article
Adsorption Combined with Electrocoagulation Process for Ketoprofen Removal from Aqueous Solution: Optimization Using Central Composite Design
by Katia Madi-Azegagh, Idris Yahiaoui, Rima Arfi, Lydia Benkerrou, Lamia Khenniche, Hafida Lebik, Amine Aymen Assadi, Lotfi Khezami, Karim Kriaa and Farida Aissani-Benissad
Water 2025, 17(11), 1679; https://doi.org/10.3390/w17111679 (registering DOI) - 1 Jun 2025
Abstract
The combination of electrocoagulation (EC) with complementary treatment methods has garnered increasing attention for wastewater remediation. This study aims to design and optimize a hybrid electrocoagulation–adsorption (EC/Ads) process for the removal of ketoprofen (KTP) from aqueous solutions. The adsorption of KTP onto activated [...] Read more.
The combination of electrocoagulation (EC) with complementary treatment methods has garnered increasing attention for wastewater remediation. This study aims to design and optimize a hybrid electrocoagulation–adsorption (EC/Ads) process for the removal of ketoprofen (KTP) from aqueous solutions. The adsorption of KTP onto activated carbon (AC) alone exhibited a low removal efficiency of approximately 27% under the following conditions: initial KTP concentration ([KTP]0) = 23 mg·L−1, pH = 6, adsorbent dose (qAC) = 0.5 g, and contact time = 30 min. In contrast, the EC process alone achieved a removal efficiency of 59.69% under similar conditions (current density (i) = 18.6 mA·cm−2, NaCl = 3.5 g·L−1). The combined EC/Ads process significantly enhanced KTP removal, reaching 87.11% under the same operational parameters. The synergistic effect of the combined treatment was quantified with a synergy index of 1.37. Characterization techniques included FTIR analysis of both AC and KTP, as well as adsorption–desorption isotherms and pHPZC determination for AC. To further optimize the EC/Ads process, a response surface methodology based on central composite design (CCD) was applied to assess the influence of four independent variables: pH, [KTP]0, current density, and qAC. Optimal conditions were identified as follows: qAC = 0.63–0.99 g, i = 12.32–14.68 mA·cm−2, pH = 6.5, and [KTP]0 = 22.5 mg·L−1; these conditions resulted in 100% KTP removal after 30 min of treatment. These findings demonstrate the potential of the EC/Ads hybrid process to be an efficient and sustainable alternative for pharmaceutical contaminant removal. Full article
Show Figures

Figure 1

12 pages, 903 KiB  
Article
Nitrate–Conductivity Correlations in Aqueous Environments: From Standard Solutions to Natural Water Bodies
by Al Mamun
Nitrogen 2025, 6(2), 41; https://doi.org/10.3390/nitrogen6020041 (registering DOI) - 31 May 2025
Abstract
The relationship between nitrate concentration and electrical conductivity (EC) in aqueous environments is crucial for water quality assessment, especially in regions with limited laboratory access and monitoring resources. This study investigates nitrate–EC correlations across standard solutions and various natural water sources, identifying where [...] Read more.
The relationship between nitrate concentration and electrical conductivity (EC) in aqueous environments is crucial for water quality assessment, especially in regions with limited laboratory access and monitoring resources. This study investigates nitrate–EC correlations across standard solutions and various natural water sources, identifying where EC may serve as a reliable proxy for nitrate. In the standard and controlled laboratory solution reference samples, a strong linear correlation in controlled environments (R2 ≈ 0.99) between the nitrate concentration and EC was observed, providing a reliable baseline for calibration and suggesting that EC-based estimation is feasible under ideal conditions. In shallow wells, particularly in agricultural zones, a moderate-to-strong correlation was also observed, likely due to surface contamination from fertilizers. Natural water bodies exhibit more complex relationships owing to environmental factors and their ionic composition. In contrast, deep groundwater, often subjected to geological filtration and treatment processes, displayed inconsistent relationships, underscoring the complexity of using EC as a nitrate proxy in such systems. These findings suggest that EC can support preliminary screening for nitrate in specific water types, particularly in agricultural and rural settings, while emphasizing the need for site-specific calibration and caution against overgeneralization. The study offers a foundational framework for employing EC as a low-cost, rapid monitoring tool in resource-constrained environments. Full article
Show Figures

Graphical abstract

15 pages, 728 KiB  
Article
It Is Useless to Resist: Biofilms in Metalworking Fluid Systems
by Giulia von Känel, Lara Ylenia Steinmann, Britta Mauz, Robert Lukesch and Peter Küenzi
Life 2025, 15(6), 890; https://doi.org/10.3390/life15060890 (registering DOI) - 30 May 2025
Viewed by 31
Abstract
Biofouling, the undesirable deposition of microorganisms on surfaces, is ubiquitous in aqueous systems. This is no different for systems running with water-miscible metalworking fluids (MWFs), which additionally contain many organic chemicals that create favorable conditions for growth and metabolism. Biofilm formation is thus [...] Read more.
Biofouling, the undesirable deposition of microorganisms on surfaces, is ubiquitous in aqueous systems. This is no different for systems running with water-miscible metalworking fluids (MWFs), which additionally contain many organic chemicals that create favorable conditions for growth and metabolism. Biofilm formation is thus inevitable, as there is no shortage of wetted surfaces in metalworking systems. MWF manufacturers tried in vain to offer resistance by using biocides and biostatic compounds as ingredients in concentrates and as tank-side additives. We report here that such elements, alone or as components of MWFs, did not prevent biofilm formation and had negligible effects on pre-established laboratory biofilms. Moreover, biofilms in metalworking systems are interwoven with residues, sediments, and metal swarfs generated during machining. Again, co-incubation of such “real” biofilms with MWFs had no significant effect on population size—but on population composition! The implications of this finding are unclear but could provide a starting point for the treatment of biofouling, as biofilm population structure might be of importance. Finally, we show that bacteria gain function in biofilms and that they were able to degrade a toxic amine in MWFs, which the same bacteria were unable to do in planktonic form. Full article
(This article belongs to the Special Issue Microbial Diversity and Function in Aquatic Environments)
20 pages, 3719 KiB  
Article
Voriconazole-Loaded Nanohydrogels Towards Optimized Antifungal Therapy for Cystic Fibrosis Patients
by Shaul D. Cemal, María F. Ladetto, Katherine Hermida Alava, Gila Kazimirsky, Marcela Cucher, Romina J. Glisoni, María L. Cuestas and Gerardo Byk
Pharmaceutics 2025, 17(6), 725; https://doi.org/10.3390/pharmaceutics17060725 - 30 May 2025
Viewed by 50
Abstract
Background/Objectives: Filamentous fungi, in particular the species Aspergillus, Scedosporium, and Exophiala, frequently colonize the lungs of cystic fibrosis (CF) patients. Chronic colonization is linked to hypersensitivity reactions and persistent infections leading to a significant long-term decline in lung function. Azole [...] Read more.
Background/Objectives: Filamentous fungi, in particular the species Aspergillus, Scedosporium, and Exophiala, frequently colonize the lungs of cystic fibrosis (CF) patients. Chronic colonization is linked to hypersensitivity reactions and persistent infections leading to a significant long-term decline in lung function. Azole antifungal therapy such as voriconazole (VRC) slows disease progression, particularly in patients with advanced CF; however, excessive mucus production in CF lungs poses a diffusional barrier to effective treatment. Methods: Here, biodegradable nanohydrogels (NHGs) recently developed as nanocarriers were evaluated for formulating VRC as a platform for treating fungal infections in CF lungs. The NHGs entrapped up to about 30 μg/mg of VRC, and physicochemical properties were investigated via dynamic laser light scattering and nanoparticle tracking analysis. Diameters were 100–400 nm, and excellent colloidal stability was demonstrated in interstitial fluids, indicating potential for pulmonary delivery. Nano-formulations exhibited high in vitro cytocompatibility in A549 and HEK293T cells and were tested for the release of VRC under two different sink conditions. Results: Notably, the antifungal activity of VRC-loaded nanohydrogels was up to eight-fold greater than an aqueous suspension drug against different fungal species isolated from CF sputum, regardless of the presence of a CF artificial mucus layer. Conclusions: These findings support the development of potent VRC nano-formulations for treating fungal disorders in CF lungs. Full article
(This article belongs to the Special Issue Nanoparticle-Mediated Targeted Drug Delivery Systems)
15 pages, 1529 KiB  
Article
Numerical Investigation of Conventional and Ultrasound-Assisted Aqueous Extraction of Caffeine from Whole Green Robusta Coffee Beans: Extraction Enhancement via Changing of Extraction Water
by Kuson Bawornruttanaboonya, Nathamol Chindapan and Sakamon Devahastin
Foods 2025, 14(11), 1956; https://doi.org/10.3390/foods14111956 - 30 May 2025
Viewed by 37
Abstract
To enhance the low-efficiency but potentially health and environmentally friendly aqueous decaffeination process, ultrasound-assisted aqueous extraction (UAAE) has recently been proposed. A novel concept of intermittent extraction water change to further enhance UAAE has also been mentioned, but not yet studied in detail. [...] Read more.
To enhance the low-efficiency but potentially health and environmentally friendly aqueous decaffeination process, ultrasound-assisted aqueous extraction (UAAE) has recently been proposed. A novel concept of intermittent extraction water change to further enhance UAAE has also been mentioned, but not yet studied in detail. For this reason, a mathematical model that can be used to predict the concentration evolutions of caffeine during UAAE and conventional aqueous extraction (CAE) of whole green robusta coffee beans is herein proposed. The model consists of terms representing transient intra-bean caffeine and water diffusion as well as molar fluxes of caffeine and water on the bean surface. After validation, the model was used to investigate the effects of extraction temperature, bean-to-water mass ratio and frequency of extraction water change on caffeine concentration evolutions. Simulation results show that UAAE exhibits around 10% higher caffeine removal rates than CAE at all investigated conditions. Extraction temperature of 70 °C, bean-to-water ratio of 1:3, and extraction water change at every 1 h interval are noted as the most appropriate conditions for UAAE. The required extraction durations of UAAE under these conditions are 13 h and 24 h to meet the US and European Union standards, respectively. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

22 pages, 2565 KiB  
Article
Amino Acid-Based Hydrophobic Cryogels for Efficient Methylene Blue Removal: A Reusable and Eco-Friendly Approach to Dye-Contaminated Wastewater Treatment
by Merve Sofuoğlu, Ali Ender Kuyucu, Kadir Erol and Faruk Gökmeşe
Gels 2025, 11(6), 411; https://doi.org/10.3390/gels11060411 - 30 May 2025
Viewed by 138
Abstract
The release of synthetic dyes into the environment through industrial wastewater represents a significant environmental concern. In this study, a hydrophobic cryogel, Poly(2-hydroxyethyl methacrylate-N-methacryloyl-L-phenylalanine), was synthesized and employed for the efficient removal of methylene blue from aqueous solutions. The cryogel exhibited a surface [...] Read more.
The release of synthetic dyes into the environment through industrial wastewater represents a significant environmental concern. In this study, a hydrophobic cryogel, Poly(2-hydroxyethyl methacrylate-N-methacryloyl-L-phenylalanine), was synthesized and employed for the efficient removal of methylene blue from aqueous solutions. The cryogel exhibited a surface area of 6.834 m2/g and a water retention capacity of 218.6%. Adsorption experiments conducted under various conditions revealed a high adsorption capacity of 1304.6 mg/g for MB. Thermodynamic analyses indicated that adsorption occurs spontaneously and follows a monolayer adsorption model. The adsorption capacity increased with temperature and ionic strength, confirming that hydrophobic forces predominantly drive the interaction. Reusability tests showed that the cryogel maintained its adsorption efficiency over five consecutive adsorption–desorption cycles, with a desorption efficiency of up to 98%. These findings demonstrate that Poly(HEMA-MAPA) cryogel is a practical, reusable, and eco-friendly adsorbent for removing methylene blue, a common textile dye pollutant, from water systems. Full article
(This article belongs to the Special Issue Gels for Water Treatment)
Show Figures

Graphical abstract

11 pages, 1217 KiB  
Article
Molecular Characterization of Organic Aerosol in Summer Suburban Shanghai Under High Humidity
by Xiancheng Tang, Junfang Mao, Dongmei Cai, Zhiwei Zhang, Haixin Nong, Ling Li and Jianmin Chen
Atmosphere 2025, 16(6), 659; https://doi.org/10.3390/atmos16060659 - 30 May 2025
Viewed by 48
Abstract
In this study, the chemical compositions of PM2.5 (particulate matter < 2.5 μm) and the molecular compositions of methanol-soluble organic carbon (MSOC) in suburban Shanghai during summer were measured to investigate the molecular characteristics of organic aerosol (OA) under high humidity. Diurnal [...] Read more.
In this study, the chemical compositions of PM2.5 (particulate matter < 2.5 μm) and the molecular compositions of methanol-soluble organic carbon (MSOC) in suburban Shanghai during summer were measured to investigate the molecular characteristics of organic aerosol (OA) under high humidity. Diurnal variation analysis reveals the influence of relative humidity (RH) on secondary organic aerosol (SOA) components. Organosulfates (OSs), particularly nitrooxy-OSs, exhibit a positive correlation with increasing humidity rather than atmospheric oxidants in this high-humidity site. This suggests that high RH can promote the formation of OSs, possibly through enhancing particle surface area and volume, and creating a favorable environment for aqueous-phase or heterogeneous reactions in the particle phase. A considerable proportion of CHOS compounds may be derived from anthropogenic aliphatic hydrocarbon derivatives. These compounds exhibit slightly elevated daytime concentrations due to increased emissions of long-chain aliphatics from sources such as diesel combustion, as well as photochemically enhanced oxidation to OSs. In contrast, CHONS compounds increased at night, driven by high-humidity liquid-phase oxidation. Terpenoid derivatives accounted for 13.4% of MSOC and contributed over 40% to nighttime CHONS. These findings highlight humidity’s important role in driving daytime and nighttime processing of anthropogenic and biogenic precursors to form SOA, even under low SO2 and NOx conditions. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

17 pages, 3100 KiB  
Article
Enhanced Removal of Hexavalent Chromium from Water by Nitrogen-Doped Wheat Straw Biochar Loaded with Nanoscale Zero-Valent Iron: Adsorption Characteristics and Mechanisms
by Hansheng Li, Ahmad Razali Ishak, Mohd Shukri Mohd Aris, Siti Norashikin Mohamad Shaifuddin, Su Ding and Tiantian Deng
Processes 2025, 13(6), 1714; https://doi.org/10.3390/pr13061714 - 30 May 2025
Viewed by 74
Abstract
The widespread industrial use of chromium has exacerbated water contamination issues globally. In this study, a nitrogen-doped wheat straw biochar loaded with nanoscale zero-valent iron composite (nZVI/N-KBC) was synthesized via a liquid-phase reduction method, and its adsorption properties for hexavalent chromium (Cr(VI)) in [...] Read more.
The widespread industrial use of chromium has exacerbated water contamination issues globally. In this study, a nitrogen-doped wheat straw biochar loaded with nanoscale zero-valent iron composite (nZVI/N-KBC) was synthesized via a liquid-phase reduction method, and its adsorption properties for hexavalent chromium (Cr(VI)) in aqueous solutions were systematically investigated. The material was characterized using SEM, XRD, Raman spectroscopy, FTIR, and XPS. Experimental results demonstrated that under optimal conditions (pH 2, 0.05 g adsorbent dosage, and 50 mg/L initial Cr(VI) concentration), the adsorption capacity reached 41.29 mg/g. Isothermal adsorption analysis revealed that the process followed the Langmuir model, indicating monolayer adsorption with a maximum capacity of 100.9 mg/g. Kinetic studies show that the adsorption conforms to the pseudo-second-order kinetic model, and thermodynamic and XPS analyses jointly prove that chemical adsorption is dominant. Thermodynamic analyses confirmed the endothermic and entropy-driven nature of adsorption. Mechanistic studies via XPS and FTIR revealed a dual mechanism: (1) partial adsorption of Cr(VI) onto the nZVI/N-KBC surface, and (2) predominant reduction in Cr(VI) to Cr(III) mediated by Fe0 and Fe2+. This study highlights the synergistic role of nitrogen doping and nZVI loading in enhancing Cr(VI) removal, offering a promising approach for remediating chromium-contaminated water. Full article
Show Figures

Figure 1

44 pages, 10876 KiB  
Article
Fluid Evolution in the Bundelkhand Granite, North Central India: Implications for Hydrothermal Activities in the Bundelkhand Craton
by Duttanjali Rout, Jayanta K. Pati, Terrence P. Mernagh and Mruganka K. Panigrahi
Minerals 2025, 15(6), 579; https://doi.org/10.3390/min15060579 - 29 May 2025
Viewed by 54
Abstract
The Bundelkhand granite (BG) constitutes the bulk of the granitoid complex in the Bundelkhand Craton and preserves imprints of its evolution from the magmatic to a protracted hydrothermal stage as deduced from the petrography. In order to reconstruct such a path of evolution [...] Read more.
The Bundelkhand granite (BG) constitutes the bulk of the granitoid complex in the Bundelkhand Craton and preserves imprints of its evolution from the magmatic to a protracted hydrothermal stage as deduced from the petrography. In order to reconstruct such a path of evolution in this study, thermobarometric calculations were attempted on the mineral chemistry of the major (hornblende, plagioclase, biotite) and minor (epidote, apatite) magmatic phases. They yielded magmatic temperatures and pressures (in excess of 700 °C and ~5 kbar), although not consistently, and indicate mid-crustal conditions at the onset of crystallization. Temperatures in the hydrothermal regime within the BG are better constrained by the chemistry of the chlorite and epidote minerals (340 to 160 °C) that conform with the ranges of homogenization temperatures of aqueous–biphase inclusions in matrix quartz in the BG and subordinate quartz veins. These reconstructions indicate that fluid within the BG evolved down to lower temperatures and towards the deposition of quartz and, more importantly, bears a striking similarity to the temperature–salinity characteristics of fluid in the giant quartz reef system. Scanty mixed aqueous–carbonic inclusions in the BG are indicative of the CO2-poor nature of the BG magma and the exsolution of CO2 at lower pressure (~2.6 kbar). The dominant mechanism of fluid evolution in the BG appears to be the incursion of meteoric fluid, which caused fluid dilution. Laser Raman microspectrometry reveals many types of solid phases in aqueous–carbonic inclusions in the BG domain. The occurrence of unusual, effervescent-type inclusions, though infrequent, bears a striking similarity to that reported in the giant quartz reef domain. Thus, the highlight of the present work is the convincing fluid inclusion evidence that genetically links the BG with the giant quartz reef system, although many cited discrepancies arise from the radiometric dates. We visualize the episodic release of silica-transporting fluid to the major fracture system (now occupied by the giant reef) from the BG, thus making the fluid in the two domains virtually indistinguishable. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
19 pages, 3354 KiB  
Article
Utilizing Residual Industrial Waste as Sustainable Adsorbents for the Removal of Indigo Carmine from Contaminated Water
by Amina Ghedjemis, Maya Kebaili, Kamel Hebbache, Cherif Belebchouche and El Hadj Kadri
Physchem 2025, 5(2), 21; https://doi.org/10.3390/physchem5020021 - 29 May 2025
Viewed by 135
Abstract
The recovery of green waste and biomass presents a significant challenge in the 21st century. In this context, this study aims to valorize waste generated by the fruit juice processing industry at the N’Gaous unit (composed of the orange peel, fibers, pulp, and [...] Read more.
The recovery of green waste and biomass presents a significant challenge in the 21st century. In this context, this study aims to valorize waste generated by the fruit juice processing industry at the N’Gaous unit (composed of the orange peel, fibers, pulp, and seeds) as an adsorbent to eliminate an anionic dye and to enhance its adsorption capacity through thermal activation at 200 °C and 400 °C. The aim is also to determine the parameters for the adsorption process including contact time (0–120 min), solution pH (2–10), initial dye concentration (50–700 mg/L), and adsorbent dosage (0.5–10 g/L). The adsorption tests showed that waste activated at 400 °C (AR400) demonstrated a higher efficiency for removing indigo carmine (IC) from an aqueous solution than waste activated at 200 °C (AR200) and unactivated waste (R). The experimental maximum adsorption capacities for IC were 70 mg/g for unactivated waste, 500 mg/g for waste activated at 200 °C, and 680 mg/g for waste activated at 400 °C. These tests were conducted under conditions of pH 2, an equilibrium time of 50 min, and an adsorbent concentration of 1 g/L. The analysis of the kinetic data revealed that the pseudo-second-order model provides the best fit for the experimental results, indicating that this mechanism predominates in the sorption of the pollutant onto the three adsorbents. In terms of adsorption isotherms, the Freundlich model was found to be the most appropriate for describing the adsorption of dye molecules on the R, AR200, and AR400 supports, owing to its high correlation coefficient. Before adsorption tests, the powder R, AR200 and AR400 were characterized by various analyses, including Fourier transform infrared (FTIR), pH zero charge points and laser granularity for structural evaluation. According to the results of these analyses, the specific surface area (SSA) of the prepared material increases with the increase in the activation temperature, which expresses the increase in the adsorption of material activated at 400 °C, compared with materials activated at 200 °C and the raw material. Full article
(This article belongs to the Section Surface Science)
Show Figures

Figure 1

14 pages, 4002 KiB  
Article
Two-Step Hydrothermal Reaction Enhances Removal of Cr(VI) from Wastewater Using Nitrogen-Doped Starch-Based Hydrothermal Carbon
by Borui Zhang, Xinyu Wan, Chenghong Li, Kaiyue Ma, Xinyu Wu, Hongxu Liang and Hongxiang Hu
Sustainability 2025, 17(11), 4982; https://doi.org/10.3390/su17114982 - 29 May 2025
Viewed by 265
Abstract
Extracting Cr(VI), a heavy metal known for its carcinogenic properties, from water poses a significant challenge. This research involved synthesizing nitrogen-infused starch-derived hydrothermal carbon (NS-HCS) from starch using a dual-phase hydrothermal method, aimed at removing Cr(VI) from industrial wastewater. N-doping increased the N [...] Read more.
Extracting Cr(VI), a heavy metal known for its carcinogenic properties, from water poses a significant challenge. This research involved synthesizing nitrogen-infused starch-derived hydrothermal carbon (NS-HCS) from starch using a dual-phase hydrothermal method, aimed at removing Cr(VI) from industrial wastewater. N-doping increased the N content from 0.27% to 3.64%, providing active sites for enhanced Cr(VI) adsorption and reduction. Experimental data demonstrated 149.21 mg/g contaminant uptake capacity with 49.74% removal efficiency under specified conditions. Analysis of the kinetic and isotherm models revealed that the adsorption mechanism was characterized primarily by multilayer adsorption. Furthermore, after six cycles of use, NS-HCS demonstrated good reusability, with its Cr(VI) adsorption capacity remaining at approximately 79.05%. Additionally, NS-HCS exhibited strong resistance to interference in complex aqueous environments. This study provides new insights into the use of green and sustainable adsorbents, offering an economical and efficient solution for treating Cr(VI)-contaminated wastewater. Full article
Show Figures

Figure 1

26 pages, 3745 KiB  
Article
Optical Properties and Molecular Composition of Fine Organic Aerosols in Nanjing, China: A Comparison of 2019 and 2023
by Binhuang Zhou, Yu Huang, Liangyu Feng, Zihao Zhang, Haiwei Li, Yun Wu, Jianhuai Ye and Xinlei Ge
Toxics 2025, 13(6), 443; https://doi.org/10.3390/toxics13060443 - 27 May 2025
Viewed by 105
Abstract
Optical properties and chemical composition of atmospheric fine particles (PM2.5) are critical to their environmental and health effects. In this study, we analyzed the organic aerosols (OA) in PM2.5 samples in Nanjing, China, collected during the summer and winter of [...] Read more.
Optical properties and chemical composition of atmospheric fine particles (PM2.5) are critical to their environmental and health effects. In this study, we analyzed the organic aerosols (OA) in PM2.5 samples in Nanjing, China, collected during the summer and winter of 2019 and 2023. Results show a decline in both concentrations and light-absorbing abilities of methanol—soluble organic carbon (MSOC) and water-soluble OC (WSOC) in OA from 2019 to 2023. Due to increased combustion activities, MSOC and WSOC concentrations, and their corresponding mass absorption efficiencies were all higher in winter than in summer. Furthermore, fluorescence indices suggest that OA in Nanjing was influenced by a mix of microbial/biogenic sources. Fluorescent properties of both WSOC and MSOC were dominated by humic-like components but the remaining contribution from protein-like components was more significant in MSOC. The molecular composition of OA did not show a remarkable difference between 2019 and 2023. Overall, CHON compounds were the most abundant species, followed by CHO and CHN compounds, and aliphatic compounds dominated all molecular types except for CHN (in positive mode) and CHON, CHOS (in negative mode). Regarding the OA sources, the numbers of molecules from fossil fuel combustion and biomass burning (BB) were a bit more in 2023 than in 2019, and signal intensities of BB-related molecules were also higher in winter than in summer; the presence of organosulfates indicate the contribution of aqueous-phase oxidation to OA, especially during high relative humidity conditions. At last, correlations between OA molecules and light absorption efficiencies indicate that the key light-absorbing species in winter and summer were likely quite different despite similar chemical compositions, and in summer, CH and CHN compounds were important to light absorption, whereas CHNS compounds became more important in winter. Full article
(This article belongs to the Special Issue Source and Components Analysis of Aerosols in Air Pollution)
Show Figures

Graphical abstract

26 pages, 6169 KiB  
Article
Petrogenesis of Mafic–Ultramafic Cumulates in the Mayudia Ophiolite Complex, NE Himalaya: Evidence of an Island Arc Root in Eastern Neo-Tethys
by Sapneswar Sahoo, Alik S. Majumdar, Rajagopal Anand, Dwijesh Ray and José M. Fuenlabrada
Minerals 2025, 15(6), 572; https://doi.org/10.3390/min15060572 - 27 May 2025
Viewed by 95
Abstract
Amphibole-rich cumulates provide crucial information pertaining to the petrogenetic history of suprasubduction zone ophiolites and are, therefore, helpful in constraining the evolution and closure of the Neo-Tethys during the late Cretaceous to the early Tertiary period. Following this, the present contribution examines the [...] Read more.
Amphibole-rich cumulates provide crucial information pertaining to the petrogenetic history of suprasubduction zone ophiolites and are, therefore, helpful in constraining the evolution and closure of the Neo-Tethys during the late Cretaceous to the early Tertiary period. Following this, the present contribution examines the meta-hornblendite and meta-hornblende-gabbro lithologies in the Mayudia ophiolite complex (MdOC), NE Himalaya, based on their field and petrographic relations, constituent mineral compositions, whole rock major and trace element chemistry and bulk strontium (Sr)—neodymium (Nd) isotope systematics. MdOC cumulates potentially represent the fossilized record of an island arc root, where amphibole + titanite + magnetite was fractionally crystallized from a super hydrous magma (10.56–13.61 wt.% melt water content) prior to plagioclase in a stable physico-chemical condition (T: 865–940 °C, P: 0.8–1.4 GPa, logfO2: −8.59–−11.19 unit) at lower crustal depths (30–38 km). Such extreme hydrous nature in the parental magma was generated by the flux melting of the sub-arc mantle wedge with aqueous inputs from the dehydrating slab. A super hydrous magmatic reservoir was, therefore, extant at sub-arc mantle depths in the eastern Neo-Tethys, which has likely modulated the composition of the oceanic crust during intraoceanic subduction. Full article
(This article belongs to the Special Issue Tectonic Evolution of the Tethys Ocean in the Qinghai–Tibet Plateau)
Show Figures

Figure 1

19 pages, 1751 KiB  
Article
Purification of Flavonoids from an Aqueous Cocoa (Theobroma cocoa L.) Extract Using Macroporous Adsorption Resins
by Nicole Beeler, Tilo Hühn, Sascha Rohn and Renato Colombi
Molecules 2025, 30(11), 2336; https://doi.org/10.3390/molecules30112336 - 27 May 2025
Viewed by 75
Abstract
Cocoa is a rich source of health-promoting polyphenols such as flavanols. These compounds can be separated from other matrix constituents using various adsorbents or resins. Seven different macroporous resins (Amberlite® XAD-2, XAD-4, XAD-7, XAD-7HP, XAD-16, SepabeadsTM SP207, and Diaion® HP2-MG) [...] Read more.
Cocoa is a rich source of health-promoting polyphenols such as flavanols. These compounds can be separated from other matrix constituents using various adsorbents or resins. Seven different macroporous resins (Amberlite® XAD-2, XAD-4, XAD-7, XAD-7HP, XAD-16, SepabeadsTM SP207, and Diaion® HP2-MG) were evaluated for their adsorption and desorption properties for the enrichment of flavonoids from an aqueous cocoa (Theobroma cacao L.) extract. The influence of adsorption and desorption temperatures and the concentration of the desorption solvent (a hydroalcoholic solution) were investigated by static adsorption and desorption methods. The results of the resin comparison showed that the adsorbent XAD-7HP had the best adsorption characteristics, with an adsorption capacity of 39.8 mg ECE/g. XAD-7HP was found to be the most suitable adsorbent, and 70% ethanol was the best desorbing solvent, based on static experiments. In addition, the optimal conditions for the adsorption of flavonoids were obtained at a temperature of 30 °C, where equilibrium was reached after 80 min. The static adsorption process was well-described by a pseudo-second-order kinetics model, while the adsorption isotherm data were fitted well by the Freundlich isotherm model. Further dynamic adsorption and desorption characteristics were evaluated on a packed glass column, and it was shown that XAD-7HP could enrich the flavanol content by 5.03-fold, with a dry matter content of 456.05 mg/mL (as estimated by the degree of DP1–DP7 procyanidin polymers using ultra-pressure liquid chromatography). Full article
Show Figures

Figure 1

15 pages, 2160 KiB  
Article
Testing Low-Density Polyethylene Membranes for Lithium Isotope Electromigration System
by Andreea Maria Iordache, Ramona Zgavarogea, Ana Maria Nasture, Erdin Feizula, Roxana Elena Ionete, Rui Santos and Constantin Nechita
Materials 2025, 18(11), 2519; https://doi.org/10.3390/ma18112519 - 27 May 2025
Viewed by 111
Abstract
The growing energy demand has emphasized the importance of developing nuclear technologies and high-purity lithium isotopes (6Li and 7Li) as raw materials. This study investigates how voltage and migration time affect two types of low-density polyethylene membranes—one impregnated with ionic [...] Read more.
The growing energy demand has emphasized the importance of developing nuclear technologies and high-purity lithium isotopes (6Li and 7Li) as raw materials. This study investigates how voltage and migration time affect two types of low-density polyethylene membranes—one impregnated with ionic liquids and the other non-impregnated—for lithium isotope separation via electromigration from a lithium-loaded organic phase to an aqueous solution. We developed a laboratory-made setup for high-precision lithium isotope measurements (2RSD = ±0.30‰) of natural carbonate samples (LSVEC) and an optimized protocol for isotope ratio measurements using quadrupole ICP-MS with the sample-standard bracketing method (SSB). The results document that both impregnated and non-impregnated membranes can achieve promising 6Li enrichment under different environmental conditions, including ionic liquids and organic solutions in the cathode chamber. Lithium-ion mobility is influenced by voltage in an environment assisted by 0.1 mol/L tetrabutylammonium perchlorate and increases quasi-linearly from 5 to 15 V. Between 20 and 25 h, the lithium-ion concentration had the maximum value, after which the trend declined. In the BayesGLM model, we incorporated all data and systematically eliminated those with a low enrichment factor, either individually or in groups. Our findings indicated that the model was not significantly affected by the exclusion of measurements with low α. This suggests that voltage and migration time are crucial, and achieving a better enrichment factor depends on applying the optimal ratio of ionic liquids, crown ethers, and organic solvents. Ionic liquids used for impregnation sustain enrichment in the first hours, particularly for 7Li; however, after 25 h, 6Li demonstrated a higher enrichment capacity. The maximum single-stage separation factor for 6Li/7Li was achieved at 24 and 48 h for an impregnated membrane M2 (α = 1.021/1.029) and a non-impregnated membrane M5 (α = 1.031/1.038). Full article
Show Figures

Figure 1

Back to TopTop