Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (112)

Search Parameters:
Keywords = area of technical uncertainty

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5787 KB  
Article
Path Loss Prediction Model of 5G Signal Based on Fusing Data and XGBoost—SHAP Method
by Tingting Xu, Nuo Xu, Jay Gao, Yadong Zhou and Haoran Ma
Sensors 2025, 25(17), 5440; https://doi.org/10.3390/s25175440 - 2 Sep 2025
Abstract
The accurate prediction of path loss is essential for planning and optimizing communication networks, as it directly impacts the user experience. In 5G signal propagation, the mix of varied terrain and dense high-rise buildings poses significant challenges. For example, signals are more prone [...] Read more.
The accurate prediction of path loss is essential for planning and optimizing communication networks, as it directly impacts the user experience. In 5G signal propagation, the mix of varied terrain and dense high-rise buildings poses significant challenges. For example, signals are more prone to multipath effects and occlusion and shadowing occur often, leading to high nonlinearities and uncertainties in the signal path. Traditional and shallow models often fail to accurately depict 5G signal characteristics in complex terrains, limiting the accuracy of path loss modeling. To address this issue, our research introduces innovative feature engineering and prediction models for 5G signals. By utilizing smartphones as signal receivers and creating a multimodal system that captures 3D structures and obstructions in the N1 and N78 bands in China, the study aimed to overcome the shortcomings of traditional linear models, especially in mountainous areas. It employed the XGBoost algorithm with Optuna for hyperparameter tuning, improving model performance. After training on real 5G data, the model achieved a breakthrough in 5G signal path loss prediction, with an R2 of 0.76 and an RMSE of 3.81 dBm. Additionally, SHAP values were employed to interpret the results, revealing the relative impact of various environmental features on 5G signal path loss. This research enhances the accuracy and stability of predictions and offers a technical framework and theoretical foundation for planning and optimizing wireless communication networks in complex environments and terrains. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

45 pages, 2298 KB  
Review
Advances in the Application of Graphene and Its Derivatives in Drug Delivery Systems
by Changzhou Jin, Huishan Zheng and Jianmin Chen
Pharmaceuticals 2025, 18(9), 1245; https://doi.org/10.3390/ph18091245 - 22 Aug 2025
Viewed by 415
Abstract
Graphene, owing to its exceptionally high specific surface area, abundant surface functional groups, and outstanding biocompatibility, exhibits tremendous potential in the development of nanodrug delivery systems. This review systematically outlines the latest research advancements regarding graphene and its derivatives in drug loading, targeted [...] Read more.
Graphene, owing to its exceptionally high specific surface area, abundant surface functional groups, and outstanding biocompatibility, exhibits tremendous potential in the development of nanodrug delivery systems. This review systematically outlines the latest research advancements regarding graphene and its derivatives in drug loading, targeted delivery, and smart release. It covers delivery strategies and mechanisms for various types of drugs, including small molecules and macromolecules, with a particular emphasis on their applications in major diseases such as cancer, neurological disorders, and infection control. The article also discusses stimulus-responsive release mechanisms, such as pH-responsiveness and photothermal responsiveness, and highlights the critical role of surface functionalization of graphene and its derivatives in enhancing therapeutic efficacy while reducing systemic toxicity. Furthermore, the review evaluates key challenges to the clinical translation of graphene-based materials, including safety, toxicity, and metabolic uncertainties. It points out that future research should focus on integrating structural modulation of materials with biological behavior to construct intelligent nanoplatforms featuring biodegradability, low immunogenicity, and precise therapeutic targeting. The aim of this paper is to provide theoretical insights and technical guidance for the customized design and precision medicine applications of graphene and its derivative-based drug delivery systems. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

23 pages, 1310 KB  
Review
Evaluating Antimicrobial Susceptibility Testing Methods for Cefiderocol: A Review and Expert Opinion on Current Practices and Future Directions
by Stefania Stefani, Fabio Arena, Luigi Principe, Stefano Stracquadanio, Chiara Vismara and Gian Maria Rossolini
Antibiotics 2025, 14(8), 760; https://doi.org/10.3390/antibiotics14080760 - 28 Jul 2025
Viewed by 1344
Abstract
Background: Cefiderocol (FDC) presents challenges in antimicrobial susceptibility testing (AST). The reference standard is the broth microdilution (BMD) method with iron-depleted cation-adjusted Mueller-Hinton broth (ID-CAMHB). Still, it is cumbersome for routine clinical laboratory use, while variable accuracy has been reported with available commercial [...] Read more.
Background: Cefiderocol (FDC) presents challenges in antimicrobial susceptibility testing (AST). The reference standard is the broth microdilution (BMD) method with iron-depleted cation-adjusted Mueller-Hinton broth (ID-CAMHB). Still, it is cumbersome for routine clinical laboratory use, while variable accuracy has been reported with available commercial systems. Variability in interpretive criteria and areas of technical uncertainty (ATUs) further complicate assessments. Methods: This review and expert opinion presents: (1) an overview of non-susceptibility to FDC and then delves into the performance of current FDC AST methods for Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii complex; (2) a practical decision framework to guide clinical microbiologists in making informed choices. Results and Conclusions: For Enterobacterales, including carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa, we propose disk diffusion (DD) as a preliminary screening tool to classify isolates as susceptible (S) or resistant (R). Confirmatory testing using the UMIC® FDC system or the ID-CAMHB BMD method is recommended for R isolates. In cases of discrepancy, repeating the test with ID-CAMHB BMD is advised. Additionally, isolates falling within the ATU during DD testing should be retested using the UMIC® system or ID-CAMHB BMD. For A. baumannii complex, since EUCAST breakpoints have not been defined yet, we propose a stepwise framework based on the first DD result: isolates with inhibition zones < 17 mm are considered non-susceptible and should be confirmed with standard BMD. Those between 17 and 22 mm require retesting with a commercial BMD method, with further confirmation recommended if S isolates with zones ≥ 23 mm may be considered S without additional testing. Full article
Show Figures

Figure 1

28 pages, 434 KB  
Review
Casualty Behaviour and Mass Decontamination: A Narrative Literature Review
by Francis Long and Arnab Majumdar
Urban Sci. 2025, 9(7), 283; https://doi.org/10.3390/urbansci9070283 - 21 Jul 2025
Viewed by 839
Abstract
Chemical, biological, radiological, and nuclear (CBRN) incidents pose significant challenges requiring swift, coordinated responses to safeguard public health. This is especially the case in densely populated urban areas, where the public is not only at risk but can also be of assistance. Public [...] Read more.
Chemical, biological, radiological, and nuclear (CBRN) incidents pose significant challenges requiring swift, coordinated responses to safeguard public health. This is especially the case in densely populated urban areas, where the public is not only at risk but can also be of assistance. Public cooperation is critical to the success of mass decontamination efforts, yet prior research has primarily focused on technical and procedural aspects, neglecting the psychological and social factors driving casualty behaviour. This paper addresses this gap through a narrative literature review, chosen for its flexibility in synthesising fragmented and interdisciplinary research across psychology, sociology, and emergency management. The review identified two primary pathways influencing casualty decision making: rational and affective. Rational pathways rely on deliberate decisions supported by clear communication and trust in responders’ competence, while affective pathways are shaped by emotional responses like fear and anxiety, exacerbated by uncertainty. Trust emerged as a critical factor, with effective —i.e., transparent, empathetic, and culturally sensitive— communication being proven to enhance public cooperation. Cultural and societal norms further shape individual and group responses during emergencies. This paper demonstrates the value of narrative reviews in addressing a complex, multifaceted topic such as casualty behaviour, enabling the integration of diverse insights. By emphasising behavioural, psychological, and social dimensions, the results of this paper offer actionable strategies for emergency responders to enhance public cooperation and improve outcomes during CBRN incidents. Full article
Show Figures

Figure 1

14 pages, 1413 KB  
Article
NRG Oncology Liver Proton SBRT and Hypofractionated Radiation Therapy: Current Treatment Technical Assessment and Practice Patterns
by Minglei Kang, Paige A. Taylor, Jiajian Shen, Jun Zhou, Jatinder Saini, Theodore S. Hong, Kristin Higgins, Wei Liu, Ying Xiao, Charles B. Simone and Liyong Lin
Cancers 2025, 17(14), 2369; https://doi.org/10.3390/cancers17142369 - 17 Jul 2025
Viewed by 880
Abstract
Background/Objectives: Proton therapy delivers highly conformal doses to the target area without producing an exit dose, minimizing cumulative doses to healthy liver tissue. This study aims to evaluate current practices, challenges, and variations in the implementation of proton stereotactic body radiation therapy (SBRT) [...] Read more.
Background/Objectives: Proton therapy delivers highly conformal doses to the target area without producing an exit dose, minimizing cumulative doses to healthy liver tissue. This study aims to evaluate current practices, challenges, and variations in the implementation of proton stereotactic body radiation therapy (SBRT) and hypofractionated therapy for liver malignancies, with the goal of providing a technical assessment to promote broader adoption and support future clinical trials. Methods and Materials: An extensive survey was conducted by NRG Oncology across North American proton treatment centers to assess the current practices of proton liver SBRT and hypofractionated therapy. The survey focused on key aspects, including patient selection, prescription and normal tissue constraints, simulation and motion management, treatment planning, quality assurance (QA), treatment delivery, and the use of image-guided radiation therapy (IGRT). Results: This survey captures the current practice patterns and status of proton SBRT and hypofractionated therapy in liver cancer treatment.  Proton therapy is increasingly preferred for treating inoperable liver malignancies due to its ability to minimize healthy tissue exposure. However, the precision required for proton therapy presents challenges, particularly in managing uncertainties and target motion during high-dose fractions and short treatment courses. Survey findings revealed significant variability in clinical practices across centers, highlighting differences in motion management, dose fractionation schedules, and QA protocols. Conclusion: Proton SBRT and hypofractionated therapy offer significant potential for treating liver malignancies. A comprehensive approach involving precise patient selection, treatment planning, and QA is essential for ensuring safety and effectiveness. This survey provides valuable insights into current practices and challenges, offering a foundation for technical recommendations to optimize the use of proton therapy and guide future clinical trials. Full article
(This article belongs to the Special Issue Proton Therapy of Cancer Treatment)
Show Figures

Figure 1

17 pages, 2877 KB  
Article
Research on High-Precision Initial Pointing for Near-Earth Laser Communication
by Yuang Li, Xuan Wang, Junfeng Han and Xinxin Quan
Photonics 2025, 12(7), 706; https://doi.org/10.3390/photonics12070706 - 12 Jul 2025
Viewed by 391
Abstract
This paper proposes a systematic ground experimental method to address the insufficient initial pointing accuracy of optical terminals in free space optical communication (FSO). By utilizing a multi-coordinate system transformation model combined with geodetic coordinates obtained from a Global Navigation Satellite System (GNSS), [...] Read more.
This paper proposes a systematic ground experimental method to address the insufficient initial pointing accuracy of optical terminals in free space optical communication (FSO). By utilizing a multi-coordinate system transformation model combined with geodetic coordinates obtained from a Global Navigation Satellite System (GNSS), the elevation and azimuth angles of the optical terminal are calculated to achieve initial pointing. High-precision horizontal installation and true north direction calibration are accomplished using a GNSS dual-antenna system and a digital inclinometer to suppress mechanical installation errors. Furthermore, an iterative stellar calibration method is proposed, leveraging ephemeris to precompute stellar positions and optimize correction values through multiple observations, significantly improving pointing accuracy. In a 104.68 km span experiment conducted in the Qinghai Lake area, the azimuth and elevation angle errors of the optical terminal were reduced to −0.0293° and −0.0068°, respectively, with the uncertainty region narrowed to 0.0586°. These results validate the effectiveness of the proposed method in high-precision rapid link establishment, providing technical support for the engineering application of satellite-to-ground laser communication. Full article
(This article belongs to the Special Issue Laser Communication Systems and Related Technologies)
Show Figures

Figure 1

34 pages, 338 KB  
Article
Systemic Gaps in Circular Plastics: A Role-Specific Assessment of Quality and Traceability Barriers in Australia
by Benjamin Gazeau, Atiq Zaman, Roberto Minunno and Faiz Shaikh
Sustainability 2025, 17(14), 6323; https://doi.org/10.3390/su17146323 - 10 Jul 2025
Viewed by 473
Abstract
The effective adoption of quality assurance and traceability systems is increasingly recognised as a critical enabler of circular economy (CE) outcomes in the plastics sector. This study examines the factors that influence the implementation of such systems within Australia’s recycled plastics industry, with [...] Read more.
The effective adoption of quality assurance and traceability systems is increasingly recognised as a critical enabler of circular economy (CE) outcomes in the plastics sector. This study examines the factors that influence the implementation of such systems within Australia’s recycled plastics industry, with a focus on how these factors vary by company size, supply chain role, and adoption of CE strategy. Recycled plastics are defined here as post-consumer or post-industrial polymers that have been reprocessed for reintegration into manufacturing applications. A mixed-methods survey was conducted with 65 stakeholders across the Australian plastics value chain, comprising recyclers, compounders, converters, and end-users. Respondents assessed a structured set of regulatory, technical, economic, and systemic factors, identifying whether each currently operates as an enabler or barrier in their organisational context. The analysis employed a comparative framework adapted from a 2022 European study, enabling a cross-regional interpretation of patterns and a comparison between CE-aligned and non-CE firms. The results show that firms with CE strategies report greater alignment with innovation-oriented enablers such as digital traceability, standardisation, and closed-loop models. However, these firms also express heightened sensitivity to systemic weaknesses, particularly in areas such as infrastructure limitations, inconsistent material quality, and data fragmentation. Small- and medium-sized enterprises (SMEs) highlighted compliance costs and operational uncertainty as primary barriers, while larger firms frequently cited frustration with regulatory inconsistency and infrastructure underperformance. These findings underscore the need for differentiated policy mechanisms that account for sectoral and organisational disparities in capacity, scale, and readiness for traceability. The study also cautions against the direct transfer of European circular economy models into the Australian context without consideration of local structural, regulatory, and geographic complexities. Full article
18 pages, 316 KB  
Review
Hydropower Reservoir Greenhouse Gas Emissions: State of the Science and Roadmap for Further Research to Improve Emission Accounting and Mitigation
by Surabhi Karambelkar, Maryalice Fischer and Shannon Ames
Sustainability 2025, 17(13), 5794; https://doi.org/10.3390/su17135794 - 24 Jun 2025
Viewed by 1186
Abstract
Rapidly decarbonizing the electricity grid is crucial for achieving net-zero greenhouse gas (GHG) emissions by mid-century and mitigating climate change impacts. Hydropower facilities can directly support grid decarbonization; however, like all energy systems, they emit GHGs throughout their lifecycle, with reservoirs being an [...] Read more.
Rapidly decarbonizing the electricity grid is crucial for achieving net-zero greenhouse gas (GHG) emissions by mid-century and mitigating climate change impacts. Hydropower facilities can directly support grid decarbonization; however, like all energy systems, they emit GHGs throughout their lifecycle, with reservoirs being an important source. Further research is urgently needed to improve the accounting and mitigation of hydropower reservoir GHG emissions to ensure that this technology is accurately considered in decarbonization policies and to allow project owners and energy buyers to make credible emission claims regarding this energy source. To this end, this paper reviews over seven dozen studies and emerging research to synthesize the current state of the science on reservoir GHG emission pathways as well as advancements in emission measurement tools to identify areas where further research is needed. This paper presents a research roadmap for government agencies, research institutions, and funding organizations covering four action areas: understanding and reducing uncertainties in reservoir GHG estimation and associated publicly accessible estimation tools; reducing the technical and economic barriers for reservoir managers to use GHG estimation tools; setting common standards to enable consistent monitoring, allocation, and reporting of reservoir GHG emissions; and supporting work on reservoir GHG emission mitigation strategies, including watershed-scale strategies. Progress in these areas will enable robust accounting of hydropower reservoir GHG emissions and targeted mitigation efforts to advance grid decarbonization. Full article
22 pages, 2720 KB  
Article
Research on the Diffusion of Green Energy Technological Innovation from the Perspective of International Cooperation
by Yan Li, Jun Wu and Xin-Ping Wang
Energies 2025, 18(11), 2816; https://doi.org/10.3390/en18112816 - 28 May 2025
Viewed by 538
Abstract
The diffusion of green energy technological innovation based on international green energy cooperation is a critical pathway to achieving global low-carbon emission reductions. However, few studies have considered the innovation diffusion pathways of green energy technologies under bilateral policy uncertainties. This paper constructs [...] Read more.
The diffusion of green energy technological innovation based on international green energy cooperation is a critical pathway to achieving global low-carbon emission reductions. However, few studies have considered the innovation diffusion pathways of green energy technologies under bilateral policy uncertainties. This paper constructs an evolutionary game model for the diffusion of green energy technological innovation in a complex network environment, with a focus on analyzing the impacts of key parameters such as policy spillover effects, technological heterogeneity, technical leakage risks, and free-riding risks on the equilibrium outcomes of evolutionary strategies. The results of the study are as follows: (1) Technological synergy and technological heterogeneity have a significant role in promoting the diffusion of green energy technological innovation, but when technological heterogeneity is too high, it is difficult for the two parties to find more common interests and areas of technological interaction, and the cooperative innovation will be turned into an empty shell that has a name but no reality. (2) Policy uncertainty has a significant impact on the diffusion of green energy technology innovation, and the specific impact depends on the type of policy, policy intensity, policy spillover effects, and other key parameters. (3) The risk of technological obsolescence has prompted countries to deeply participate in green energy international cooperation to realize the “curved road overtaking” of green energy technology based on technological locking and latecomer advantages; due to the existence of the phenomenon of “free-riding”, the logic of value creation based on win–win cooperation is replaced by the opportunism of “enjoying the benefits”, and cooperative innovation may be turned into a one-time “handshake agreement”. The existence of the risk of technology leakage can turn collaborative innovation into a “witch hunt” by the underdog against the overdog, and the diffusion process of green energy technology innovation is led in the wrong direction. Full article
Show Figures

Figure 1

36 pages, 7878 KB  
Review
Research on Sustainable Building Development in the Context of Smart Cities: Based on CiteSpace, VOSviewer, and Bibliometrix
by Bola Chen, Xunrong Ye and Fuping Dai
Buildings 2025, 15(11), 1811; https://doi.org/10.3390/buildings15111811 - 25 May 2025
Viewed by 1130
Abstract
Buildings play a pivotal role in the daily functioning of cities, and the development of smart cities is intricately linked to the sustainable development of architectural practices. However, existing reviews have predominantly concentrated on the development of smart cities, often overlooking the interdisciplinary [...] Read more.
Buildings play a pivotal role in the daily functioning of cities, and the development of smart cities is intricately linked to the sustainable development of architectural practices. However, existing reviews have predominantly concentrated on the development of smart cities, often overlooking the interdisciplinary complexities associated with integrating smart city technologies and sustainable building practices. This study systematically reviews 418 relevant papers from the Web of Science database, employing both quantitative and qualitative analytical methods to assess the current status and future trajectory of the field. Therefore, it bridges a significant gap in the existing literature. The findings underscore the contributions of technologies such as the Internet of Things (IoT), artificial intelligence, and big data in enhancing the sustainability of buildings within smart cities. The key areas of focus include energy management, smart building systems, and resource optimisation. Furthermore, the study identifies emerging research themes, such as smart city buildings, smart energy management, and digital twins, highlighting their potential to optimise building performance and foster sustainability within evolving urban systems. The keywords identified in the current body of research are categorised into six main areas: context, objectives, methods, artificial intelligence, emerging technologies, and opportunities and challenges. Research themes are seen to progress from “performance” to “building” and “sustainability” and from “city” to “city” and “sustainability”. Notably, themes such as “city”, “modelling”, and “design” have evolved into themes centred around the “Internet”. However, with the rapid expansion of digital technologies, scholars must also address several critical challenges, including data security and privacy protection, the complexity of cross-system data coordination, uncertainties in sustainable optimisation processes, and the ethical and societal implications of technology adoption. To ensure the successful and sustainable development of future urban smart buildings, it is essential to establish rigorous data security standards, harmonise technical protocols, implement effective global strategies, and prioritise ethical considerations. In addition, unmanned technologies and their associated systems offer valuable insights into the sustainability of buildings in smart cities. Finally, this study presents a comprehensive and systematic framework that provides invaluable insights for future strategic planning and technological advancements in the field. Full article
(This article belongs to the Special Issue Digital Management in Architectural Projects and Urban Environment)
Show Figures

Figure 1

17 pages, 1315 KB  
Article
Cefiderocol Antimicrobial Susceptibility Testing by Disk Diffusion: Influence of Agar Media and Inhibition Zone Morphology in K. pneumoniae Metallo-β-lactamase
by Maciej Saar, Anna Wawrzyk, Dorota Pastuszak-Lewandoska and Filip Bielec
Antibiotics 2025, 14(5), 527; https://doi.org/10.3390/antibiotics14050527 - 21 May 2025
Viewed by 1661
Abstract
Accurate antimicrobial susceptibility testing (AST) of cefiderocol remains a diagnostic challenge, especially in infections caused by metallo-β-lactamase (MBL)-producing Klebsiella pneumoniae. While disk diffusion offers a cost-effective alternative to broth microdilution, it is highly sensitive to factors such as media composition and the [...] Read more.
Accurate antimicrobial susceptibility testing (AST) of cefiderocol remains a diagnostic challenge, especially in infections caused by metallo-β-lactamase (MBL)-producing Klebsiella pneumoniae. While disk diffusion offers a cost-effective alternative to broth microdilution, it is highly sensitive to factors such as media composition and the presence of atypical colony morphology. The objective of this study was to evaluate how different agar media and interpretations of isolated colonies affect the performance and reliability of cefiderocol AST by disk diffusion. A total of 50 clinical K. pneumoniae MBL isolates were tested using disk diffusion on Columbia with blood, MacConkey, and chromogenic agars from three manufacturers. Inhibition zones were compared with MICs from broth microdilution. Statistical analyses included paired t-tests and Spearman correlation to assess media effects and zone morphology impact. Variability in inhibition zone diameters was observed between media, notably with chromogenic agar. The most consistent results were obtained using Graso Biotech and Thermo Fisher Columbia with blood agar. Isolated colonies were observed in over half the samples and, depending on how they were interpreted, led to major changes in classification accuracy. Up to 64% of results fell into the EUCAST area of technical uncertainty (ATU), and categorical agreement varied across media and interpretive criteria. Disk diffusion for cefiderocol may be used in resource-limited settings but only if rigorously standardized using validated media, consistent zone reading, and ATU-aware interpretive strategies. In borderline cases or when morphological anomalies are present, broth microdilution should be considered the sole reliable method. Clinical microbiologists are advised to exercise caution with ambiguous results and seek expert or confirmatory testing when needed. Full article
Show Figures

Figure 1

22 pages, 8377 KB  
Article
Numerical Modeling and Sea Trial Studies of Oil Spills in the Sea Area from Haikou to Danzhou
by Weihang Wang, Bijin Liu, Zhen Guo, Zhenwei Zhang and Chao Chen
Water 2025, 17(9), 1379; https://doi.org/10.3390/w17091379 - 3 May 2025
Viewed by 621
Abstract
This study utilized the FVCOM model to establish a hydrodynamic model for the waters from Haikou to Danzhou. Based on this framework, a numerical model for oil spill drift and diffusion was developed using the Lagrangian particle method, incorporating processes such as advection, [...] Read more.
This study utilized the FVCOM model to establish a hydrodynamic model for the waters from Haikou to Danzhou. Based on this framework, a numerical model for oil spill drift and diffusion was developed using the Lagrangian particle method, incorporating processes such as advection, diffusion, spreading, emulsification, dissolution, volatilization, and shoreline adsorption. Sea experiments involving drifters and dye were conducted to validate the oil spill model. The model was subsequently applied to analyze the impacts of tidal phases and wind fields on oil spill trajectories, predict affected areas, and assess risks to environmentally sensitive zones. The results demonstrate that the hydrodynamic model accurately reproduces the tidal current characteristics of the study area. Validation using drifter and dye experiments confirmed that the model’s predictive error remains within 20%, meeting operational forecasting standards. Potential sources of error include uncertainties in wind–wave–current interactions and discrepancies in windage coefficients between oil spills and drifters. Tidal currents and wind fields were identified as the dominant drivers of oil spill drift and diffusion. Under southerly wind conditions, the oil spill exhibited the largest spatial extent, covering 995.25 km2 with a trajectory length of 226.92 km. A sensitivity analysis highlighted the Lingao Silverlip Pearl Oyster Marine Protected Area and Shatu Bay Beach as high-risk regions. The developed model provides critical technical support for oil spill emergency response under diverse environmental conditions, enabling proactive pathway forecasting and preventive measures to mitigate ecological damage. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

22 pages, 10246 KB  
Article
Techno-Economic Analysis of Sustainable Hydrogen Production from Offshore Wind Farms: Two Italian Study Cases
by Francesco Lanni, Laura Serri, Giovanni Manzini, Riccardo Travaglini, Francesco Superchi and Alessandro Bianchini
Processes 2025, 13(4), 1219; https://doi.org/10.3390/pr13041219 - 17 Apr 2025
Cited by 1 | Viewed by 1356
Abstract
Renewable energy production is one of the pillars of the decarbonization process for the electricity system. The use of hydrogen can also contribute to the decarbonisation of industrial sectors such as chemicals, steel production, heavy industry, and long-distance transports. In Italy, a significant [...] Read more.
Renewable energy production is one of the pillars of the decarbonization process for the electricity system. The use of hydrogen can also contribute to the decarbonisation of industrial sectors such as chemicals, steel production, heavy industry, and long-distance transports. In Italy, a significant growth in wind and photovoltaic production is already foreseen by 2030. After that date, a wide deployment of offshore wind is expected with a significant decrease in cost. In a medium-long term scenario, with the massive expansion of renewable energy systems and the growing demand for hydrogen across multiple sectors, it is conceivable that some large-scale offshore wind farms (OWFs) could be exclusively dedicated to on-site green hydrogen production, thereby mitigating the impact on the electrical grid and simultaneously increasing hydrogen availability. This study reports the methods, assumptions, and results of a technical–economic analysis carried out for green hydrogen production from dedicated OWFs in two Italian offshore sites, one in Sicily and one in the Adriatic Sea. Despite the high uncertainty associated with carrying out this type of assessment for emerging technologies, the levelized costs obtained for dedicated offshore wind energy (approximately 70–80 EUR/MWh) and green hydrogen (approximately 5–6 EUR/kg) are in line with corresponding sector studies. Moreover, the simplified methodological approach developed is useful to analyse and compare other marine areas and different system configurations. Full article
(This article belongs to the Special Issue Sustainable Hydrogen Production Processes)
Show Figures

Figure 1

21 pages, 7887 KB  
Article
PV Energy Communities in Residential Apartments: Technical Capacities and Economic Viability
by Anna Mutule, Olegs Borscevskis, Victor Astapov, Irina Antoskova, Paula Carroll and Evita Kairisa
Sustainability 2025, 17(7), 2901; https://doi.org/10.3390/su17072901 - 25 Mar 2025
Cited by 3 | Viewed by 702
Abstract
The Baltic countries are exploring diverse ways to achieve renewable energy objectives, with a particular emphasis on utilizing photovoltaic (PV) technologies in urban areas. Despite the northerly geographical location, PV energy has proven effective, particularly in individual households under the net metering scheme. [...] Read more.
The Baltic countries are exploring diverse ways to achieve renewable energy objectives, with a particular emphasis on utilizing photovoltaic (PV) technologies in urban areas. Despite the northerly geographical location, PV energy has proven effective, particularly in individual households under the net metering scheme. Energy communities (EC) in urban areas have the potential to support sustainable energy transition by promoting local generation and increasing resilience. However, the broader adoption of rooftop PV systems faces numerous challenges, including technical limitations and legislative gaps. This study examines challenges encountered by community energy projects in residential apartments through a case study in the Latvian context. The paper provides a comparative analysis of PV community implementation scenarios across the three types of typical apartment buildings. The study demonstrates a number of fundamental obstacles that hamper the development of ECs in apartment buildings. The results indicate that the economic benefits of ECs largely depend on electricity market price, and that selection of optimal community design is the key aspect for minimizing investment risks amid market and legislative uncertainty. Results indicate that individual households may have limited motivation to form ECs under current policies. Finally, the insights provided help shape suggestions for future research. Full article
Show Figures

Figure 1

25 pages, 4445 KB  
Article
The Impact of Extreme Sea Level Rise on the National Strategies for Flood Protection and Freshwater in the Netherlands
by Yann Friocourt, Meinte Blaas, Matthijs Bonte, Robert Vos, Robert Slomp, Rinse Wilmink, Quirijn Lodder, Laura Brakenhoff and Saskia van Gool
Water 2025, 17(7), 919; https://doi.org/10.3390/w17070919 - 21 Mar 2025
Viewed by 2059
Abstract
This work investigates the impact of sea level rise (SLR) of up to 3 m on flood protection and freshwater availability in the Netherlands. We applied an exploratory modeling approach to consider the large degree of uncertainty associated with SLR. The results show [...] Read more.
This work investigates the impact of sea level rise (SLR) of up to 3 m on flood protection and freshwater availability in the Netherlands. We applied an exploratory modeling approach to consider the large degree of uncertainty associated with SLR. The results show the current degree of flood protection can be technically and financially maintained for up to three meters of SLR. A primary finding of this work is that a similar degree of safety against floods can be maintained. There are, however, several challenges: First, maintaining this degree of safety against floods requires considerable spatial allocations to maintain and upgrade flood defenses, often in populated areas with limited space. Second, the supply of sand for coastal nourishments will be challenging due to other functions in the North Sea (wind energy, shipping) and explosive remnants of war. Third, an acceleration in the rate of SLR may impact the overall feasibility of maintaining flood defenses. Maintaining the freshwater strategy will be challenging due to SLR-induced salt intrusion, which aggravates climate impacts including droughts. Continued flushing of salinized areas of regional water systems and polders with fresh river water will increasingly compete with other demands. Our analysis highlights the vulnerabilities of the flood protection and freshwater strategies and gives input to follow-up analyses on societal impact and perspectives of actions for adaptation. Full article
(This article belongs to the Special Issue Climate Risk Management, Sea Level Rise and Coastal Impacts)
Show Figures

Figure 1

Back to TopTop