Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,817)

Search Parameters:
Keywords = art and architecture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 758 KB  
Review
Advances in Computational Modeling of Scaffolds for Bone Tissue Engineering: A Narrative Review of the Current Approaches and Challenges
by Ourania Ntousi, Maria Roumpi, Panagiotis K. Siogkas, Demosthenes Polyzos, Ioannis Kakkos, George K. Matsopoulos and Dimitrios I. Fotiadis
Biomechanics 2025, 5(4), 76; https://doi.org/10.3390/biomechanics5040076 - 2 Oct 2025
Abstract
Background/Objectives: The process of designing and fabricating bone tissue engineering scaffolds is a multi-faceted and intricate process. The scaffold is designed to attach cells to the required volume of regeneration to subsequently migrate, grow, differentiate, proliferate, and consequently develop tissue within the scaffold [...] Read more.
Background/Objectives: The process of designing and fabricating bone tissue engineering scaffolds is a multi-faceted and intricate process. The scaffold is designed to attach cells to the required volume of regeneration to subsequently migrate, grow, differentiate, proliferate, and consequently develop tissue within the scaffold which, in time, will degrade, leaving just the regenerated tissue. The fabrication of tissue scaffolds requires adapting the properties of the scaffolds to mimic, to a large extent, the specific characteristics of each type of bone tissue. However, there are some significant limitations due to the constrained scaffolds’ architecture and structural features that inhibit the optimization of bone scaffolds. Methods: To overcome these shortcomings, new computational approaches for scaffold design have been adopted through currently adopted computational methods such as finite element analysis (FEA), computational fluid dynamics (CFD), and fluid–structure interaction (FSI). Results: This paper presents a narrative review of the state of the art in the field of parametric numerical modeling and computational fluid dynamics geometry-based models used in bone tissue engineering. Computational methods for scaffold design improve the process of constructing scaffolds and contribute to tissue engineering. Conclusions: This paper highlights the benefits of computational methods on employing scaffolds with different architectures and inherent characteristics that can potentially contribute to a favorable environment for hosting cells and predict their behavior and response. By recognizing these benefits, researchers can enhance and optimize scaffold properties for future advancements in tissue engineering research that will lead to more accurate and robust outcomes. Full article
(This article belongs to the Section Tissue and Vascular Biomechanics)
Show Figures

Figure 1

17 pages, 4099 KB  
Article
A Transformer-Based Multi-Scale Semantic Extraction Change Detection Network for Building Change Application
by Lujin Hu, Senchuan Di, Zhenkai Wang and Yu Liu
Buildings 2025, 15(19), 3549; https://doi.org/10.3390/buildings15193549 - 2 Oct 2025
Abstract
Building change detection involves identifying areas where buildings have changed by comparing multi-temporal remote sensing imagery of the same geographical region. Recent advances in Transformer-based methods have significantly improved remote sensing change detection. However, current Transformer models still exhibit persistent limitations in effectively [...] Read more.
Building change detection involves identifying areas where buildings have changed by comparing multi-temporal remote sensing imagery of the same geographical region. Recent advances in Transformer-based methods have significantly improved remote sensing change detection. However, current Transformer models still exhibit persistent limitations in effectively extracting multi-scale semantic features within complex scenarios. To more effectively extract multi-scale semantic features in complex scenes, we propose a novel model, which is the Transformer-based Multi-Scale Semantic Extraction Change Detection Network (MSSE-CDNet). The model employs a Siamese network architecture to enable precise change recognition. MSSE-CDNet comprises four parts, which together contain five modules: (1) a CNN feature extraction module, (2) a multi-scale semantic extraction module, (3) a Transformer encoder and decoder module, and (4) a prediction module. Comprehensive experiments on the standard LEVIR-CD benchmark for building change detection demonstrate our approach’s superiority over state-of-the-art methods. Compared to existing models such as FC-Siam-Di, FC-Siam-Conc, DTCTSCN, BIT, and SNUNet, MSSE-CDNet achieves significant and consistent gains in performance metrics, with F1 scores improved by 4.22%, 6.84%, 2.86%, 1.22%, and 2.37%, respectively, and Intersection over Union (IoU) improved by 6.78%, 10.74%, 4.65%, 2.02%, and 3.87%, respectively. These results robustly substantiate the effectiveness of our framework on an established benchmark dataset. Full article
(This article belongs to the Special Issue Big Data and Machine/Deep Learning in Construction)
Show Figures

Figure 1

21 pages, 2975 KB  
Article
ARGUS: An Autonomous Robotic Guard System for Uncovering Security Threats in Cyber-Physical Environments
by Edi Marian Timofte, Mihai Dimian, Alin Dan Potorac, Doru Balan, Daniel-Florin Hrițcan, Marcel Pușcașu and Ovidiu Chiraș
J. Cybersecur. Priv. 2025, 5(4), 78; https://doi.org/10.3390/jcp5040078 - 1 Oct 2025
Abstract
Cyber-physical infrastructures such as hospitals and smart campuses face hybrid threats that target both digital and physical domains. Traditional security solutions separate surveillance from network monitoring, leaving blind spots when attackers combine these vectors. This paper introduces ARGUS, an autonomous robotic platform designed [...] Read more.
Cyber-physical infrastructures such as hospitals and smart campuses face hybrid threats that target both digital and physical domains. Traditional security solutions separate surveillance from network monitoring, leaving blind spots when attackers combine these vectors. This paper introduces ARGUS, an autonomous robotic platform designed to close this gap by correlating cyber and physical anomalies in real time. ARGUS integrates computer vision for facial and weapon detection with intrusion detection systems (Snort, Suricata) for monitoring malicious network activity. Operating through an edge-first microservice architecture, it ensures low latency and resilience without reliance on cloud services. Our evaluation covered five scenarios—access control, unauthorized entry, weapon detection, port scanning, and denial-of-service attacks—with each repeated ten times under varied conditions such as low light, occlusion, and crowding. Results show face recognition accuracy of 92.7% (500 samples), weapon detection accuracy of 89.3% (450 samples), and intrusion detection latency below one second, with minimal false positives. Audio analysis of high-risk sounds further enhanced situational awareness. Beyond performance, ARGUS addresses GDPR and ISO 27001 compliance and anticipates adversarial robustness. By unifying cyber and physical detection, ARGUS advances beyond state-of-the-art patrol robots, delivering comprehensive situational awareness and a practical path toward resilient, ethical robotic security. Full article
(This article belongs to the Special Issue Cybersecurity Risk Prediction, Assessment and Management)
Show Figures

Figure 1

26 pages, 4789 KB  
Article
EMAT: Enhanced Multi-Aspect Attention Transformer for Financial Time Series Forecasting
by Yingjun Chen, Wenfeng Shen, Han Liu and Xiaolin Cao
Entropy 2025, 27(10), 1029; https://doi.org/10.3390/e27101029 - 1 Oct 2025
Abstract
Financial time series prediction remains a challenging task due to the inherent non-stationarity, noise, and complex temporal dependencies present in market data. Traditional forecasting methods often fail to capture the multifaceted nature of financial markets, where temporal proximity, trend dynamics, and volatility patterns [...] Read more.
Financial time series prediction remains a challenging task due to the inherent non-stationarity, noise, and complex temporal dependencies present in market data. Traditional forecasting methods often fail to capture the multifaceted nature of financial markets, where temporal proximity, trend dynamics, and volatility patterns simultaneously influence price movements. To address these limitations, this paper proposes the Enhanced Multi-Aspect Transformer (EMAT), a novel deep learning architecture specifically designed for stock market prediction. EMAT incorporates a Multi-Aspect Attention Mechanism that simultaneously captures temporal decay patterns, trend dynamics, and volatility regimes through specialized attention components. The model employs an encoder–decoder architecture with enhanced feed-forward networks utilizing SwiGLU activation, enabling superior modeling of complex non-linear relationships. Furthermore, we introduce a comprehensive multi-objective loss function that balances point-wise prediction accuracy with volatility consistency. Extensive experiments on multiple stock market datasets demonstrate that EMAT consistently outperforms a wide range of state-of-the-art baseline models, including various recurrent, hybrid, and Transformer architectures. Our ablation studies further validate the design, confirming that each component of the Multi-Aspect Attention Mechanism makes a critical and quantifiable contribution to the model’s predictive power. The proposed architecture’s ability to simultaneously model these distinct financial characteristics makes it a particularly effective and robust tool for financial forecasting, offering significant improvements in accuracy compared to existing approaches. Full article
(This article belongs to the Special Issue Entropy, Artificial Intelligence and the Financial Markets)
Show Figures

Figure 1

17 pages, 3413 KB  
Article
Determination of Coal and Biomass Co-Combustion Process States Using Convolutional Neural Networks
by Andrzej Kotyra and Konrad Gromaszek
Energies 2025, 18(19), 5219; https://doi.org/10.3390/en18195219 - 1 Oct 2025
Abstract
The paper presents the application of high-speed flame imaging combined with convolutional neural networks (CNNs) for determining different states of biomass–coal co-combustion in terms of thermal power and excess air coefficient. The experimental setup and methodology used in a laboratory-scale co-combustion system are [...] Read more.
The paper presents the application of high-speed flame imaging combined with convolutional neural networks (CNNs) for determining different states of biomass–coal co-combustion in terms of thermal power and excess air coefficient. The experimental setup and methodology used in a laboratory-scale co-combustion system are described, highlighting tests conducted across nine defined operational variants. The performance of several state-of-the-art CNN architectures was examined, focusing particularly on those achieving the highest classification metrics and exploring the dependence of input image resolution and applying a transfer learning paradigm. By benchmarking various CNNs on a large, diverse image dataset without preprocessing, the research advances intelligent, automated control systems for improved stability, efficiency, and emissions control, bridging advanced visual diagnostics with real-time industrial applications. The summary includes recommendations and potential directions for further research related to the use of image data and machine learning techniques in industry. Full article
(This article belongs to the Special Issue Optimization of Efficient Clean Combustion Technology: 2nd Edition)
Show Figures

Figure 1

42 pages, 7970 KB  
Review
Object Detection with Transformers: A Review
by Tahira Shehzadi, Khurram Azeem Hashmi, Marcus Liwicki, Didier Stricker and Muhammad Zeshan Afzal
Sensors 2025, 25(19), 6025; https://doi.org/10.3390/s25196025 - 1 Oct 2025
Abstract
The astounding performance of transformers in natural language processing (NLP) has motivated researchers to explore their applications in computer vision tasks. A detection transformer (DETR) introduces transformers to object detection tasks by reframing detection as a set prediction problem. Consequently, it eliminates the [...] Read more.
The astounding performance of transformers in natural language processing (NLP) has motivated researchers to explore their applications in computer vision tasks. A detection transformer (DETR) introduces transformers to object detection tasks by reframing detection as a set prediction problem. Consequently, it eliminates the need for proposal generation and post-processing steps. Despite competitive performance, DETR initially suffered from slow convergence and poor detection of small objects. However, numerous improvements are proposed to address these issues, leading to substantial improvements, enabling DETR to achieve state-of-the-art performance. To the best of our knowledge, this paper is the first to provide a comprehensive review of 25 recent DETR advancements. We dive into both the foundational modules of DETR and its recent enhancements, such as modifications to the backbone structure, query design strategies, and refinements to attention mechanisms. Moreover, we conduct a comparative analysis across various detection transformers, evaluating their performance and network architectures. We aim for this study to encourage further research in addressing the existing challenges and exploring the application of transformers in the object detection domain. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

37 pages, 1993 KB  
Systematic Review
Demand Response Potential Forecasting: A Systematic Review of Methods, Challenges, and Future Directions
by Ali Muqtadir, Bin Li, Bing Qi, Leyi Ge, Nianjiang Du and Chen Lin
Energies 2025, 18(19), 5217; https://doi.org/10.3390/en18195217 - 1 Oct 2025
Abstract
Demand response (DR) is increasingly recognized as a critical flexibility resource for modernizing power systems, enabling the large-scale integration of renewable energy and enhancing grid stability. While the field of general electricity load forecasting is supported by numerous systematic reviews, the specific subfield [...] Read more.
Demand response (DR) is increasingly recognized as a critical flexibility resource for modernizing power systems, enabling the large-scale integration of renewable energy and enhancing grid stability. While the field of general electricity load forecasting is supported by numerous systematic reviews, the specific subfield of DR potential forecasting has received comparatively less synthesized attention. This gap leaves a fragmented understanding of modeling techniques, practical implementation challenges, and future research problems for a function that is essential for market participation. To address this, this paper presents a PRISMA-2020-compliant systematic review of 172 studies to comprehensively analyze the state-of-the-art in DR potential estimation. We categorize and evaluate the evolution of forecasting methodologies, from foundational statistical models to advanced AI architectures. Furthermore, the study identifies key technological enablers and systematically maps the persistent technical, regulatory, and behavioral barriers that impede widespread DR deployment. Our analysis demonstrates a clear trend towards hybrid and ensemble models, which outperform standalone approaches by integrating the strengths of diverse techniques to capture complex, nonlinear consumer dynamics. The findings underscore that while technologies like Advanced Metering Infrastructure (AMI) and the Internet of Things (IoT) are critical enablers, the gap between theoretical potential and realized flexibility is primarily dictated by non-technical factors, including inaccurate baseline methodologies, restrictive market designs, and low consumer engagement. This synthesis brings much-needed structure to a fragmented research area, evaluating the current state of forecasting methods and identifying the critical research directions required to improve the operational effectiveness of DR programs. Full article
Show Figures

Figure 1

19 pages, 1115 KB  
Article
A Generative Expert-Narrated Simplification Model for Enhancing Health Literacy Among the Older Population
by Akmalbek Abdusalomov, Sabina Umirzakova, Sanjar Mirzakhalilov, Alpamis Kutlimuratov, Rashid Nasimov, Zavqiddin Temirov, Wonjun Jeong, Hyoungsun Choi and Taeg Keun Whangbo
Bioengineering 2025, 12(10), 1066; https://doi.org/10.3390/bioengineering12101066 - 30 Sep 2025
Abstract
Older adults often face significant challenges in understanding medical information due to cognitive aging and limited health literacy. Existing simplification models, while effective in general domains, cannot adapt content for elderly users, frequently overlooking narrative tone, readability constraints, and semantic fidelity. In this [...] Read more.
Older adults often face significant challenges in understanding medical information due to cognitive aging and limited health literacy. Existing simplification models, while effective in general domains, cannot adapt content for elderly users, frequently overlooking narrative tone, readability constraints, and semantic fidelity. In this work, we propose GENSIM—a Generative Expert-Narrated Simplification Model tailored for age-adapted medical text simplification. GENSIM introduces a modular architecture that integrates a Dual-Stream Encoder, which fuses biomedical semantics with elder-friendly linguistic patterns; a Persona-Tuned Narrative Decoder, which controls tone, clarity, and empathy; and a Reinforcement Learning with Human Feedback (RLHF) framework guided by dual discriminators for factual alignment and age-specific readability. Trained on a triad of corpora—SimpleDC, PLABA, and a custom NIH-SeniorHealth corpus—GENSIM achieves state-of-the-art performance on SARI, FKGL, BERTScore, and BLEU across multiple test sets. Ablation studies confirm the individual and synergistic value of each component, while structured human evaluations demonstrate that GENSIM produces outputs rated significantly higher in faithfulness, simplicity, and demographic suitability. This work represents the first unified framework for elderly-centered medical text simplification and marks a paradigm shift toward inclusive, user-aligned generation for health communication. Full article
35 pages, 4758 KB  
Article
Automated Detection of Beaver-Influenced Floodplain Inundations in Multi-Temporal Aerial Imagery Using Deep Learning Algorithms
by Evan Zocco, Chandi Witharana, Isaac M. Ortega and William Ouimet
ISPRS Int. J. Geo-Inf. 2025, 14(10), 383; https://doi.org/10.3390/ijgi14100383 - 30 Sep 2025
Abstract
Remote sensing provides a viable alternative for understanding landscape modifications attributed to beaver activity. The central objective of this study is to integrate multi-source remote sensing observations in tandem with a deep learning (DL) (convolutional neural net or transformer) model to automatically map [...] Read more.
Remote sensing provides a viable alternative for understanding landscape modifications attributed to beaver activity. The central objective of this study is to integrate multi-source remote sensing observations in tandem with a deep learning (DL) (convolutional neural net or transformer) model to automatically map beaver-influenced floodplain inundations (BIFI) over large geographical extents. We trained, validated, and tested eleven different model configurations in three architectures using five ResNet and five B-Finetuned encoders. The training dataset consisted of >25,000 manually annotated aerial image tiles of BIFIs in Connecticut. The YOLOv8 architecture outperformed competing configurations and achieved an F1 score of 80.59% and pixel-based map accuracy of 98.95%. SegFormer and U-Net++’s highest-performing models had F1 scores of 68.98% and 78.86%, respectively. The YOLOv8l-seg model was deployed at a statewide scale based on 1 m resolution multi-temporal aerial imagery acquired from 1990 to 2019 under leaf-on and leaf-off conditions. Our results suggest a variety of inferences when comparing leaf-on and leaf-off conditions of the same year. The model exhibits limitations in identifying BIFIs in panchromatic imagery in occluded environments. Study findings demonstrate the potential of harnessing historical and modern aerial image datasets with state-of-the-art DL models to increase our understanding of beaver activity across space and time. Full article
17 pages, 1392 KB  
Article
SM-TCN: Multi-Resolution Sparse Convolution Network for Efficient High-Dimensional Time Series Forecast
by Ziyou Guo, Yan Sun and Tieru Wu
Sensors 2025, 25(19), 6013; https://doi.org/10.3390/s25196013 - 30 Sep 2025
Abstract
High-dimensional time series data forecasting has been a popular problem in recent years, with ubiquitous applications in both scientific and business fields. Modern datasets may incorporate thousands of correlated time series that evolve together, and correctly identifying the correlated patterns and modeling the [...] Read more.
High-dimensional time series data forecasting has been a popular problem in recent years, with ubiquitous applications in both scientific and business fields. Modern datasets may incorporate thousands of correlated time series that evolve together, and correctly identifying the correlated patterns and modeling the inter-series relationship can significantly promote forecast accuracy. However, most statistical methods are inadequate for handling complicated time series due to violation of model assumptions, and most recent deep learning approaches in the literature are either univariate (not fully utilizing inter-series information) or computationally expensive. This paper present SM-TCN, a Sparse Multi-scale Temporal Convolutional Network, utilizing a forward–backward residual architecture with sparse TCN kernels of different lengths to extract multi-resolution characteristics, which sufficiently reduces computational complexity specifically for high-dimensional problems. Extensive experiments on real-world datasets have demonstrated that SM-TCN outperforms state-of-the-art approaches by 10% in MAE and MAPE, and has the additional advantage of high computation efficiency. Full article
(This article belongs to the Section Intelligent Sensors)
25 pages, 7878 KB  
Article
JOTGLNet: A Guided Learning Network with Joint Offset Tracking for Multiscale Deformation Monitoring
by Jun Ni, Siyuan Bao, Xichao Liu, Sen Du, Dapeng Tao and Yibing Zhan
Remote Sens. 2025, 17(19), 3340; https://doi.org/10.3390/rs17193340 - 30 Sep 2025
Abstract
Ground deformation monitoring in mining areas is essential for hazard prevention and environmental protection. Although interferometric synthetic aperture radar (InSAR) provides detailed phase information for accurate deformation measurement, its performance is often compromised in regions experiencing rapid subsidence and strong noise, where phase [...] Read more.
Ground deformation monitoring in mining areas is essential for hazard prevention and environmental protection. Although interferometric synthetic aperture radar (InSAR) provides detailed phase information for accurate deformation measurement, its performance is often compromised in regions experiencing rapid subsidence and strong noise, where phase aliasing and coherence loss lead to significant inaccuracies. To overcome these limitations, this paper proposes JOTGLNet, a guided learning network with joint offset tracking, for multiscale deformation monitoring. This method integrates pixel offset tracking (OT), which robustly captures large-gradient displacements, with interferometric phase data that offers high sensitivity in coherent regions. A dual-path deep learning architecture was designed where the interferometric phase serves as the primary branch and OT features act as complementary information, enhancing the network’s ability to handle varying deformation rates and coherence conditions. Additionally, a novel shape perception loss combining morphological similarity measurement and error learning was introduced to improve geometric fidelity and reduce unbalanced errors across deformation regions. The model was trained on 4000 simulated samples reflecting diverse real-world scenarios and validated on 1100 test samples with a maximum deformation up to 12.6 m, achieving an average prediction error of less than 0.15 m—outperforming state-of-the-art methods whose errors exceeded 0.19 m. Additionally, experiments on five real monitoring datasets further confirmed the superiority and consistency of the proposed approach. Full article
Show Figures

Graphical abstract

26 pages, 14847 KB  
Article
An Open-Source Urban Digital Twin for Enhancing Outdoor Thermal Comfort in the City of Huelva (Spain)
by Victoria Patricia Lopez-Cabeza, Marta Videras-Rodriguez and Sergio Gomez-Melgar
Smart Cities 2025, 8(5), 160; https://doi.org/10.3390/smartcities8050160 - 29 Sep 2025
Abstract
Climate change and urbanization are intensifying the urban heat island effect and negatively impacting outdoor thermal comfort in cities. Innovative planning strategies are required to design more livable and resilient urban spaces. Building on a state of the art of current Urban Digital [...] Read more.
Climate change and urbanization are intensifying the urban heat island effect and negatively impacting outdoor thermal comfort in cities. Innovative planning strategies are required to design more livable and resilient urban spaces. Building on a state of the art of current Urban Digital Twins (UDTs) for outdoor thermal comfort analysis, this paper presents the design and implementation of a functional UDT prototype. Developed for a pilot area in Huelva, Spain, the system integrates real-time environmental data, spatial modeling, and simulation tools within an open-source architecture. The literature reveals that while UDTs are increasingly used in urban management, their application to outdoor thermal comfort remains limited and technically challenging, especially in terms of real-time data, modeling accuracy, and user interaction. The case study demonstrates the feasibility of a modular, open-source UDT capable of simulating mean radiant temperature and outdoor thermal comfort indexes at high resolution and visualizing the results in a 3D interactive environment. UDTs have strong potential for supporting microclimate-sensitive planning and improving outdoor thermal comfort. However, important challenges remain, particularly in simulation efficiency, model detail, and stakeholder accessibility. The proposed prototype addresses several of these gaps and provides a basis for future improvements. Full article
(This article belongs to the Collection Digital Twins for Smart Cities)
Show Figures

Figure 1

19 pages, 2621 KB  
Article
A Lightweight and Efficient Deep Learning Model for Detection of Sector and Region in Three-Level Inverters
by Fatih Özen, Rana Ortaç Kabaoğlu and Tarık Veli Mumcu
Electronics 2025, 14(19), 3876; https://doi.org/10.3390/electronics14193876 - 29 Sep 2025
Abstract
In three-level inverters, high accuracy and low latency sector and region detection are of great importance for control and monitoring processes. This study aims to overcome the limitations of traditional methods and develop a model that can work in real time in industrial [...] Read more.
In three-level inverters, high accuracy and low latency sector and region detection are of great importance for control and monitoring processes. This study aims to overcome the limitations of traditional methods and develop a model that can work in real time in industrial applications. In this study, various deep learning (DL) architectures are systematically evaluated, and a comprehensive performance comparison is performed to automate sector and region detection for inverter systems. The proposed approach aims to detect sectors (6 classes) and regions (3 classes) with high accuracy using a Deep Neural Network (DNN), 1D Convolutional Neural Network (CNN), Long-Short Term Memory (LSTM), and Gated Recurrent Unit (GRU) based DL architectures. The performance of the considered DL approaches was systematically evaluated with cross-validation, confusion matrices, and statistical tests. The proposed GRU-based model offers both computational efficiency and high classification performance with a low number of parameters compared to other models. The proposed model achieved 99.27% and 97.62% accuracy in sector and region detection, respectively, and provided a more optimized solution compared to many heavily structured state-of-the-art DL models. The results show that the GRU model exhibits statistically significant superior performance and support that it has the potential to be easily integrated into hardware-based systems due to its low computational complexity. The comprehensive results show that DL-based approaches can be effectively used in sector and region detection in inverter systems, and especially the GRU architecture is a promising method. Full article
(This article belongs to the Special Issue Application of Machine Learning in Power Electronics)
Show Figures

Figure 1

23 pages, 1668 KB  
Article
Brain Stroke Classification Using CT Scans with Transformer-Based Models and Explainable AI
by Shomukh Qari and Maha A. Thafar
Diagnostics 2025, 15(19), 2486; https://doi.org/10.3390/diagnostics15192486 - 29 Sep 2025
Abstract
Background & Objective: Stroke remains a leading cause of mortality and long-term disability worldwide, demanding rapid and accurate diagnosis to improve patient outcomes. Computed tomography (CT) scans are widely used in emergency settings due to their speed, availability, and cost-effectiveness. This study proposes [...] Read more.
Background & Objective: Stroke remains a leading cause of mortality and long-term disability worldwide, demanding rapid and accurate diagnosis to improve patient outcomes. Computed tomography (CT) scans are widely used in emergency settings due to their speed, availability, and cost-effectiveness. This study proposes an artificial intelligence (AI)-based framework for multiclass stroke classification (ischemic, hemorrhagic, and no stroke) using CT scan images from the Ministry of Health of the Republic of Turkey. Methods: We adopted MaxViT, a state-of-the-art Vision Transformer (ViT)-based architecture, as the primary deep learning model for stroke classification. Additional transformer variants, including Vision Transformer (ViT), Transformer-in-Transformer (TNT), and ConvNeXt, were evaluated for comparison. To improve model generalization and handle class imbalance, classical data augmentation techniques were applied. Furthermore, explainable AI (XAI) was integrated using Grad-CAM++ to provide visual insights into model decisions. Results: The MaxViT model with augmentation achieved the highest performance, reaching an accuracy and F1-score of 98.00%, outperforming the baseline Vision Transformer and other evaluated models. Grad-CAM++ visualizations confirmed that the proposed framework effectively identified stroke-related regions, enhancing transparency and clinical trust. Conclusions: This research contributes to the development of a trustworthy AI-assisted diagnostic tool for stroke, facilitating its integration into clinical practice and improving access to timely and optimal stroke diagnosis in emergency departments. Full article
(This article belongs to the Special Issue 3rd Edition: AI/ML-Based Medical Image Processing and Analysis)
Show Figures

Figure 1

29 pages, 2068 KB  
Article
Voice-Based Early Diagnosis of Parkinson’s Disease Using Spectrogram Features and AI Models
by Danish Quamar, V. D. Ambeth Kumar, Muhammad Rizwan, Ovidiu Bagdasar and Manuella Kadar
Bioengineering 2025, 12(10), 1052; https://doi.org/10.3390/bioengineering12101052 - 29 Sep 2025
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder that significantly affects motor functions, including speech production. Voice analysis offers a less invasive, faster and more cost-effective approach for diagnosing and monitoring PD over time. This research introduces an automated system to distinguish between [...] Read more.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder that significantly affects motor functions, including speech production. Voice analysis offers a less invasive, faster and more cost-effective approach for diagnosing and monitoring PD over time. This research introduces an automated system to distinguish between PD and non-PD individuals based on speech signals using state-of-the-art signal processing and machine learning (ML) methods. A publicly available voice dataset (Dataset 1, 81 samples) containing speech recordings from PD patients and non-PD individuals was used for model training and evaluation. Additionally, a small supplementary dataset (Dataset 2, 15 samples) was created although excluded from experiment, to illustrate potential future extensions of this work. Features such as Mel-frequency cepstral coefficients (MFCCs), spectrograms, Mel spectrograms and waveform representations were extracted to capture key vocal impairments related to PD, including diminished vocal range, weak harmonics, elevated spectral entropy and impaired formant structures. These extracted features were used to train and evaluate several ML models, including support vector machine (SVM), XGBoost and logistic regression, as well as deep learning (DL)architectures such as deep neural networks (DNN), convolutional neural networks (CNN) combined with long short-term memory (LSTM), CNN + gated recurrent unit (GRU) and bidirectional LSTM (BiLSTM). Experimental results show that DL models, particularly BiLSTM, outperform traditional ML models, achieving 97% accuracy and an AUC of 0.95. The comprehensive feature extraction from both datasets enabled robust classification of PD and non-PD speech signals. These findings highlight the potential of integrating acoustic features with DL methods for early diagnosis and monitoring of Parkinson’s Disease. Full article
Show Figures

Figure 1

Back to TopTop