Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = artificial beach

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 33105 KB  
Article
Quantifying Spatiotemporal Evolution of Sandy Shorelines in Northern China Using DSAS: A Case Study from Dalian World Peace Park
by Panqing Lin, Xiangxu Wei, Yaxuan Zhang, Pengfei Lv, Ming Liu, Yi Yang and Xiangke Dong
Sustainability 2025, 17(17), 7591; https://doi.org/10.3390/su17177591 - 22 Aug 2025
Viewed by 449
Abstract
This study analyzed shoreline evolution (2000–2024) at Dalian World Peace Park’s sandy tourist beach using GEE, CoastSat, and DSAS. At the same time, combined with the grain size analysis of beach sediments before and after typhoons, the impact of extreme events on the [...] Read more.
This study analyzed shoreline evolution (2000–2024) at Dalian World Peace Park’s sandy tourist beach using GEE, CoastSat, and DSAS. At the same time, combined with the grain size analysis of beach sediments before and after typhoons, the impact of extreme events on the shoreline line changes was explored. The DSAS shows a spatial differentiation pattern of the southern shoreline retreat trend zone, the central shoreline dynamic balance trend zone and the northern shoreline advance trend zone. The 2008 reclamation project altered hydrodynamics, creating an artificial headland effect that triggered significant northern shoreline advancement (max 74.16 m) and southern retreat (27.14 m), demonstrating unforeseen long-term trade-offs of large-scale interventions. Subsequent cobble structures, acting as a nature-based solution, enhanced sediment retention and wave energy refraction, promoting dynamic equilibrium and shoreline resilience. However, the 2017 double typhoon caused instantaneous retreat with finer, poorly sorted sediment, highlighting persistent vulnerability to extreme events. This study underscores the critical need for adaptive management within a sustainable shoreline development framework. Full article
Show Figures

Figure 1

13 pages, 3304 KB  
Article
ANN-Based Prediction of OSL Decay Curves in Quartz from Turkish Mediterranean Beach Sand
by Mehmet Yüksel, Fırat Deniz and Emre Ünsal
Crystals 2025, 15(8), 733; https://doi.org/10.3390/cryst15080733 - 19 Aug 2025
Viewed by 791
Abstract
Quartz is a widely used mineral in dosimetric and geochronological applications due to its stable luminescence properties under ionizing radiation. This study presents an artificial neural network (ANN)-based approach to predict the optically stimulated luminescence (OSL) decay curves of quartz extracted from Mediterranean [...] Read more.
Quartz is a widely used mineral in dosimetric and geochronological applications due to its stable luminescence properties under ionizing radiation. This study presents an artificial neural network (ANN)-based approach to predict the optically stimulated luminescence (OSL) decay curves of quartz extracted from Mediterranean beach sand samples in Turkey. Experimental OSL signals were obtained from quartz samples irradiated with beta doses ranging from 0.1 Gy to 1034.9 Gy. The dataset was used to train ANN models with three different learning algorithms: Levenberg–Marquardt (LM), Bayesian Regularization (BR), and Scaled Conjugate Gradient (SCG). Forty-seven decay curves were used for training and three for testing. The ANN models were evaluated based on regression accuracy, training–validation–test performance, and their predictive capability for low, medium, and high doses (1 Gy, 72.4 Gy, 465.7 Gy). The results showed that BR achieved the highest overall regression (R = 0.99994) followed by LM (R = 0.99964) and SCG (R = 0.99820), confirming the superior generalization and fits across all dose ranges. LM performs optimally at low-to-moderate doses, and SCG delivers balanced yet slightly noisier predictions. The proposed ANN-based method offers a robust and effective alternative to conventional kinetic modeling approaches for analyzing OSL decay behavior and holds considerable potential for advancing luminescence-based retrospective dosimetry and OSL dating applications. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

20 pages, 3293 KB  
Article
Does Beach Sand Nourishment Have a Negative Effect on Natural Recovery of a Posidonia oceanica Seagrass Fringing Reef? The Case of La Vieille Beach (Saint-Mandrier-sur-Mer) in the North-Western Mediterranean
by Dominique Calmet, Pierre Calmet and Charles-François Boudouresque
Water 2025, 17(15), 2287; https://doi.org/10.3390/w17152287 - 1 Aug 2025
Viewed by 781
Abstract
Posidonia oceanica seagrass, endemic to the Mediterranean Sea, provides ecological goods and ecosystem services of paramount importance. In shallow and sheltered bays, P. oceanica meadows can reach the sea surface, with leaf tips slightly emerging, forming fringing and barrier reefs. During the 20th [...] Read more.
Posidonia oceanica seagrass, endemic to the Mediterranean Sea, provides ecological goods and ecosystem services of paramount importance. In shallow and sheltered bays, P. oceanica meadows can reach the sea surface, with leaf tips slightly emerging, forming fringing and barrier reefs. During the 20th century, P. oceanica declined conspicuously in the vicinity of large ports and urbanized areas, particularly in the north-western Mediterranean. The main causes of decline are land reclamation, anchoring, bottom trawling, turbidity and pollution. Artificial sand nourishment of beaches has also been called into question, with sand flowing into the sea, burying and destroying neighbouring meadows. A fringing reef of P. oceanica, located at Saint-Mandrier-sur-Mer, near the port of Toulon (Provence, France), is severely degraded. Analysis of aerial photos shows that, since the beginning of the 2000s, it has remained stable in some parts or continued to decline in others. This contrasts with the trend towards recovery, observed in France, thanks to e.g., the legally protected status of P. oceanica, and the reduction of pollution and coastal developments. The sand nourishment of the study beach, renewed every year, with the sand being washed or blown very quickly (within a few months) from the beach into the sea, burying the P. oceanica meadow, seems the most likely explanation. Other factors, such as pollution, trampling by beachgoers and overgrazing, may also play a role in the decline. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

25 pages, 13635 KB  
Article
Microplastics in Nearshore and Subtidal Sediments in the Salish Sea: Implications for Marine Habitats and Exposure
by Frances K. Eshom-Arzadon, Kaitlyn Conway, Julie Masura and Matthew R. Baker
J. Mar. Sci. Eng. 2025, 13(8), 1441; https://doi.org/10.3390/jmse13081441 - 28 Jul 2025
Viewed by 592
Abstract
Plastic debris is a pervasive and persistent threat to marine ecosystems. Microplastics (plastics < 5 mm) are increasing in a variety of marine habitats, including open water systems, shorelines, and benthic sediments. It remains unclear how microplastics distribute and accumulate in marine systems [...] Read more.
Plastic debris is a pervasive and persistent threat to marine ecosystems. Microplastics (plastics < 5 mm) are increasing in a variety of marine habitats, including open water systems, shorelines, and benthic sediments. It remains unclear how microplastics distribute and accumulate in marine systems and the extent to which this pollutant is accessible to marine taxa. We examined subtidal benthic sediments and beach sediments in critical nearshore habitats for forage fish species—Pacific sand lance (Ammodytes personatus), Pacific herring (Clupea pallasi), and surf smelt (Hypomesus pretiosus)—to quantify microplastic concentrations in the spawning and deep-water habitats of these fish and better understand how microplastics accumulate and distribute in nearshore systems. In the San Juan Islands, we examined an offshore subtidal bedform in a high-flow channel and beach sites of protected and exposed shorelines. We also examined 12 beach sites proximate to urban areas in Puget Sound. Microplastics were found in all samples and at all sample sites. Microfibers were the most abundant, and flakes were present proximate to major shipyards and marinas. Microplastics were significantly elevated in Puget Sound compared to the San Juan Archipelago. Protected beaches had elevated concentrations relative to exposed beaches and subtidal sediments. Microplastics were in higher concentrations in sand and fine-grain sediments, poorly sorted sediments, and artificial sediments. Microplastics were also elevated at sites confirmed as spawning habitats for forage fish. The model results indicate that both current speed and proximate urban populations influence nearshore microplastic concentrations. Our research provides new insights into how microplastics are distributed, deposited, and retained in marine sediments and shorelines, as well as insight into potential exposure in benthic, demersal, and shoreline habitats. Further analyses are required to examine the relative influence of urban populations and shipping lanes and the effects of physical processes such as wave exposure, tidal currents, and shoreline geometry. Full article
(This article belongs to the Special Issue Benthic Ecology in Coastal and Brackish Systems—2nd Edition)
Show Figures

Figure 1

31 pages, 4920 KB  
Article
Quantifying the Geopark Contribution to the Village Development Index Using Machine Learning—A Deep Learning Approach: A Case Study in Gunung Sewu UNESCO Global Geopark, Indonesia
by Rizki Praba Nugraha, Akhmad Fauzi, Ernan Rustiadi and Sambas Basuni
Sustainability 2025, 17(15), 6707; https://doi.org/10.3390/su17156707 - 23 Jul 2025
Viewed by 702
Abstract
The Gunung Sewu UNESCO Global Geopark (GSUGGp) is one of Indonesia’s 12 UNESCO-designated geoparks. Its presence is expected to enhance rural development by boosting the local economy through tourism. However, there is a lack of statistical evidence quantifying the economic benefits of geopark [...] Read more.
The Gunung Sewu UNESCO Global Geopark (GSUGGp) is one of Indonesia’s 12 UNESCO-designated geoparks. Its presence is expected to enhance rural development by boosting the local economy through tourism. However, there is a lack of statistical evidence quantifying the economic benefits of geopark development, mainly due to the complex, non-linear nature of these impacts and limited village-level economic data available in Indonesia. To address this gap, this study aims to measure how socio-economic and environmental factors contribute to the Village Development Index (VDI) within the GSUGGp area, which includes the districts of Gunung Kidul, Wonogiri, and Pacitan. A machine learning–deep learning approach was employed, utilizing four algorithms grouped into eight models, with hyperparameter tuning and cross-validation, tested on a sample of 92 villages. The analysis revealed insights into how 17 independent variables influence the VDI. The Artificial Neural Network (ANN) algorithm outperformed others, achieving an R-squared of 0.76 and an RMSE of 0.040, surpassing random forest, CART, SVM, and linear models. Economically related factors—considered the foundation of rural development—had the strongest impact on village progress within GSUGGp. Additionally, features related to tourism, especially beach tourism linked to geological landscapes, contributed significantly. These findings are valuable for guiding geopark management and policy decisions, emphasizing the importance of integrated strategies and strong cooperation among local governments at the regency and provincial levels. Full article
(This article belongs to the Special Issue GeoHeritage and Geodiversity in the Natural Heritage: Geoparks)
Show Figures

Figure 1

24 pages, 3783 KB  
Article
Morphodynamic Interactions Between Sandbar, Beach Profile, and Dune Under Variable Hydrodynamic and Morphological Conditions
by Alirio Sequeira, Carlos Coelho and Márcia Lima
Water 2025, 17(14), 2112; https://doi.org/10.3390/w17142112 - 16 Jul 2025
Viewed by 345
Abstract
Coastal areas are increasingly vulnerable to erosion, a process that can lead to severe consequences such as flooding and land loss. This study investigates strategies for preventing and mitigating coastal erosion, with a particular focus on nature-based solutions, notably artificial sand nourishment. Artificial [...] Read more.
Coastal areas are increasingly vulnerable to erosion, a process that can lead to severe consequences such as flooding and land loss. This study investigates strategies for preventing and mitigating coastal erosion, with a particular focus on nature-based solutions, notably artificial sand nourishment. Artificial nourishment has proven to be an effective method for erosion control. However, its success depends on factors such as the placement location, sediment volume, and frequency of operations. To optimize these interventions, simulations were conducted using both a numerical model (CS-Model) and a physical flume model, based on the same cross-section beach/dune profile, to compare cross-shore nourishment performance across different scenarios. The numerical modeling approach is presented first, including a description of the reference prototype-scale scenario. This is followed by an overview of the physical modeling, detailing the experimental 2D cross-section flume setup and tested scenarios. These scenarios simulate nourishment interventions with variations in beach profile, aiming to assess the influence of water level, berm width, bar volume, and bar geometry. The results from both numerical and physical simulations are presented, focusing on the cross-shore morphological response of the beach profile under wave action, particularly the effects on profile shape, water level, bar volume, and the position and depth of the bar crest. The main conclusion highlights that a wider initial berm leads to greater wave energy dissipation, thereby contributing to the mitigation of dune erosion. Full article
Show Figures

Figure 1

21 pages, 6037 KB  
Article
Storm-Induced Evolution on an Artificial Pocket Gravel Beach: A Numerical Study with XBeach-Gravel
by Hanna Miličević, Dalibor Carević, Damjan Bujak, Goran Lončar and Andrea Tadić
J. Mar. Sci. Eng. 2025, 13(7), 1209; https://doi.org/10.3390/jmse13071209 - 22 Jun 2025
Viewed by 305
Abstract
Coarse-grained beaches consisting of gravel, pebbles, and cobbles play a crucial role in coastal protection. On the Croatian Adriatic coast, there are artificial gravel pocket beaches created for recreational and protective purposes. However, these beaches are subject to constant morphological changes due to [...] Read more.
Coarse-grained beaches consisting of gravel, pebbles, and cobbles play a crucial role in coastal protection. On the Croatian Adriatic coast, there are artificial gravel pocket beaches created for recreational and protective purposes. However, these beaches are subject to constant morphological changes due to natural forces and human intervention. This study investigates the morphodynamics of artificial gravel pocket beaches, focusing on berm formation and crest build-up processes characteristic for low to moderate wave conditions. Despite mimicking natural formations, artificial beaches require regular maintenance due to sediment shifts dominantly caused by wave action and storm surges. Structure-from-Motion (SfM) photogrammetry and UAV-based surveys were used to monitor morphological changes on the artificial gravel pocket beach Ploče (City of Rijeka). The XBeach-Gravel model, originally adapted to simulate the effects of high-energy waves, was calibrated and validated to analyze low to moderate wave dynamics on gravel pocket beaches. The calibration includes adjustments to the inertia coefficient (ci), which influences sediment transport by shear stress at the bottom; the angle of repose (ϕ), which controls avalanching and influences sediment transport on sloping beds; and the bedload transport calibration coefficient (γ), which scales the transport rates linearly. By calibrating XBeach-G for low to moderate wave conditions, this research improves the accuracy of the model for the cases of morphological responses “berm formation” and “crest build-up”. Full article
(This article belongs to the Section Marine Hazards)
Show Figures

Figure 1

20 pages, 4934 KB  
Article
Assessing the Retreat of a Sandy Shoreline Backed by Coastal Aquaculture Ponds: A Case Study of Two Beaches in Guangdong Province, China
by Zhubin Cao, Yuan Li, Weiqiu Chen, Shanhang Chi and Chi Zhang
Water 2025, 17(11), 1583; https://doi.org/10.3390/w17111583 - 23 May 2025
Viewed by 543
Abstract
China has the world’s largest area of coastal aquaculture ponds, accounting for 39% of the total coastal aquaculture pond area worldwide. The rapid development of coastal aquaculture can significantly reduce global food shortages and support the development of marine economies on the Chinese [...] Read more.
China has the world’s largest area of coastal aquaculture ponds, accounting for 39% of the total coastal aquaculture pond area worldwide. The rapid development of coastal aquaculture can significantly reduce global food shortages and support the development of marine economies on the Chinese mainland. However, coastal aquaculture ponds have been recognized as a beach hazard because they require pipes to be laid on the surface of the beach to discharge wastewater, polluting the beach and artificially dividing it into multiple segments. Based on a well-conceived remote sensing analysis, the erosion of beaches backed by densely distributed coastal aquaculture ponds was determined to be 10 m/y. A high-efficiency shoreline evolution model was verified using a satellite-derived shoreline dataset. For the present case, the Brier Skill Score (BSS) was calculated to be 0.55, indicating a moderate match between the modeled and satellite-derived shoreline datasets. The verified ShorelineS model was then used to predict the future evolution of a shoreline backed by densely distributed coastal aquacultural ponds. The retreat distance of the erosion hotspot was predicted to increase from 150 m in 2025 to 240 m in 2040. It is expected that the beach will lose the entirety of its dry part in the future. Potential strategies for beach protection include reasonable management and the ecological restoration and nourishment of the beach. Full article
(This article belongs to the Special Issue Coastal Management and Nearshore Hydrodynamics, 2nd Edition)
Show Figures

Figure 1

22 pages, 3780 KB  
Article
Using Salinity, Water Level, CFCs, and CCl4 to Assess Groundwater Flow Dynamics and Potential N2O Flux in the Intertidal Zone of Sanya, Hainan Province: Implications for Evaluating Freshwater Submarine Groundwater Discharge in Coastal Unconfined Aquifers
by Dajun Qin, Jing Geng, Bingnan Ren and Bo Yang
Water 2025, 17(9), 1371; https://doi.org/10.3390/w17091371 - 1 May 2025
Viewed by 575
Abstract
This study combines field and laboratory analyses from seven shallow wells (ZK1 to ZK7) positioned perpendicular to the coastline to investigate groundwater discharge and dynamics in the coastal unconfined aquifer of the intertidal zone at Yazhou Bay, Sanya, Hainan Province. The research highlights [...] Read more.
This study combines field and laboratory analyses from seven shallow wells (ZK1 to ZK7) positioned perpendicular to the coastline to investigate groundwater discharge and dynamics in the coastal unconfined aquifer of the intertidal zone at Yazhou Bay, Sanya, Hainan Province. The research highlights spatial variations in N2O concentration, temperature, electrical conductivity (EC), pH, and the distribution of CFCs and CCl4 in shallow groundwater, utilizing samples from wells ZK1 to ZK7 and seawater collected near ZK1. Key findings indicate that groundwater temperature decreases toward the ocean, while EC exhibits a stepwise increase from land to sea, with a sharp transition near ZK3 marking the freshwater–saltwater mixing zone. pH values are lowest in ZK3 and ZK4, gradually rising both inland and seaward. N2O concentrations in the shallow wells (ZK1–ZK7) are divided into two distinct groups: higher concentrations (9.69–57.77 nmol/kg) in ZK5–ZK7 and lower concentrations (6.63–23.03 nmol/kg) in ZK1–ZK4. Wells ZK3 and ZK4 show minimal variation in CFC-11 and CFC-113 concentrations, suggesting they represent a transition zone that likely delineates groundwater flow paths. In contrast, significant concentration differences in wells ZK5–ZK7 (north) and ZK1–ZK2 (south) reflect the influence of aquifer structure variability, recharge sources, and local hydrogeochemical conditions. CFC-12 concentrations exhibit a clear freshwater–saltwater mixing gradient between ZK3 and ZK1, with higher concentrations in freshwater-dominated areas (ZK3–ZK7) and lower concentrations near seawater (ZK1). CCl4 concentrations at ZK7 and ZK3 differ markedly from other wells, indicating unique hydrogeochemical conditions or localized anthropogenic influences. A model for the formation of upper saline plumes (USP) under tidal forcing at the low tidal line was established previously. Here, we establish a new model that accounts for the absence of USP driven by hydrological processes influenced by artificial sandy beach topography, and a fresh groundwater wedge is identified, which can serve as a significant fast-flow pathway for terrestrial water and nutrients to the ocean. Full article
(This article belongs to the Special Issue Groundwater Flow and Transport Modeling in Aquifer Systems)
Show Figures

Figure 1

15 pages, 4851 KB  
Article
Experimental Study on Beach Restoration Under the Influence of Artificial Islands
by Longzai Ge, Yanan Xu, Gelin Kang and Songgui Chen
Water 2025, 17(7), 972; https://doi.org/10.3390/w17070972 - 26 Mar 2025
Viewed by 638
Abstract
The construction of artificial islands not only alleviates the shortage of coastal land resources but also brings new environmental problems. This study focuses on the fundamental changes in the hydrodynamic environment and sediment transport caused by the construction of artificial islands, leading to [...] Read more.
The construction of artificial islands not only alleviates the shortage of coastal land resources but also brings new environmental problems. This study focuses on the fundamental changes in the hydrodynamic environment and sediment transport caused by the construction of artificial islands, leading to imbalances in sediment distribution and beach erosion. This article takes the coast of Riyue Bay in Hainan Province, China, as an example and uses various methods such as field surveys and model experiments to explore the evolutionary mechanism of beach landforms under the influence of artificial islands. Based on this, an adaptive “cyclic maintenance” beach restoration plan is proposed. Reasonable distribution of beach sediment is achieved through experimental verification, effectively mitigating the coastal erosion caused by the construction of artificial islands. The expected goals were achieved after 2 years of implementation of the on-site restoration project. The results of this research not only solve practical engineering problems but also provide a good reference for the restoration of similar types of coastal beaches. Full article
(This article belongs to the Special Issue Coastal Management and Nearshore Hydrodynamics, 2nd Edition)
Show Figures

Figure 1

15 pages, 12530 KB  
Article
Possibilities for Mitigating Coastal Erosion in the Downdrift Zone of Port Jetties Using Nearshore Nourishment: A Case Study of Klaipėda Port, Lithuania
by Gintautas Žilinskas, Rasa Janušaitė, Darius Jarmalavičius, Laurynas Jukna and Donatas Pupienis
J. Mar. Sci. Eng. 2025, 13(4), 628; https://doi.org/10.3390/jmse13040628 - 21 Mar 2025
Cited by 2 | Viewed by 759
Abstract
Coastal erosion hotspots frequently emerge in the downdrift zones of ports situated along open littoral drift seashores, often necessitating coastal protection measures. This study aims to evaluate the effectiveness of nearshore nourishment in mitigating coastal erosion using the downdrift zone of the Klaipėda [...] Read more.
Coastal erosion hotspots frequently emerge in the downdrift zones of ports situated along open littoral drift seashores, often necessitating coastal protection measures. This study aims to evaluate the effectiveness of nearshore nourishment in mitigating coastal erosion using the downdrift zone of the Klaipėda Port (Baltic Sea) as a case study. In 2022, 79,390 m3 of sand was discharged at 2.0–3.5 depths at this site, forming an artificial sandbar parallel to the shoreline. The dynamics of the nourishment deposits were monitored for two years through beach and nearshore morphometric measurements and beach sand lithological composition sampling. Monitoring data indicated that the majority of the sand from the artificial sandbar migrated towards the subaerial coast, with minor depth variations also observed at depths of 4.0–5.6 m. Minor accretion in the nearshore was observed in regions beyond the designated nourishment area. The nearshore nourishment has successfully stabilised the subaerial coast at the discharge site for over two years, with 21.1% of the nourished sand accumulating on the subaerial coast and the shoreline position advancing seaward by an average of 10 metres. About 69.4% of the nourished sand remained at the nourishment site between the shoreline and the offshore boundary of the artificial sandbar, while approximately 9.5% was transported to the adjacent coast beyond the nourishment area. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

24 pages, 4374 KB  
Article
The Effects of Anthropic Structures on Coastline Morphology: A Case Study from the Málaga Coast (Spain)
by Rosa Molina, Giorgio Manno, Antonio Contreras de Villar, Bismarck Jigena-Antelo, Juan José Muñoz-Pérez, J. Andrew G. Cooper, Enzo Pranzini and Giorgio Anfuso
J. Mar. Sci. Eng. 2025, 13(2), 319; https://doi.org/10.3390/jmse13020319 - 9 Feb 2025
Cited by 4 | Viewed by 2014
Abstract
The Málaga coast, in the south of Spain, is a densely populated tourist destination where ports, marinas and coastal protection structures of various typologies (e.g., groins, breakwaters, revetments) and shapes (e.g., “Y”, “L”, etc., shaped groins) have been emplaced. Such structures have modified [...] Read more.
The Málaga coast, in the south of Spain, is a densely populated tourist destination where ports, marinas and coastal protection structures of various typologies (e.g., groins, breakwaters, revetments) and shapes (e.g., “Y”, “L”, etc., shaped groins) have been emplaced. Such structures have modified the long- and cross-shore sediment transport and produced changes in beach morphology and the evolution of nearby areas. To characterize the changes related to shore-normal structures, beach erosion/accretion areas close to coastal anthropic structures were measured using a sequence of aerial orthophotos between 1956 and 2019, and the potential littoral sediment transport for the two main littoral transport directions was determined by means of the CMS (Coastal Modeling System). Available data on wave propagation and coastal sediment transport reflect the complex dynamics of the study area, often characterized by the coexistence of opposing longshore transport directions. Accretion was observed on both sides of ports in all studied periods and groins and groups of groins presented mixed results that reflect the heterogeneity of the study area; in certain sectors where the wave regime is bidirectional, changes in the shoreline trend were observed during the study period. The study cases described in this paper emphasize the difficulties in finding clear spatial and temporal trends in the artificially induced erosion/accretion patterns recorded along a heavily modified shoreline. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

24 pages, 9166 KB  
Article
A Predictive Analysis of Beach Susceptibility to Jellyfish Arrivals in Costa del Sol
by Ana de la Fuente Roselló, María Jesús Perles Roselló and Francisco José Cantarero Prados
J. Mar. Sci. Eng. 2024, 12(12), 2316; https://doi.org/10.3390/jmse12122316 - 17 Dec 2024
Cited by 3 | Viewed by 1747
Abstract
This study investigates the susceptibility of beaches to jellyfish arrivals, focusing on the summer seasons from 2015 to 2020. The objective was to develop a predictive model that identifies the characteristics of beaches prone to higher jellyfish presence. This research utilized data from [...] Read more.
This study investigates the susceptibility of beaches to jellyfish arrivals, focusing on the summer seasons from 2015 to 2020. The objective was to develop a predictive model that identifies the characteristics of beaches prone to higher jellyfish presence. This research utilized data from the Infomedusa application, with a focus on key structural and circumstantial variables, such as beach orientation, coastal currents, and morphology. Binomial logistic regression was applied to two models to assess the influence of these variables on jellyfish occurrence. The results showed that beaches oriented toward the east and south, with protection from natural or artificial barriers, and those with limited open sea exposure are more likely to experience jellyfish arrivals. Conversely, beaches facing southwest, with opposing currents and freshwater inflows, tend to have lower risks. Although the models’ predictive capacity was moderate, with a 76% validation rate against empirical data, they provided valuable insights for coastal management and risk prevention. The findings highlight the importance of beach-specific characteristics in forecasting jellyfish presence, contributing to more effective coastal protection strategies. Full article
(This article belongs to the Special Issue Monitoring and Analysis of Coastal Hazard Risks)
Show Figures

Figure 1

23 pages, 5438 KB  
Article
Impacts of an Artificial Sandbar on Wave Transformation and Runup over a Nourished Beach
by Cuiping Kuang, Liyuan Chen, Xuejian Han, Dan Wang, Deping Cao and Qingping Zou
Geosciences 2024, 14(12), 337; https://doi.org/10.3390/geosciences14120337 - 8 Dec 2024
Cited by 2 | Viewed by 1711
Abstract
Due to increasing coastal flooding and erosion in changing climate and rising sea level, there is a growing need for coastal protection and ecological restoration. Artificial sandbars have become popular green coastal infrastructure to protect coasts from these natural hazards. To assess the [...] Read more.
Due to increasing coastal flooding and erosion in changing climate and rising sea level, there is a growing need for coastal protection and ecological restoration. Artificial sandbars have become popular green coastal infrastructure to protect coasts from these natural hazards. To assess the effect of an artificial sandbar on wave transformation over a beach under normal and storm wave conditions, a high-resolution non-hydrostatic model based on XBeach is established at the laboratory scale. Under normal wave conditions, wave energy is mainly concentrated in short wave frequency bands. The wave setup is negligible on the shoreface but becomes more significant over the beach face, and wave nonlinearity increases with decreasing water depth. The artificial sandbar reduces the wave setup by 22% and causes considerable changes in wave skewness, wave asymmetry, and flow velocity. Under storm wave conditions, as the incident wave height increases, the wave energy in the long wave frequency bands rises, while it decreases in the short wave frequency bands. The wave dissipation coefficient of an artificial sandbar increases first and then decreases with increasing incident wave height, and the opposite is true with the transmission coefficient. It features that the effect of an artificial sandbar on wave energy dissipation strengthens first and then weakens with increasing incident wave height. Additionally, an empirical formula for the wave runup was proposed based on the model results of the wave runup for storm wave conditions. The study reveals the complex processes of wave–structure–coast interactions and provides scientific evidence for the design of an artificial sandbar in beach nourishment projects. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

20 pages, 11251 KB  
Article
Dramatic Enhancement of Macrozoobenthic Species β-Diversity in Response to Artificial Breakwater Construction Along a Tropical Coastline
by Huan Chiao Lee, Christopher J. Glasby, Anja Schulze, Han Raven, Siong Kiat Tan, Takaomi Arai, Amirah Md Jin, Nurun Nazihah Tal’ah, Ainina Zarifi and David J. Marshall
Diversity 2024, 16(12), 742; https://doi.org/10.3390/d16120742 - 30 Nov 2024
Viewed by 1389
Abstract
The beneficial or detrimental effects of human-built marine structures (piers, breakwaters, and seawalls) on macrozoobenthic assemblages and diversities are currently underexplored. The present study investigated the enhancement of β-diversity of oysterbed-associated species on breakwaters constructed along sandy beaches. We compared habitat complexities and [...] Read more.
The beneficial or detrimental effects of human-built marine structures (piers, breakwaters, and seawalls) on macrozoobenthic assemblages and diversities are currently underexplored. The present study investigated the enhancement of β-diversity of oysterbed-associated species on breakwaters constructed along sandy beaches. We compared habitat complexities and species assemblages among artificial breakwater shores (ABS), a natural rocky shore (NS), and an embayment shore (ES). Oysterbed habitat complexity was found to be greatest on the ABS due to the successional colonization of the reef-forming estuarine oyster, Saccostrea echinata, followed by the colonization of boring bivalves and burrowing annelids. High-resolution taxonomic data revealed that the ABS supports the greatest species richness, including 48.1% unique species and 33.3% species shared with the embayment shore. The other shores uniquely or in combination with ABS support up to 11.1% of the total species richness associated with the oysterbeds (n = 81). Taxonomic dominance in terms of species number was Mollusca > Annelida > Arthropoda. This study reveals that ABS enhances β-diversity by ~91% (Jaccard dissimilarity index), which is driven by the sequential cascading events of (1) sheltering of shores, (2) colonization of novel habitat-forming oysters, (3) novel macrozoobenthic species recruitment from adjacent shores and sheltered embayments, including habitat-forming bivalves and annelids, and (4) the recruitment of macrozoobenthic species to boreholes. ABS habitat complexity derives from a spatially distinct, three-tiered ecological engineering system, involving (1) breakwater construction (100 m), (2) reef-forming oysters (10 m), and (3) boring bivalves and burrowing annelids (<10 cm). Irrespective of the purpose of their construction, breakwaters along extended sandy shores can potentially increase the resilience (β-diversity) and regional interconnectivity of hard surface macrozoobenthic species. Full article
Show Figures

Figure 1

Back to TopTop