Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = as-cast pipes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1263 KiB  
Article
Electroslag Hollow Ingots for Nuclear and Petrochemical Pressure Vessels and Pipes
by Lev Medovar, Ganna Stovpchenko, Artem Sybir, Jianjun Gao, Liguo Ren and Dmytro Kolomiets
Metals 2023, 13(7), 1290; https://doi.org/10.3390/met13071290 - 18 Jul 2023
Cited by 1 | Viewed by 2059
Abstract
The paper presents ground reasoning and results of experiments and modeling of heavy hollow ingot manufacturing using advanced electroslag technology. The requirements for ingots for huge diameter reactor pressure vessels include high density, homogeneity, and minimal segregation, which are very difficult to achieve [...] Read more.
The paper presents ground reasoning and results of experiments and modeling of heavy hollow ingot manufacturing using advanced electroslag technology. The requirements for ingots for huge diameter reactor pressure vessels include high density, homogeneity, and minimal segregation, which are very difficult to achieve by traditional casting. In the electroslag remelting process (ESR), hollow ingots form in between two copper water-cooled molds under effective heat removal. This improves the solidification pattern due to the shortening of a solidifying volume thickness more than twice compared with a solid ingot of the same diameter. The shallow liquid metal pool and narrow mushy zone at the ESR hollow ingot solidification assure their high metallurgical quality. Due to the dense and low segregation structure, ESR hollow ingots proved to be used for as-cast pipes and heavy wall billets for further forging. The results of a mathematical simulation within the range of simulated dimensions (the outer diameter up to 2900 mm, wall thickness up to 750 mm) also predict the favorable solidification pattern for thick-wall hollow ingots of big diameters. The analysis made and the modeling results provide a framework for scaling up the sizes of hollow ingots produced by ESR and widening their application for manufacturing heavy wall large diameter shells for nuclear and petrochemical industries. The higher reachable productivity of hollow ingot formation and lower capacity of power supply source than that for solid ingots of the same diameter and weight are also preconditions of their energy saving and cost-effective manufacturing. Full article
(This article belongs to the Special Issue Advances in Nuclear Reactor Pressure Vessel Steels)
Show Figures

Graphical abstract

15 pages, 4996 KiB  
Article
High Strain Rate Quasi-Superplasticity Behavior in an Ultralight Mg-9.55Li-2.92Al-0.027Y-0.026Mn Alloy Fabricated by Multidirectional Forging and Asymmetrical Rolling
by Furong Cao, Huihui Shang, Nanpan Guo, Shuting Kong and Renjie Liu
Materials 2022, 15(21), 7539; https://doi.org/10.3390/ma15217539 - 27 Oct 2022
Cited by 3 | Viewed by 1579
Abstract
To explore new approaches to severe plastic deformation and the ductility of a multicomponent magnesium–lithium alloy, an ultralight microduplex Mg-9.55Li-2.92Al-0.027Y-0.026Mn alloy was made by novel multidirectional forging and asymmetrical rolling, and the superplasticity behavior was investigated by optical microscope, hot tensile test, and [...] Read more.
To explore new approaches to severe plastic deformation and the ductility of a multicomponent magnesium–lithium alloy, an ultralight microduplex Mg-9.55Li-2.92Al-0.027Y-0.026Mn alloy was made by novel multidirectional forging and asymmetrical rolling, and the superplasticity behavior was investigated by optical microscope, hot tensile test, and modeling. The average grain size is 1.9 μm in this alloy after multidirectional forging and asymmetrical rolling. Remarkable grain refinement caused by such a forming, which turns the as-cast grain size of 144.68 μm into the as-rolled grain size of 1.9 μm, is achieved. The elongation to failure of 228.05% is obtained at 523 K and 1 × 10−2 s−1, which demonstrates the high strain rate quasi-superplasticity. The maximum elongation to failure of 287.12% was achieved in this alloy at 573 K and 5 × 10−4 s−1. It was found that strain-induced grain coarsening at 523 K is much weaker than the strain-induced grain coarsening at 573 K. Thus, the ductility of 228.05% is suitable for application in high strain rate superplastic forming. The stress exponent of 3 and the average activation energy for deformation of 50.06 kJ/mol indicate that the rate-controlling deformation mechanism is dislocation-glide controlled by pipe diffusion. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

Back to TopTop