Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = asymmetric function-gated electricity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6275 KB  
Review
Type-B Energetic Processes: Their Identification and Implications
by James Weifu Lee
Symmetry 2024, 16(7), 808; https://doi.org/10.3390/sym16070808 - 27 Jun 2024
Cited by 4 | Viewed by 1582
Abstract
We have now identified two thermodynamically distinct types (A and B) of energetic processes naturally occurring on Earth. Type-A energy processes, such as classical heat engines, apparently well follow the second law of thermodynamics; Type-B energy processes, such as the newly discovered thermotrophic [...] Read more.
We have now identified two thermodynamically distinct types (A and B) of energetic processes naturally occurring on Earth. Type-A energy processes, such as classical heat engines, apparently well follow the second law of thermodynamics; Type-B energy processes, such as the newly discovered thermotrophic function that isothermally utilizes environmental heat energy to perform useful work in driving ATP synthesis, follow the first law of thermodynamics (conservation of mass and energy) but do not have to be constrained by the second law, owing to their special asymmetric functions. Several Type-B energy processes such as asymmetric function-gated isothermal electricity production and epicatalysis have been created through human efforts. The innovative efforts in Type-B processes to enable isothermally utilizing endless environmental heat energy could help to liberate all peoples from their dependence on fossil fuel energy, thus helping to reduce greenhouse gas CO2 emissions and control climate change towards a sustainable future for humanity on Earth. In addition to the needed support for further research, development, and commercialization efforts, currently, better messaging and education on Type-B energetic processes are also highly needed to achieve the mission. Full article
(This article belongs to the Section Chemistry: Symmetry/Asymmetry)
Show Figures

Figure 1

14 pages, 3756 KB  
Article
Enhancement of the Synaptic Performance of Phosphorus-Enriched, Electric Double-Layer, Thin-Film Transistors
by Dong-Gyun Mah, Hamin Park and Won-Ju Cho
Electronics 2024, 13(4), 737; https://doi.org/10.3390/electronics13040737 - 11 Feb 2024
Cited by 3 | Viewed by 2012
Abstract
The primary objective of neuromorphic electronic devices is the implementation of neural networks that replicate the memory and learning functions of biological synapses. To exploit the advantages of electrolyte gate synaptic transistors operating like biological synapses, we engineered electric double-layer transistors (EDLTs) using [...] Read more.
The primary objective of neuromorphic electronic devices is the implementation of neural networks that replicate the memory and learning functions of biological synapses. To exploit the advantages of electrolyte gate synaptic transistors operating like biological synapses, we engineered electric double-layer transistors (EDLTs) using phosphorus-doped silicate glass (PSG). To investigate the effects of phosphorus on the EDL and synaptic behavior, undoped silicate spin-on-glass-based transistors were fabricated as a control group. Initially, we measured the frequency-dependent capacitance and double-sweep transfer curves for the metal-oxide-semiconductor (MOS) capacitors and MOS field-effect transistors. Subsequently, we analyzed the excitatory post-synaptic currents (EPSCs), including pre-synaptic single spikes, double spikes, and frequency variations. The capacitance and hysteresis window characteristics of the PSG for synaptic operations were verified. To assess the specific synaptic operational characteristics of PSG-EDLTs, we examined EPSCs based on the spike number and established synaptic weights in potentiation and depression (P/D) in relation to pre-synaptic variables. Normalizing the P/D results, we extracted the parameter values for the nonlinearity factor, asymmetric ratio, and dynamic range based on the pre-synaptic variables, revealing the trade-off relationships among them. Finally, based on artificial neural network simulations, we verified the high-recognition rate of PSG-EDLTs for handwritten digits. These results suggest that phosphorus-based EDLTs are beneficial for implementing high-performance artificial synaptic hardware. Full article
(This article belongs to the Special Issue Feature Papers in Semiconductor Devices)
Show Figures

Figure 1

33 pages, 4886 KB  
Article
Type-B Energy Process: Asymmetric Function-Gated Isothermal Electricity Production
by James Weifu Lee
Energies 2022, 15(19), 7020; https://doi.org/10.3390/en15197020 - 24 Sep 2022
Cited by 8 | Viewed by 1940
Abstract
Recently, we identified two types (A and B) of energy processes that naturally occur on Earth. Type-A energetic process such as the classical heat engines follows well the thermodynamic second law; Type-B energy process follows the first law of thermodynamics, but does not [...] Read more.
Recently, we identified two types (A and B) of energy processes that naturally occur on Earth. Type-A energetic process such as the classical heat engines follows well the thermodynamic second law; Type-B energy process follows the first law of thermodynamics, but does not have to be constrained by the second law, owning to its special asymmetric function. The identification of type-B process inspired a novel invention on isothermal electricity production through an asymmetric function-gated power generation system. This article highlights the fundamental embodiments, scientific principles, and physics equations for the asymmetric function-gated isothermal electricity generator that comprises an exceptionally low electron-work-function surface as an isothermal electron emitter and a space gap that permits the isothermally emitted electrons to travel ballistically to a collector. The physics equations for the density of isothermal electricity current, voltage and power all clearly show that the type-B energy technology can isothermally utilize the limitless environmental heat energy to generate electricity power as long as the electron-work function of the emitter WFe is substantially lower than that of the collector WFc. It has the potential capability to forever energize many electronic devices such as mobile phones and laptops, which is of great scientific and practical importance. Full article
(This article belongs to the Section Energetics)
Show Figures

Figure 1

26 pages, 8694 KB  
Article
Energy Renewal: Isothermal Utilization of Environmental Heat Energy with Asymmetric Structures
by James Weifu Lee
Entropy 2021, 23(6), 665; https://doi.org/10.3390/e23060665 - 25 May 2021
Cited by 12 | Viewed by 3553
Abstract
Through the research presented herein, it is quite clear that there are two thermodynamically distinct types (A and B) of energetic processes naturally occurring on Earth. Type A, such as glycolysis and the tricarboxylic acid cycle, apparently follows the second law well; Type [...] Read more.
Through the research presented herein, it is quite clear that there are two thermodynamically distinct types (A and B) of energetic processes naturally occurring on Earth. Type A, such as glycolysis and the tricarboxylic acid cycle, apparently follows the second law well; Type B, as exemplified by the thermotrophic function with transmembrane electrostatically localized protons presented here, does not necessarily have to be constrained by the second law, owing to its special asymmetric function. This study now, for the first time, numerically shows that transmembrane electrostatic proton localization (Type-B process) represents a negative entropy event with a local protonic entropy change (ΔSL) in a range from −95 to −110 J/K∙mol. This explains the relationship between both the local protonic entropy change (ΔSL) and the mitochondrial environmental temperature (T) and the local protonic Gibbs free energy (ΔGL=TΔSL) in isothermal environmental heat utilization. The energy efficiency for the utilization of total protonic Gibbs free energy (ΔGT including ΔGL=TΔSL) in driving the synthesis of ATP is estimated to be about 60%, indicating that a significant fraction of the environmental heat energy associated with the thermal motion kinetic energy (kBT) of transmembrane electrostatically localized protons is locked into the chemical form of energy in ATP molecules. Fundamentally, it is the combination of water as a protonic conductor, and thus the formation of protonic membrane capacitor, with asymmetric structures of mitochondrial membrane and cristae that makes this amazing thermotrophic feature possible. The discovery of energy Type-B processes has inspired an invention (WO 2019/136037 A1) for energy renewal through isothermal environmental heat energy utilization with an asymmetric electron-gated function to generate electricity, which has the potential to power electronic devices forever, including mobile phones and laptops. This invention, as an innovative Type-B mimic, may have many possible industrial applications and is likely to be transformative in energy science and technologies for sustainability on Earth. Full article
(This article belongs to the Special Issue The Law of Entropy Increase and Boltzmann’s H-Theorem)
Show Figures

Figure 1

Back to TopTop