Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,792)

Search Parameters:
Keywords = atmospheric oxidation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 28470 KB  
Article
Structure and Phase Composition of the Products Derived from Vacuum–Thermal Treatment of a Tellurium-Containing Middling
by Alina Nitsenko, Xeniya Linnik, Valeriy Volodin, Sergey Trebukhov, Bulat Sukurov, Farkhad Tuleutay and Tolebi Dzhienalyev
Materials 2025, 18(19), 4620; https://doi.org/10.3390/ma18194620 - 6 Oct 2025
Viewed by 99
Abstract
In this paper, the results from a study of the products obtained by vacuum–thermal processing of industrial copper telluride in an inert atmosphere at a pressure of 66 Pa and a temperature of 1100 °C are presented. The residue obtained mainly consisted of [...] Read more.
In this paper, the results from a study of the products obtained by vacuum–thermal processing of industrial copper telluride in an inert atmosphere at a pressure of 66 Pa and a temperature of 1100 °C are presented. The residue obtained mainly consisted of the copper(I) oxide phase. The condensate was represented by the phases CuTe2O5, CuO·CuTeO3, TeO2, SiO2, and CuTe2Cl. The vapor phase condensed in four temperature zones, each represented by a different phase composition. A monophase of tellurium oxide was identified in the condensate at temperatures of 150 to 270 °C. The obtained data contribute to expanding scientific knowledge and form the basis for developing a new, environmentally safe method of processing tellurium-containing middling. The creation of new technologies promotes increased efficiency of tellurium recovery and reduces environmental risks. Full article
(This article belongs to the Section Metals and Alloys)
15 pages, 2901 KB  
Article
Enhanced Nitrification Potential Soil from a Warm-Temperate Shrub Tussock Ecosystem Under Nitrogen Deposition and Warming Is Driven by Increased Nitrosospira Abundance
by Baihui Ren, Longzhen Ma, Tianyue Xu, Haoyan Li, Jiahuan Li, Jiyun Yang and Long Bai
Agronomy 2025, 15(10), 2347; https://doi.org/10.3390/agronomy15102347 - 6 Oct 2025
Viewed by 126
Abstract
Atmospheric nitrogen (N) deposition and climate warming significantly influence soil nitrogen transformation processes. Nitrification, a key step in the N cycle, is primarily driven by ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). However, their responses to environmental changes in warm-temperate shrub tussock grasslands—a [...] Read more.
Atmospheric nitrogen (N) deposition and climate warming significantly influence soil nitrogen transformation processes. Nitrification, a key step in the N cycle, is primarily driven by ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). However, their responses to environmental changes in warm-temperate shrub tussock grasslands—a major grassland type in China—remain poorly understood. In this study, we examined the effects of N addition and warming on the community composition of ammonia oxidizers and soil nitrification potential (NP) through pot experiments simulating field conditions. Our results demonstrated that (1) the AOB community was more responsive to N addition and warming than AOA, with the genus Nitrosospira increasing by 6.30–21.75% under treatments; (2) soil pH increased significantly under warming (from 6.53 to 6.86) but remained unchanged under N addition; (3) NP increased significantly under all treatment conditions, most markedly under warming alone (2.83-fold increase compared to the control); and (4) NP was positively correlated with both soil pH and the relative abundance of Nitrosospira. These findings suggest that warming and N deposition enhance nitrification in shrub tussock soil by altering AOB community structure and increasing soil pH. This study provides new insights into the microbial mechanisms driving N cycling in warm-temperate grasslands under global change. Full article
Show Figures

Figure 1

8 pages, 1868 KB  
Proceeding Paper
Reliability Evaluation of CAMS Air Quality Products in the Context of Different Land Uses: The Example of Cyprus
by Jude Brian Ramesh, Stelios P. Neophytides, Orestis Livadiotis, Diofantos G. Hadjimitsis, Silas Michaelides and Maria N. Anastasiadou
Environ. Earth Sci. Proc. 2025, 35(1), 64; https://doi.org/10.3390/eesp2025035064 - 6 Oct 2025
Viewed by 86
Abstract
Cyprus is located between Europe, Asia and Africa, and its location is vulnerable to dust transport from the Sahara Desert, wildfire smoke particles from surrounding regions, and other anthropogenic emissions caused by several factors, mostly due to business activities on harbor areas. Moreover, [...] Read more.
Cyprus is located between Europe, Asia and Africa, and its location is vulnerable to dust transport from the Sahara Desert, wildfire smoke particles from surrounding regions, and other anthropogenic emissions caused by several factors, mostly due to business activities on harbor areas. Moreover, the country suffers from heavy traffic conditions caused by the limited public transportation system in Cyprus. Therefore, taking into consideration the country’s geographic location, heavy commercial activities, and lack of good public transportation system, Cyprus is exposed to dust episodes and high anthropogenic emissions associated with multiple health and environmental issues. Therefore, continuous and qualitative air quality monitoring is essential. The Department of Labor Inspection of Cyprus (DLI) has established an air quality monitoring network that consists of 11 stations at strategic geographic locations covering rural, residential, traffic and industrial zones. This network measures the following pollutants: nitrogen oxide, nitrogen dioxide, sulfur dioxide, ozone, carbon monoxide, particulate matter 2.5, and particulate matter 10. This case study compares and evaluates the agreement between Copernicus Atmosphere Monitoring Service (CAMS) air quality products and ground-truth data from the DLI air quality network. The study period spans from January to December 2024. This study focuses on the following three pollutants: particulate matter 2.5, particulate matter 10, and ozone, using Ensemble Median, EMEP, and CHIMERE near-real-time model data provided by CAMS. A data analysis was performed to identify the agreement and the error rate between those two datasets (i.e., ground-truth air quality data and CAMS air quality data). In addition, this study assesses the reliability of assimilated datasets from CAMS across rural, residential, traffic and industrial zones. The results showcase how CAMS near-real-time analysis data can supplement air quality monitoring in locations without the availability of ground-truth data. Full article
Show Figures

Figure 1

17 pages, 3452 KB  
Article
Formation of Protective Coatings on TZM Molybdenum Alloy by Complex Aluminosiliconizing and Application of a Preceramic Layer
by Tetiana Loskutova, Volodymyr Taran, Manja Krüger, Nadiia Kharchenko, Myroslav Karpets, Yaroslav Stelmakh, Georg Hasemann and Michael Scheffler
Coatings 2025, 15(10), 1168; https://doi.org/10.3390/coatings15101168 - 5 Oct 2025
Viewed by 219
Abstract
The use of molybdenum-based alloys as materials for components operating under high temperatures and significant mechanical loads is widely recognized due to their excellent mechanical properties. However, their low high-temperature resistance remains a critical limitation, which can be effectively mitigated by applying protective [...] Read more.
The use of molybdenum-based alloys as materials for components operating under high temperatures and significant mechanical loads is widely recognized due to their excellent mechanical properties. However, their low high-temperature resistance remains a critical limitation, which can be effectively mitigated by applying protective coatings. In this study, we investigate the influence of a two-step coating process on the properties and performance of the TZM molybdenum alloy. In the first step, pack cementation was performed. Simultaneous surface saturation with aluminum and silicon, a process known as aluminosiliconizing, was conducted at 1000 °C for 6 h. The saturating mixture comprised powders of aluminum, silicon, aluminum oxide, and ammonium chloride. The second step involved the application of a pre-ceramic coating based on polyhydrosiloxane modified with silicon and boron. This treatment effectively eliminated pores and cracks within the coating. Thermodynamic calculations were carried out to evaluate the likelihood of aluminizing and siliconizing reactions under the applied conditions. Aluminosiliconizing of the TZM alloy resulted in the formation of a protective layer 20–30 µm thick. The multiphase structure of this layer included intermetallics (Al63Mo37, MoAl3), nitrides (Mo2N, AlN, Si3N4), oxide (Al2O3), and a solid solution α-Mo(Al). Subsequent treatment with silicon- and boron-modified polyhydrosiloxane led to the development of a thicker surface layer, 130–160 µm in thickness, composed of crystalline Si, amorphous SiO2, and likely amorphous boron. A transitional oxide layer ((Al,Si)2O3) 5–7 µm thick was also observed. The resulting coating demonstrated excellent structural integrity and chemical inertness in an argon atmosphere at temperatures up to 1100 °C. High-temperature stability at 800 °C was observed for both coating types: aluminosiliconizing, and aluminosiliconizing followed by the pre-ceramic coating. Moreover, additional oxide layers of SiO2 and B2O3 formed on the two-step coated TZM alloy during heating at 800 °C for 24 h. These layers acted as an effective barrier, preventing the evaporation of the substrate material. Full article
Show Figures

Figure 1

14 pages, 4152 KB  
Article
Effect of Oxygen Tension Modification During Oocyte Maturation on Porcine Oocyte Quality
by Yuki Inoue, Saki Akano, Yuya Suzuki, Kota Ushiroshoji, Asuka Kamio, Koumei Shirasuna and Hisataka Iwata
Vet. Sci. 2025, 12(10), 954; https://doi.org/10.3390/vetsci12100954 - 3 Oct 2025
Viewed by 203
Abstract
This study investigated the effects of high (atmospheric) and low (5% O2) oxygen tension, as well as a combination of the two, on oocyte metabolism and quality during maturation. Cumulus cell–oocyte complexes collected from gilt ovaries were used for in vitro [...] Read more.
This study investigated the effects of high (atmospheric) and low (5% O2) oxygen tension, as well as a combination of the two, on oocyte metabolism and quality during maturation. Cumulus cell–oocyte complexes collected from gilt ovaries were used for in vitro maturation. In addition, RNA-seq was conducted on the cumulus cells. Low oxygen tension throughout oocyte maturation did not alter the developmental rate to the blastocyst stage; however, it increased oocyte ATP and lipid content while reducing mitochondrial reactive oxygen species and mitochondrial membrane potential. Low-oxygen conditions increased glucose consumption but reduced mitochondrial DNA copy number and mitochondrial protein in cumulus cells. RNA-seq of cumulus cells revealed that low oxygen tension reduced mitochondrial activity and increased glycolysis, with the upregulation of glycolytic genes and downregulation of oxidative phosphorylation and steroidogenesis-related genes. In addition, a two-step oxygen protocol with low (5%) for the first period (0–21 h) and high (20%) for the last half period (21–44 h) increased the ATP and lipid content in oocytes and improved the embryonic developmental ability of the oocytes compared to the high-oxygen group. In conclusion, low oxygen tension during the first part of the maturation period is beneficial for oocyte quality, considering the observed metabolic changes. Full article
(This article belongs to the Section Veterinary Reproduction and Obstetrics)
Show Figures

Graphical abstract

24 pages, 6015 KB  
Article
Soil–Atmosphere Greenhouse Gas Fluxes Across a Land-Use Gradient in the Andes–Amazon Transition Zone: Insights for Climate Innovation
by Armando Sterling, Yerson D. Suárez-Córdoba, Natalia A. Rodríguez-Castillo and Carlos H. Rodríguez-León
Land 2025, 14(10), 1980; https://doi.org/10.3390/land14101980 - 1 Oct 2025
Viewed by 169
Abstract
This study evaluated the seasonal variability of soil–atmosphere greenhouse gas (GHG) fluxes—carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O)—across a land-use gradient in the Andean–Amazon transition zone of Colombia. The gradient included five land-use types incorporating [...] Read more.
This study evaluated the seasonal variability of soil–atmosphere greenhouse gas (GHG) fluxes—carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O)—across a land-use gradient in the Andean–Amazon transition zone of Colombia. The gradient included five land-use types incorporating at least one innovative climate-smart practice—improved pasture (IP), cacao agroforestry system (CaAS), copoazu agroforestry system (CoAS), secondary forest with agroforestry enrichment (SFAE), and moriche palm swamp ecosystem (MPSE)—alongside the dominant regional land uses, old-growth forest (OF) and degraded pasture (DP). Soil GHG fluxes varied markedly among land-use types and between seasons. CO2 fluxes were consistently higher during the dry season, whereas CH4 and N2O fluxes peaked in the rainy season. Agroecological and restoration systems exhibited substantially lower CO2 emissions (7.34–9.74 Mg CO2-C ha−1 yr−1) compared with DP (18.85 Mg CO2-C ha−1 yr−1) during the rainy season, and lower N2O fluxes (0.21–1.04 Mg CO2-C ha−1 yr−1) during the dry season. In contrast, the MPSE presented high CH4 emissions in the rainy season (300.45 kg CH4-C ha−1 yr−1). Across all land uses, CO2 was the dominant contributor to the total GWP (>95% of emissions). The highest global warming potential (GWP) occurred in DP, whereas CaAS, CoAS and MPSE exhibited the lowest values. Soil temperature, pH, exchangeable acidity, texture, and bulk density play a decisive role in regulating GHG fluxes, whereas climatic factors, such as air temperature and relative humidity, influence fluxes indirectly by modulating soil conditions. These findings underscore the role of diversified agroforestry and restoration systems in mitigating GHG emissions and the need to integrate soil and climate drivers into regional climate models. Full article
(This article belongs to the Special Issue Land Use Effects on Carbon Storage and Greenhouse Gas Emissions)
15 pages, 1897 KB  
Article
Sources and Reactivity of Ambient VOCs on the Tibetan Plateau: Insights from a Multi-Site Campaign (2012–2014) for Assessing Decadal Change
by Fangkun Wu, Jie Sun, Yinghong Wang and Zirui Liu
Atmosphere 2025, 16(10), 1148; https://doi.org/10.3390/atmos16101148 - 30 Sep 2025
Viewed by 198
Abstract
Investigating atmospheric volatile organic compounds (VOCs) is critical for understanding their sources, chemical reactivity, and impacts on air quality, climate, and human health, especially in remote regions like the Tibetan Plateau where baseline data remains scarce. In this study, ambient VOCs species were [...] Read more.
Investigating atmospheric volatile organic compounds (VOCs) is critical for understanding their sources, chemical reactivity, and impacts on air quality, climate, and human health, especially in remote regions like the Tibetan Plateau where baseline data remains scarce. In this study, ambient VOCs species were simultaneously measured at four remote background sites on the Tibetan Plateau (Nyingchi, Namtso, Ngari, and Mount Everest) from 2012 to 2014 to investigate their concentration, composition, sources, and chemical reactivity. Weekly integrated samples were collected and analyzed using a Gas Chromatograph-Mass Spectrometer/Flame Ionization Detector (GC-MS/FID) system. The total VOC mixing ratios exhibited site-dependent variability, with the highest levels observed in Nyingchi, followed by Mount Everest, Ngari and Namtso. The VOC composition in those remote sites was dominated by alkanes (25.7–48.5%) and aromatics (11.4–34.7%), followed by halocarbons (19.1–28.1%) and alkenes (11.5–18.5%). A distinct seasonal trend was observed, with higher VOC concentrations in summer and lower levels in spring and autumn. Source analysis based on correlations between specific VOC species suggests that combustion emissions (e.g., biomass burning or residential heating) were a major contributor during winter and spring, while traffic-related emissions influenced summer VOC levels. In addition, long-range transport of pollutants from South Asia also significantly impacted VOC concentrations across the plateau. Furthermore, reactivity assessments indicated that alkenes were the dominant contributors to OH radical loss rates, whereas aromatics were the largest drivers of ozone formation potential (OFP). These findings highlight the complex interplay of local emissions and regional transport in shaping VOC chemistry in this high-altitude background environment, with implications for atmospheric oxidation capacity and secondary pollutant formation. Full article
Show Figures

Figure 1

11 pages, 5768 KB  
Article
Highly Efficient Solar Steam Generation by W18O49@PVA Gels
by Jiefeng Yan, Zhenxing Fang, Jinxing Hu, Yangming Sun, Xinyi Huang, Guannan Zhou, Lu Li, Rui Wang and Yan Chen
Gels 2025, 11(10), 783; https://doi.org/10.3390/gels11100783 - 30 Sep 2025
Viewed by 182
Abstract
Oxygen-deficient tungsten oxide W18O49 was synthesized through lattice oxygen escaping at high temperature in N2 atmosphere. The temperature and inert atmosphere were critical conditions to initiate the lattice oxygen escaping to obtain W18O49. The large [...] Read more.
Oxygen-deficient tungsten oxide W18O49 was synthesized through lattice oxygen escaping at high temperature in N2 atmosphere. The temperature and inert atmosphere were critical conditions to initiate the lattice oxygen escaping to obtain W18O49. The large amount of oxygen vacancies supports its performance in photothermal conversion. The synthesized tungsten oxides were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible absorption spectroscopy (UV-Vis). The composite gel was fabricated by the insertion of oxygen-deficient tungsten oxide into PVA-based gel, which was cross-linked by glutaraldehyde. The PVA-based gel ensures a matched water supply speed with that of the evaporation rate due to its hydrophilic nature. The result of the solar steam generation shows that the W18O49-PVA gel (steam generation rate 2.65 kg m−2 h−1) was faster than that of the pure PVA gel. Full article
(This article belongs to the Special Issue Gels for Removal and Adsorption (3rd Edition))
Show Figures

Figure 1

37 pages, 3856 KB  
Article
Urban Health Assessment Through a Planetary Health Perspective: Methods and First Results from the Rome NBFC Experiment
by Carmina Sirignano, Daiane De Vargas Brondani, Gianluca Di Iulio, Chiara Anselmi, Stefania Argentini, Alessandro Bracci, Carlo Calfapietra, Silvia Canepari, Giampietro Casasanta, Giorgio Cattani, Simona Ceccarelli, Hellas Cena, Tony Christian Landi, Rosa Coluzzi, Rachele De Giuseppe, Stefano Decesari, Annalisa Di Cicco, Alessandro Domenico Di Giosa, Luca Di Liberto, Alessandro Di Menno di Bucchianico, Marisa Di Pietro, Oxana Drofa, Simone Filardo, Raffaela Gaddi, Alessandra Gaeta, Clarissa Gervasoni, Alessandro Giammona, Michele Pier Luca Guarino, Laura De Gara, Maria Cristina Facchini, Vito Imbrenda, Antonia Lai, Stefano Listrani, Alessia Lo Dico, Lorenzo Marinelli, Lorenzo Massimi, Maria Cristina Monti, Luca Mortarini, Marco Paglione, Ferdinando Pasqualini, Danilo Ranieri, Laura Restaneo, Matteo Rinaldi, Eleonora Rubin, Andrea Scartazza, Rosa Sessa, Alice Traversa, Lina Fusaro, Annamaria Altomare, Gloria Bertoli and Francesca Costabileadd Show full author list remove Hide full author list
Atmosphere 2025, 16(10), 1144; https://doi.org/10.3390/atmos16101144 - 29 Sep 2025
Viewed by 372
Abstract
Addressing the planetary crisis associated with climate change, biodiversity loss, global pollution, and public health requires novel and holistic approaches. Here, we present the methodology and initial results of an experiment conducted in Rome within the framework of the National Biodiversity Future Center [...] Read more.
Addressing the planetary crisis associated with climate change, biodiversity loss, global pollution, and public health requires novel and holistic approaches. Here, we present the methodology and initial results of an experiment conducted in Rome within the framework of the National Biodiversity Future Center (NBFC) project, Spoke 6. The major objective of this study was to outline the planetary health approach as a lens to assess urban health. This transdisciplinary case study explored the relationship between urban traffic-related external exposome and pro-oxidative responses in humans and plants. This methodology is based on the integration of atmospheric dynamics modeling, state-of-the-art aerosol measurements, biomonitoring in human cohorts, in vitro cellular assays, and the assessment of functional trait markers in urban trees. The results indicate that short-term exposure to urban aerosols, even at low concentrations, triggers rapid oxidative and inflammatory responses in bronchial epithelial cells, modulates gene and miRNA expression, alters gut microbiota diversity, and induces functional trait changes in urban trees. This study also highlights the feedback mechanisms between vegetation and atmospheric conditions, emphasizing the role of urban greenery in modulating microclimate and exposure. The methodology and initial results presented here will be further analyzed in future studies to explore proof of a cause–effect relationship between short-term exposure to traffic-related environmental stressors in urban areas and oxidative stress in humans and plants, with implications for chronic responses. In a highly urbanized world, this evidence could be pivotal in motivating the widespread implementation of planetary health approaches for assessing urban health. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Figure 1

15 pages, 1942 KB  
Article
Predictive URANS/PDF Modeling of Unsteady-State Phenomena in Turbulent Hydrogen–Air Flames
by Mohamed Boukhelef, Mohammed Senouci, Mounir Alliche, Habib Merouane and Abdelhamid Bounif
Fluids 2025, 10(10), 258; https://doi.org/10.3390/fluids10100258 - 29 Sep 2025
Viewed by 219
Abstract
The escalating global demand for primary energy—still predominantly met by conventional carbon-based fuels—has led to increased atmospheric pollution. This underscores the urgent need for alternative energy strategies capable of reducing carbon emissions while meeting global energy requirements. Hydrogen, as a clean combustible fuel, [...] Read more.
The escalating global demand for primary energy—still predominantly met by conventional carbon-based fuels—has led to increased atmospheric pollution. This underscores the urgent need for alternative energy strategies capable of reducing carbon emissions while meeting global energy requirements. Hydrogen, as a clean combustible fuel, offers a promising alternative to hydrocarbons, producing neither soot, CO2, nor unburned hydrocarbons. Although nitrogen oxides (NOx) are the primary combustion by-products, their formation can be mitigated by controlling flame temperature. This study investigates the viability of hydrogen as a clean energy vector by simulating an unsteady, turbulent, non-premixed hydrogen jet flame interacting with an air co-flow. The numerical simulations employ the Unsteady Reynolds-Averaged Navier–Stokes (URANS) framework for efficient and accurate prediction of transient flow behavior. Turbulence is modeled using the Shear Stress Transport (SST k-ω) model, which enhances accuracy in high Reynolds number reactive flows. The combustion process is described using a presumed Probability Density Function (PDF) model, allowing for a statistical representation of turbulent mixing and chemical reaction. The simulation results are validated by comparison with experimental temperature and mixture fraction data, demonstrating the reliability and predictive capability of the proposed numerical approach. Full article
(This article belongs to the Special Issue Turbulence and Combustion)
Show Figures

Figure 1

7 pages, 1562 KB  
Article
Co-Adsorption of Formic Acid and Hexane Selenol on Cu
by Mats Ahmadi Götelid, Sareh Ahmadi Götelid, Saman Hosseinpour, Christofer Leygraf and C. Magnus Johnson
Corros. Mater. Degrad. 2025, 6(4), 48; https://doi.org/10.3390/cmd6040048 - 26 Sep 2025
Viewed by 219
Abstract
Self-assembled monolayers of alkane thiolate and alkane selenolate have been proven to inhibit atmospheric corrosion, but upon prolonged exposure to the important constituents of indoor atmosphere, namely humidified air with formic acid, the protective layer eventually breaks, but the exact reason is not [...] Read more.
Self-assembled monolayers of alkane thiolate and alkane selenolate have been proven to inhibit atmospheric corrosion, but upon prolonged exposure to the important constituents of indoor atmosphere, namely humidified air with formic acid, the protective layer eventually breaks, but the exact reason is not yet clear. In this paper, we report on an XPS study of co-adsorbed formic acid and hexane selenol on a Cu surface. Adsorption of hexane selenol at room temperature breaks the Se-C bond, leaving a monolayer of Se on the surface, whereas adsorption at 140 K leaves a layer of selenolate. Formic acid exposure to the selenolate-Cu surface leads to adsorbed formate on unprotected areas and absorption of formic acid within the alkane chain network. During heating, the formic acid desorbs and the Se-C bond breaks, but formic acid does not accelerate the Se-C scission, which occurs just below room temperature both with and without formic acid. Thus, formic acid alone does not affect the Se-C bond, but its presence may create disorder and open up the alkane carpet for other species. Selenol removes formate and oxide from the surface at room temperature. The Se-C bond breaks and the alkane chain reacts with surface oxygen to form carbon oxides and volatile hydrocarbons. Full article
Show Figures

Figure 1

13 pages, 2217 KB  
Article
Characteristics and Sources of Atmospheric Formaldehyde in a Coastal City in Southeast China
by Yiling Lin, Qiaoling Chen, Youwei Hong, Yanting Chen, Liqian Yin, Jinfang Chen, Gongren Hu, Dan Liao and Ruilian Yu
Atmosphere 2025, 16(10), 1131; https://doi.org/10.3390/atmos16101131 - 26 Sep 2025
Viewed by 286
Abstract
Atmospheric formaldehyde (HCHO) is a major component of oxygenated volatile organic compounds (OVOCs) and plays an important role in O3 formation and atmospheric oxidation capacity. In this study, seasonal observations of gaseous pollutants (HCHO, O3, peroxyacetyl nitrate (PAN), CO, NOx, [...] Read more.
Atmospheric formaldehyde (HCHO) is a major component of oxygenated volatile organic compounds (OVOCs) and plays an important role in O3 formation and atmospheric oxidation capacity. In this study, seasonal observations of gaseous pollutants (HCHO, O3, peroxyacetyl nitrate (PAN), CO, NOx, and VOCs) and ambient conditions (JHCHO, JNO2, solar radiation, temperature, relative humidity, wind speed, and wind direction) were conducted in a coastal city in southeast China. The average HCHO concentrations were 2.54 ppbv, 3.38 ppbv, 2.53 ppbv, and 1.98 ppbv in spring, summer, autumn, and winter, respectively. Diurnal variations were high in the daytime and low in the nighttime, and the peak times varied in different seasons. The correlation between HCHO and O3 was not significant in spring and winter, which is likely related to the effects of photochemical reactions and diffusion conditions. The contributions of background (23.0%), primary (47.6%), and secondary (29.4%) sources to HCHO were quantified using multiple linear regression (MLR) models, revealing that secondary formation was the most significant contributor in summer, whereas primary emissions were predominant in spring. These findings help to improve the understanding of the influence of atmospheric formaldehyde on photochemical pollution control in coastal cities. Full article
(This article belongs to the Special Issue Air Pollution in China (4th Edition))
Show Figures

Figure 1

23 pages, 3810 KB  
Article
Nanofibrous Polymer Filters for Removal of Metal Oxide Nanoparticles from Industrial Processes
by Andrzej Krupa, Arkadiusz Tomasz Sobczyk and Anatol Jaworek
Membranes 2025, 15(10), 291; https://doi.org/10.3390/membranes15100291 - 25 Sep 2025
Viewed by 272
Abstract
Filtration of submicron particles and nanoparticles is an important problem in nano-industry and in air conditioning and ventilation systems. The presence of submicron particles comprising fungal spores, bacteria, viruses, microplastic, and tobacco-smoke tar in ambient air is a severe problem in air conditioning [...] Read more.
Filtration of submicron particles and nanoparticles is an important problem in nano-industry and in air conditioning and ventilation systems. The presence of submicron particles comprising fungal spores, bacteria, viruses, microplastic, and tobacco-smoke tar in ambient air is a severe problem in air conditioning systems. Many nanotechnology material processes used for catalyst, solar cells, gas sensors, energy storage devices, anti-corrosion and hydrophobic surface coating, optical glasses, ceramics, nanocomposite membranes, textiles, and cosmetics production also generate various types of nanoparticles, which can retain in a conveying gas released into the atmosphere. Particles in this size range are particularly difficult to remove from the air by conventional methods, e.g., electrostatic precipitators, conventional filters, or cyclones. For these reasons, nanofibrous filters produced by electrospinning were developed to remove fine particles from the post-processing gases. The physical basis of electrospinning used for nanofilters production is an employment of electrical forces to create a tangential stress on the surface of a viscous liquid jet, usually a polymer solution, flowing out from a capillary nozzle. The paper presents results for investigation of the filtration process of metal oxide nanoparticles: TiO2, MgO, and Al2O3 by electrospun nanofibrous filter. The filter was produced from polyvinylidene fluoride (PVDF). The concentration of polymer dissolved in dimethylacetamide (DMAC) and acetone mixture was 15 wt.%. The flow rate of polymer solution was 1 mL/h. The nanoparticle aerosol was produced by the atomization of a suspension of these nanoparticles in a solvent (methanol) using an aerosol generator. The experimental results presented in this paper show that nanofilters made of PVDF with surface density of 13 g/m2 have a high filtration efficiency for nano- and microparticles, larger than 90%. The gas flow rate through the channel was set to 960 and 670 l/min. The novelty of this paper was the investigation of air filtration from various types of nanoparticles produced by different nanotechnology processes by nanofibrous filters and studies of the morphology of nanoparticle deposited onto the nanofibers. Full article
Show Figures

Figure 1

15 pages, 2487 KB  
Review
Environmental Hydrogen Concentration as a Novel Factor Determining Changes in Redox Potential
by Teruo Kiyama
Physiologia 2025, 5(4), 36; https://doi.org/10.3390/physiologia5040036 - 23 Sep 2025
Viewed by 279
Abstract
Intracellular oxidation–reduction (redox) potential is a key factor regulating various physiological phenomena in the cell. Monitoring this potential change is therefore important for understanding physiological homeostasis in cells. Herein, we propose a new approach for the real-time, non-invasive estimation of the redox potential [...] Read more.
Intracellular oxidation–reduction (redox) potential is a key factor regulating various physiological phenomena in the cell. Monitoring this potential change is therefore important for understanding physiological homeostasis in cells. Herein, we propose a new approach for the real-time, non-invasive estimation of the redox potential impacting biological metabolism and reactive oxygen species generation. Enzymes, specifically oxidoreductases, play a crucial role in catalyzing redox reactions by facilitating the transfer of electrons and hydrogen atoms between molecules. The redox potential of substrates, such as nicotinamide adenine dinucleotide, is determined by the ratio of its oxidized and reduced forms, while that of enzymes, such as succinate dehydrogenase, is determined using the reference electrode in protein-film voltammetry. Although the standard hydrogen electrode potential is defined as zero under standard conditions, the electrode potential of a reversible hydrogen electrode changes according to the ratio of the hydrogen ions (H+) and hydrogen gas (H2) in the biological fluids, as a reference electrode. The pH is maintained at 7.4 ± 0.1 in the arterial blood and the H2 that produced by the gut microbiota is measured in the endo-tidal breath for clinical diagnosis. The H2 in the endo-tidal breath equilibrates arterial blood during gas exchange in the lungs, as well as in whole-body tissues, due to the systemic circulation. In this study, H2 can be measured in the environmental gas compared to the atmosphere, and may serve as a novel factor for redox potential changes in redox enzymes, impacting biological metabolism and reactive oxygen species generation. Full article
(This article belongs to the Special Issue Feature Papers in Human Physiology—3rd Edition)
Show Figures

Figure 1

27 pages, 2644 KB  
Review
Melanin-Related Materials in Electrochemical Sensors for Monitoring the Environment and Food
by Agata Pane, Silvia Vicenzi, Chiara Mattioli, Dario Mordini, Arianna Menichetti and Marco Montalti
Biosensors 2025, 15(9), 631; https://doi.org/10.3390/bios15090631 - 22 Sep 2025
Viewed by 536
Abstract
Melanin-related materials efficiently emulate the adhesion properties of natural mussel filaments and have been used advantageously for surface modification and for fabrication of electrochemical sensors for detection of environmentally relevant targets. The most applicable advantages of melanin-based coatings are their biocompatibility and versatility, [...] Read more.
Melanin-related materials efficiently emulate the adhesion properties of natural mussel filaments and have been used advantageously for surface modification and for fabrication of electrochemical sensors for detection of environmentally relevant targets. The most applicable advantages of melanin-based coatings are their biocompatibility and versatility, and they can be easily prepared and modified according to simple and highly environmentally friendly procedures. For these reasons, melanin-related materials, in particular polydopamine, which can be obtained simply via oxidative polymerization of dopamine in an aqueous solution in the presence of atmospheric oxygen, have been applied in a large variety of scientific and technological fields. Here, we summarize and critically discuss the most recent and important applications of melanin-related materials in the development of electrochemical sensors for monitoring the environment and food. In particular, the examples used in this paper include toxic metal ions, drugs, and pesticides. In the final section of this paper, the actual limitations of the existing approach are discussed and possible future design improvements are suggested. Full article
Show Figures

Figure 1

Back to TopTop