Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (518)

Search Parameters:
Keywords = austenite grain size

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6351 KB  
Article
The Role of La–Ti–Al–O Complex Inclusions in Microstructure Refinement and Toughness Enhancement of the Coarse-Grained Heat-Affected Zone in High-Heat-Input Welding
by Qiuming Wang, Jiangli He, Qingfeng Wang and Riping Liu
Metals 2025, 15(10), 1105; https://doi.org/10.3390/met15101105 - 3 Oct 2025
Abstract
The low-temperature impact properties of high-heat-input steels, particularly low-carbon Nb–Ti steel, are significantly influenced by the coarse-grained heat-affected zone (CGHAZ) in welded joints. The microstructure predominantly consists of granular bainitic ferrite (GBF), ferrite side plate (FSP), degenerate pearlite (DP), coarse plate-like ferrite (PF), [...] Read more.
The low-temperature impact properties of high-heat-input steels, particularly low-carbon Nb–Ti steel, are significantly influenced by the coarse-grained heat-affected zone (CGHAZ) in welded joints. The microstructure predominantly consists of granular bainitic ferrite (GBF), ferrite side plate (FSP), degenerate pearlite (DP), coarse plate-like ferrite (PF), and limited acicular ferrite (AF). This study investigates the effect of lanthanum (La) addition to Nb–Ti steel, leading to the formation of composite inclusions with a LaAlO3·TiN core surrounded by MnS/MnC precipitates. Unlike conventional Al2O3·MnS inclusions in Nb–Ti steel, these La-modified inclusions promote enhanced AF nucleation. This not only refines prior austenite grains but also reduces detrimental microstructural constituents such as GBF and FSP. As a result, the impact energy at −40 °C significantly improves from 23 J (Nb–Ti steel) to 137 J (Nb–Ti–La steel). Moreover, the inclusions exhibit an increase in size but a decrease in number density. The Nb–Ti–La variant demonstrates a higher AF volume fraction and increased AF density within the CGHAZ. The refined grain structure, along with an increased proportion of high-angle grain boundaries, effectively impedes secondary crack propagation. These microstructural modifications contribute to a substantial improvement in the low-temperature impact toughness of welded joints. Full article
Show Figures

Figure 1

13 pages, 10686 KB  
Article
In Situ Observation of the Austenite Grains Growth Behavior in the Austenitizing Process of Nb–Ti Micro-Alloyed Medium Manganese Steel
by Guangpeng Yuan, Yu Du, Chao Sun, Xiuhua Gao, Hongyan Wu and Linxiu Du
Coatings 2025, 15(10), 1144; https://doi.org/10.3390/coatings15101144 - 2 Oct 2025
Abstract
In this paper, the austenite grains growth behavior in the austenitizing process of Nb–Ti micro-alloyed medium manganese steel was studied through in situ observation by high temperature laser confocal microscope. The results show that the average austenite grain sizes change from about 3 [...] Read more.
In this paper, the austenite grains growth behavior in the austenitizing process of Nb–Ti micro-alloyed medium manganese steel was studied through in situ observation by high temperature laser confocal microscope. The results show that the average austenite grain sizes change from about 3 μm at 1050 °C to over 50 μm at 1250 °C. When the grain boundary is a small-angle grain boundary, one grain boundary will split into several dislocations. With the extension of heating time, the lattice orientation difference further decreases, and the remaining dislocations may merge into new grain boundaries. The most suitable heating temperature for the medium manganese steel in this paper is from 1100 °C to 1150 °C, taking into account influences such as grain size, grain boundary damage, and deformation resistance. Full article
(This article belongs to the Special Issue Research in Laser Welding and Surface Treatment Technology)
Show Figures

Figure 1

21 pages, 57255 KB  
Article
Solidification Microstructure and Secondary-Phase Precipitation Behavior of 310S Austenitic Stainless Steel
by Jun Xiao, Di Wang, Shaoguang Yang, Kuo Cao, Siyu Qiu, Jianhua Wei and Aimin Zhao
Metals 2025, 15(10), 1091; https://doi.org/10.3390/met15101091 - 29 Sep 2025
Abstract
In this study, the solidification behavior of 310S stainless steel was systematically investigated by combining high-temperature confocal laser scanning microscopy (HT-CLSM), microstructural characterization, and thermodynamic calculations. The focus was on the formation and transformation of ferrite, secondary-phase precipitation, and elemental segregation behavior, with [...] Read more.
In this study, the solidification behavior of 310S stainless steel was systematically investigated by combining high-temperature confocal laser scanning microscopy (HT-CLSM), microstructural characterization, and thermodynamic calculations. The focus was on the formation and transformation of ferrite, secondary-phase precipitation, and elemental segregation behavior, with comparisons made with 304 stainless steel. The effects of an Al addition and cooling rate were also explored. The results show that the solidification sequence of 310S stainless steel is L → L + γ → L + γ + δ → δ + γ, in which austenite nucleates early and grows rapidly, followed by the precipitation of a small amount of δ-ferrite in the later stages of solidification. In contrast, 304 stainless steel solidifies according to L → L + δ → L + δ + γ → δ + γ, with a rapid δ → γ transformation occurring after solidification. Compared with 304, 310S stainless steel exhibits a reduced ferrite fraction and a significantly increased σ phase content. The σ phase primarily precipitates directly from δ-ferrite (δ → σ), while M23C6 preferentially forms at grain boundaries and δ/γ interfaces, where δ-ferrite not only provides fast diffusion pathways for Cr but also nucleation sites. The solidification segregation sequence in 310S stainless steel is Cr > Ni > Fe, with Cr and Ni showing positive segregation and Fe showing negative segregation. The addition of Al does not alter the solidification mode of 310S stainless steel but refines austenite grains, reduces interdendritic solute enrichment, decreases segregation, lowers both the size and fraction of ferrite, and suppresses the precipitation of σ and M23C6 phases. This effect is mainly attributed to the reduction of δ/γ interfaces, which weakens the preferred nucleation sites for M23C6. Increasing the cooling rate enhances non-equilibrium solute segregation, promotes ferrite formation, inhibits the δ → γ transformation, and ultimately retains more ferrite; the intensified segregation further accelerates the δ → σ transformation. Full article
Show Figures

Graphical abstract

18 pages, 5193 KB  
Article
Destruction Mechanism of Laser Melted Layers of AISI 321 Austenitic Stainless Steel After Electrochemical Corrosion in Ringer’s Solution
by Tsanka Dikova and Natalina Panova
Processes 2025, 13(10), 3116; https://doi.org/10.3390/pr13103116 - 29 Sep 2025
Abstract
The aim of the present study is to investigate the mechanism behind corrosion destruction in laser-melted layers (LMLs) of AISI 321 austenitic stainless steel after electrochemical corrosion in Ringer’s solution. Surface morphology, microstructure, chemical composition, grain sizes, and orientation are studied using OM, [...] Read more.
The aim of the present study is to investigate the mechanism behind corrosion destruction in laser-melted layers (LMLs) of AISI 321 austenitic stainless steel after electrochemical corrosion in Ringer’s solution. Surface morphology, microstructure, chemical composition, grain sizes, and orientation are studied using OM, SEM, EDS, and EBSD. It was confirmed that (1) the main mechanism behind corrosion destruction is identical between untreated and laser-melted steel, i.e., the selective destruction of the lower corrosion resistance phase (δ-ferrite) in the form of pits, and (2) the morphology and size of corrosion pits are different, as determined via δ-ferrite morphology, with narrow deep pits of uneven shape observed on the surface of wrought steel and rounded shallower pits seen in LML. The following mechanism is proposed with regard to corrosion destruction in LML: (1) the initial destruction of δ-ferrite; (2) the formation of an austenitic dendrite network; (3) the mechanical fracture of austenitic dendrites and pit formation; and (4) the growth of pits inside the grain. The following relationship between corrosion pit development and dendrite orientation in the LML is observed: (1) In the melted zone, with dendrite axes perpendicular to or inclined toward the surface, the corrosion pit grows within the grain. (2) At the melted zone/base metal (MZ/BM) boundary, with dendrite axes parallel to the surface, the corrosion pit develops in the heat-affected zone, along the MZ/BM boundary. Full article
(This article belongs to the Special Issue Corrosion Processes of Metals: Mechanisms and Protection Methods)
Show Figures

Figure 1

16 pages, 6762 KB  
Article
Microstructure and Performance Evolution of Post-Plastic Deformed Austenitic Stainless Steel Fabricated by Selective Laser Melting
by Huimin Tao, Zi Li, Linlin Ma, Yafang Cai, Haiteng Xiu, Mingming Ding and Zeqi Tong
Micromachines 2025, 16(10), 1104; https://doi.org/10.3390/mi16101104 - 28 Sep 2025
Abstract
With the rapid development of additive manufacturing technology, selective laser melting (SLM) of austenitic stainless steel has been widely used. SLM stainless steel will inevitably deform during service, so it is necessary to study the microstructure and macro properties of post-plastic deformed SLM [...] Read more.
With the rapid development of additive manufacturing technology, selective laser melting (SLM) of austenitic stainless steel has been widely used. SLM stainless steel will inevitably deform during service, so it is necessary to study the microstructure and macro properties of post-plastic deformed SLM stainless steel. In this paper, the changes in the microstructure, mechanical properties, and corrosion resistance of SLM304 stainless steel after stretch deformation were studied, and the evolution rules were revealed. The results show that, with an increasing plastic deformation amount, SLM304 stainless steel exhibits grain fragmentation, disordered orientation, and subgrain formation, along with changes in the shape and size of the cellular structure. Additionally, the α’ martensite content inside SLM304 stainless steel rises significantly, while the thickness of the surface passivation film slightly decreases. The analysis shows that the combined effect of the complex microstructure makes the nanohardness of SLM304 stainless steel increase with the increase in the stretch deformation amount while its corrosion resistance deteriorates. Therefore, moderate post-plastic deformation can enable SLM stainless steel to balance excellent mechanical and corrosion properties. This study can not only provide a theoretical reference for the performance optimization of additive manufacturing steel but also provide value for the engineering application of additive manufacturing technology. Full article
(This article belongs to the Special Issue Future Prospects of Additive Manufacturing, 2nd Edition)
Show Figures

Figure 1

22 pages, 9045 KB  
Article
Weld Power, Heat Generation and Microstructure in FSW and SFSW of 11Cr-1.6W-1.6Ni Martensitic Stainless Steel: The Impact of Tool Rotation Rate
by Mohamed Ragab, Naser Alsaleh, Mohamed M. El-Sayed Seleman, Mohamed M. Z. Ahmed, Sabbah Ataya and Yousef G. Y. Elshaghoul
Crystals 2025, 15(10), 845; https://doi.org/10.3390/cryst15100845 - 28 Sep 2025
Abstract
Friction stir welding (FSW) is a leading technique for joining high-strength steel. This study investigates the relationship between weld power, heat generation (HG), cooling medium, and parent austenite grain (PAG) size during both FSW and submerged FSW (SFSW) processes on 11Cr-1.6W-1.6Ni Martensitic Stainless [...] Read more.
Friction stir welding (FSW) is a leading technique for joining high-strength steel. This study investigates the relationship between weld power, heat generation (HG), cooling medium, and parent austenite grain (PAG) size during both FSW and submerged FSW (SFSW) processes on 11Cr-1.6W-1.6Ni Martensitic Stainless Steel. Weld power and HG were determined by measuring plunge force and tool torque at various tool rotation rates (350–550 rpm). Additionally, the PAG size and microstructural phases in the base metal (BM), thermo-mechanically affected zone (TMAZ), and stir zone (SZ) were examined using scanning electron microscopy (SEM), electron backscattered diffraction (EBSD), and X-ray diffraction (XRD). The results indicated that the SFSW of martensitic steel required a plunge force twice that of the FSW process, along with greater weld power. The heat generated during SFSW was 130% higher than in FSW at 550 rpm. Despite this, the peak temperatures in the SZ were lower in SFSW as a result of the surrounding water’s high heat absorption. This difference in thermal behavior significantly affected the microstructure. While FSW resulted in a complete phase transformation to fine PAG, SFSW showed only minimal or partial transformation and a higher strain rate. Consequently, the SZ and TMAZ in SFSW exhibited a higher hardness than in FSW. Full article
Show Figures

Figure 1

15 pages, 7341 KB  
Article
Inspection and Modeling Analysis of Locking Pins in the Penultimate-Stage Blades of a 600 MW Steam Turbine
by Ke Tang, Weiwen Chen, Jiang Zhu, Binhao Yi, Qing Hao, Jiashun Gao, Zhilong Xu, Bicheng Guo and Shiqi Chen
Materials 2025, 18(19), 4487; https://doi.org/10.3390/ma18194487 - 26 Sep 2025
Abstract
The fracture behavior of a locking pin used in the penultimate-stage blades of a 600 MW steam turbine in a thermal power plant was investigated through microstructural and microhardness characterization, fracture surface and energy-dispersive spectroscopy (EDS) analysis, as well as finite element load [...] Read more.
The fracture behavior of a locking pin used in the penultimate-stage blades of a 600 MW steam turbine in a thermal power plant was investigated through microstructural and microhardness characterization, fracture surface and energy-dispersive spectroscopy (EDS) analysis, as well as finite element load simulation. The microhardness values measured on the cross-section of the service pins ranged from 528 to 541 HV0.1, showing little difference from the unused pins. Scanning electron microscopy analysis revealed that approximately 70% of the fracture surfaces exhibited an intergranular “rock candy” morphology. The results indicate that pin failure was primarily caused by the combined effects of fretting wear and stress corrosion cracking (SCC). Specifically, vibration at the blade root, impeller, and pins due to start–stop cycles and load variations led to fretting wear, forming pits approximately 75 μm in size. Under the combined effects of weakly corrosive wet steam environments and shear stresses, SCC initiated at the high stress concentration points of these pits. Early crack propagation primarily followed original austenite grain boundaries, while later stages mainly extended along martensite plate boundaries. As cracks advanced, the cross-sectional area gradually decreased, causing the effective shear stress to increase until it exceeded the shear strength, ultimately leading to fracture. These findings not only provide a scientific basis for enhancing the reliability of steam turbine locking pins and extending their service life, but also contribute to a broader understanding of the failure mechanisms of key components operating under corrosive and fluctuating load environments. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

13 pages, 8153 KB  
Article
An Investigation of the Microstructure and Wear Resistance of Laser Clad 316 Stainless Steel/TiC Coatings Containing Different LaB6 Contents
by Dongdong Zhang, Haozhe Li, Yu Liu, Jingyu Jiang and Yali Gao
Ceramics 2025, 8(4), 121; https://doi.org/10.3390/ceramics8040121 - 26 Sep 2025
Abstract
In this paper, 316 stainless steel/TiC coatings with different LaB6 contents (0%, 2%, 4%, 6%) were prepared on the surface of 45 steel by laser cladding technology. The effects of the LaB6 content on the phase composition, microstructure, microhardness, and wear [...] Read more.
In this paper, 316 stainless steel/TiC coatings with different LaB6 contents (0%, 2%, 4%, 6%) were prepared on the surface of 45 steel by laser cladding technology. The effects of the LaB6 content on the phase composition, microstructure, microhardness, and wear resistance of the coatings were studied. The results show that without the LaB6 addition, the coating is composed of Austenite and TiC phases, with defects such as pores and cracks, and the microstructure is mainly equiaxed grains. With the addition of LaB6, Fe-Cr phases are formed in the coating, and the microstructure transforms into columnar grains and dendritic grains. The grains are first refined and then coarsened, among which the coating with 4% LaB6 (C4) has the smallest grain size. The experimental results indicate that the microhardness of the coatings first increases and then decreases with the increase in the LaB6 content, and the C4 coating has the highest microhardness (594HV0.2). The wear rate shows the same variation trend. The C4 coating has the lowest wear rate and the best wear resistance. This is attributed to the synergistic effect of the fine grain strengthening and TiC particle dispersion strengthening. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Figure 1

22 pages, 7700 KB  
Article
Towards a Global Constitutive Formulation for Modeling the Hot Working Behavior of Low-Carbon Steels
by Unai Mayo, Sergio Fernandez-Sanchez, Isabel Gutierrez, Denis Jorge-Badiola and Amaia Iza-Mendia
Metals 2025, 15(9), 1044; https://doi.org/10.3390/met15091044 - 19 Sep 2025
Viewed by 248
Abstract
The current study explores the applicability of a single constitutive equation, based on the Arrhenius hyperbolic sine model, to a wide range of chemical compositions and test conditions by using a unique approximation. To address this challenge, a mixed model is proposed, integrating [...] Read more.
The current study explores the applicability of a single constitutive equation, based on the Arrhenius hyperbolic sine model, to a wide range of chemical compositions and test conditions by using a unique approximation. To address this challenge, a mixed model is proposed, integrating a physical model with phenomenological expressions to capture the strain and strain rate hardening, forming temperature, dynamic recovery (DRV) and dynamic recrystallization (DRX). The investigation combines high-temperature mechanical testing with modeling in order to understand the hot deformation mechanisms. Hot torsion tests were conducted on ten different low-carbon steels with distinct microalloying additions to capture their responses under diverse initial austenite grain sizes, deformation temperatures and strain rate conditions (d0 = 22–850 µm, T = 800–1200 °C and ε˙= 0.1–10 s−1). The developed constitutive equation has resulted in a robust expression that effectively simulates the hot behavior of various alloys across a wide range of conditions. The application of an optimization tool has significantly reduced the need for adjustments across different alloys, temperatures and strain rates, showcasing its versatility and effectiveness in predicting the flow behavior in a variety of scenarios with excellent accuracy. Moreover, the model has been validated with experimental torsion data from the literature, enhancing the applicability of the developed expression to a broader spectrum of chemical compositions. Full article
Show Figures

Figure 1

15 pages, 9972 KB  
Article
Austenite Grain Growth Behavior and Dynamic Model of ADB790E Hydropower Steel
by Yuxuan Liu, Hongmei Zhang, Zhongxiang Yu and Zhengyi Jiang
Metals 2025, 15(9), 1028; https://doi.org/10.3390/met15091028 - 17 Sep 2025
Viewed by 212
Abstract
The growth behavior of austenite grains in ADB790E hydropower steel under the synergistic effects of heating temperature and holding time was studied using in situ quenching and an in situ high-temperature confocal laser scanning microscope (HT-CLSM) system. The experimental results indicate that the [...] Read more.
The growth behavior of austenite grains in ADB790E hydropower steel under the synergistic effects of heating temperature and holding time was studied using in situ quenching and an in situ high-temperature confocal laser scanning microscope (HT-CLSM) system. The experimental results indicate that the size of the austenite grains exhibits a significant coarsening trend as the heating temperature increases and the holding time extends. Based on the experimental data, the Beck’s model and Sellars’ model for austenite grain growth were constructed and compared and analyzed. The predicted grain size values obtained by the models have a strong correlation with the experimental measured values. To verify the accuracy of the model, the predicted values of the model were compared with the in situ observations of HT-CLSM. The results were highly consistent, effectively revealing the growth law of austenite grains of this steel grade during the thermal cycling process. Full article
Show Figures

Figure 1

19 pages, 25476 KB  
Article
The Effect of Mo on the Microstructure and Mechanical Properties of High-Manganese Railway Frog Steel Produced with the Thermal Mechanical Control Process
by Junke Lin, Genhao Shi, Xiangyao Fu, Tiebing Tang, Qingfeng Wang and Ping Wang
Metals 2025, 15(9), 1025; https://doi.org/10.3390/met15091025 - 16 Sep 2025
Viewed by 322
Abstract
The aim of this study is to investigate the influence of Mo on the microstructure and mechanical properties of railway frog steel. To address the challenges of a coarse microstructure and alloy element segregation caused by the current casting method of railway frog [...] Read more.
The aim of this study is to investigate the influence of Mo on the microstructure and mechanical properties of railway frog steel. To address the challenges of a coarse microstructure and alloy element segregation caused by the current casting method of railway frog steel, the application of thermal mechanical control process (TMCP) technology can achieve a uniform and refined microstructure and stable mechanical properties, which is progress for the development of high-manganese railway frog steel. The TMCP of four experimental steels with varying Mo contents of 0.02~1.01 wt.% was simulated using a Gleeble 3500. The mechanical properties were tested, and the microstructure of each sample was characterized. A single austenite formed in each Mo-containing steel. With the increased Mo content, the grain boundary carbides decreased due to the formation of carbides within the grains, and the austenite and twin sizes were refined. Moreover, grain boundary strengthening and dislocation strengthening increased, while solid solution strengthening and precipitation strengthening had little effect, leading to an increase in the final yield strength. The contribution of dislocation strengthening to the yield strength was 51~56%, indicating that dislocation strengthening was the most significant strengthening method in the high-manganese railway frog steel produced using the TMCP. The impact energy showed a trend of first increasing and then decreasing, and the impact energy reached the highest point when the Mo content was 0.30 wt.%. In addition, the mechanisms governing the effect of increased Si in controlling the final microstructure and mechanical properties are discussed. Full article
Show Figures

Figure 1

19 pages, 23645 KB  
Article
Investigation of Hot Deformation Behavior for 45CrNi Steel by Utilizing an Improved Cellular Automata Method
by Jinhua Zhao, Shitong Dong, Hongru Lv and Wenwu He
Metals 2025, 15(9), 1015; https://doi.org/10.3390/met15091015 - 12 Sep 2025
Viewed by 285
Abstract
The hot deformation discipline of typical 45CrNi steel under a strain rate ranging from 0.01 s−1 to 1 s−1 and deformation temperature between 850 °C and 1200 °C was investigated through isothermal hot compression tests. The activation energy involved in the [...] Read more.
The hot deformation discipline of typical 45CrNi steel under a strain rate ranging from 0.01 s−1 to 1 s−1 and deformation temperature between 850 °C and 1200 °C was investigated through isothermal hot compression tests. The activation energy involved in the high-temperature deformation process was determined to be 361.20 kJ·mol−1, and a strain-compensated constitutive model, together with dynamic recrystallization (DRX) kinetic models, was successfully established based on the Arrhenius theory. An improved second-phase (SP) cellular automaton (CA) model considering the influence of the pinning effect induced by SP particles on the DRX process was developed, and the established SP-CA model was further utilized to predict the evolution behavior of parent austenite grain in regard to the studied 45CrNi steel. Results show that the average absolute relative error (AARE) associated with the austenite grain size and the DRX volume fraction achieved through the simulation and experiment was overall below 5%, indicating good agreement between the simulation and experiment. The pinning force intensity could be controlled by regulating the size and volume fraction of SP particles involved in the established SP-CA model, and the DRX behavior and the average grain size of the studied 45CrNi steel treated by high-temperature compression could also be predicted. The established SP-CA model exhibits significant potential for universality and is expected to provide a powerful simulation tool and theoretical foundation for gaining deeper insights into the microstructural evolution of metals or alloys during high-temperature deformation. Full article
Show Figures

Figure 1

15 pages, 12820 KB  
Article
Microstructure Evolution and Mechanical Properties of Wire Arc Additively Manufactured DSS2209 Duplex Stainless Steel
by Jian Sun, Liang Liu, Long Zhang, Jun Hong, Feihong Liu, Dongsheng Wang, Fei Zhou and Youwen Yang
Materials 2025, 18(17), 4066; https://doi.org/10.3390/ma18174066 - 30 Aug 2025
Viewed by 608
Abstract
This study investigates the microstructure evolution and mechanical properties of DSS2209 duplex stainless steel fabricated via cold metal transfer wire arc additive manufacturing (CMT-WAAM). The as-deposited thin-wall components exhibit significant microstructural heterogeneity along the build height due to thermal history variations. Optical microscopy, [...] Read more.
This study investigates the microstructure evolution and mechanical properties of DSS2209 duplex stainless steel fabricated via cold metal transfer wire arc additive manufacturing (CMT-WAAM). The as-deposited thin-wall components exhibit significant microstructural heterogeneity along the build height due to thermal history variations. Optical microscopy, SEM-EDS, and EBSD analyses reveal distinct phase distributions: the bottom region features elongated blocky austenite with Widmanstätten austenite (WA) due to rapid substrate-induced cooling; the middle region shows equiaxed blocky austenite with reduced grain boundary austenite (GBA) and WA, attributed to interlayer thermal cycling promoting recrystallization and grain refinement (average austenite grain size: 4.16 μm); and the top region displays coarse blocky austenite from slower cooling. Secondary austenite (γ2) forms in interlayer remelted zones with Cr depletion, impacting pitting resistance. Mechanical testing demonstrates anisotropy; horizontal specimens exhibit higher strength (UTS: 610 MPa, YS: 408 MPa) due to layer-uniform microstructures, while vertical specimens show greater ductility (elongation) facilitated by columnar grains aligned with the build direction. Hardness ranges uniformly between 225–239 HV. The study correlates process-induced thermal gradients (e.g., cooling rates, interlayer cycling) with microstructural features (recrystallization fraction, grain size, phase morphology) and performance, providing insights for optimizing WAAM of large-scale duplex stainless steel components like marine propellers. Full article
(This article belongs to the Special Issue Microstructure Engineering of Metals and Alloys, 3rd Edition)
Show Figures

Figure 1

17 pages, 3251 KB  
Article
Determination of Final Ferrite Grain Size During Multiple-Stage Controlled Cooling of Low-Carbon, Low-Alloy Steels
by Nathan Dixon, Carl Slater, Jinlong Du and Claire Davis
Metals 2025, 15(9), 956; https://doi.org/10.3390/met15090956 - 28 Aug 2025
Viewed by 548
Abstract
Ferrite grain size strengthening makes the predominant contribution to the overall strength of ferrite–pearlite structural hollow section steel grades. A fine ferrite grain size is achieved through a two-stage controlled cooling process. First, the material is rapidly cooled with water. This provides a [...] Read more.
Ferrite grain size strengthening makes the predominant contribution to the overall strength of ferrite–pearlite structural hollow section steel grades. A fine ferrite grain size is achieved through a two-stage controlled cooling process. First, the material is rapidly cooled with water. This provides a large undercooling, which is the driving force for ferrite to form. The second stage involves slow natural (air) cooling, where the cooling rates and the transition temperature from water to air cooling are carefully controlled. This is crucial to prevent the formation of bainite or martensite. Ferrite grain sizes can be predicted for continuous cooling and isothermal transformation based on the prior austenite grain size, composition and cooling rate/isothermal transformation temperature. However, predictions for multiple-cooling-stage transformations have not been reported. In this work, EN S355-grade steel was used to study ferrite grain size development during continuous cooling, isothermal holding and complex (two-stage or multi-stage) cooling. Dilatometry and microstructure assessment was used to study the relationship between the final ferrite grain size and undercooling at which 40% of the ferrite formed. It was found that any changes in cooling rate/temperature (including a possible ‘bounce back’ in temperature due to latent heat formation) after 40% of the ferrite had formed had a negligible effect on the final ferrite grain size, assuming that re-austenitization or bainite formation was avoided. Full article
(This article belongs to the Special Issue Advances in High-Strength Low-Alloy Steels (2nd Edition))
Show Figures

Figure 1

17 pages, 14975 KB  
Article
Achieving High Specific Strength via Multiple Strengthening Mechanisms in an Fe-Mn-Al-C-Ni-Cr Lightweight Steel
by Rui Bai, Ying Li, Yunfei Du, Yaqin Zhang, Xiuli He and Hongyu Liang
Materials 2025, 18(17), 4023; https://doi.org/10.3390/ma18174023 - 28 Aug 2025
Viewed by 527
Abstract
The development of lightweight steels with high specific strength is critical for automotive applications and energy savings. This study aimed to develop a high-performance lightweight steel with high specific strength by designing an alloy composition and optimizing thermomechanical processing. A novel Fe-28.6Mn-10.2Al-1.1C-3.2Ni-3.9Cr (wt.%) [...] Read more.
The development of lightweight steels with high specific strength is critical for automotive applications and energy savings. This study aimed to develop a high-performance lightweight steel with high specific strength by designing an alloy composition and optimizing thermomechanical processing. A novel Fe-28.6Mn-10.2Al-1.1C-3.2Ni-3.9Cr (wt.%) steel was investigated, focusing on microstructural evolution, mechanical properties, and strengthening mechanisms. The steel was processed through hot-rolling, solution treatment, cold-rolling, and subsequent annealing. Microstructural characterization revealed a dual-phase matrix of austenite and ferrite (6.8 vol.%), with B2 precipitates distributed at the grain boundaries and within the austenite matrix, alongside nanoscale κ-carbides (<10 nm). Short-time annealing resulted in the finer austenite grains (~1.1 μm) and the higher volume fraction (5.0%) of intragranular B2 precipitates with a smaller size (~0.18 μm), while long-time annealing promoted the coarsening of austenite grains (~1.6 μm) and the growth of intergranular B2 particles (~0.9 μm). This steel achieved yield strengths of 1130~1218 MPa and tensile strengths of 1360~1397 MPa through multiple strengthening mechanisms, including solid solution strengthening, grain boundary strengthening, dislocation strengthening, and precipitation strengthening. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

Back to TopTop