Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = automatic pseudoword generation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1461 KB  
Article
Syllable-, Bigram-, and Morphology-Driven Pseudoword Generation in Greek
by Kosmas Kosmidis, Vassiliki Apostolouda and Anthi Revithiadou
Appl. Sci. 2025, 15(12), 6582; https://doi.org/10.3390/app15126582 - 11 Jun 2025
Viewed by 572
Abstract
Pseudowords are essential in (psycho)linguistic research, offering a way to study language without meaning interference. Various methods for creating pseudowords exist, but each has its limitations. Traditional approaches modify existing words, risking unintended recognition. Modern algorithmic methods use high-frequency n-grams or syllable [...] Read more.
Pseudowords are essential in (psycho)linguistic research, offering a way to study language without meaning interference. Various methods for creating pseudowords exist, but each has its limitations. Traditional approaches modify existing words, risking unintended recognition. Modern algorithmic methods use high-frequency n-grams or syllable deconstruction but often require specialized expertise. Currently, no automatic process for pseudoword generation is designed explicitly for Greek, which is our primary focus. Therefore, we developed SyBig-r-Morph, a novel application that constructs pseudowords using syllables as the main building block, replicating Greek phonotactic patterns. SyBig-r-Morph draws input from word lists and databases that include syllabification, word length, part of speech, and frequency information. It categorizes syllables by position to ensure phonotactic consistency with user-selected morphosyntactic categories and can optionally assign stress to generated words. Additionally, the tool uses multiple lexicons to eliminate phonologically invalid combinations. Its modular architecture allows easy adaptation to other languages. To further evaluate its output, we conducted a manual assessment using a tool that verifies phonotactic well-formedness based on phonological parameters derived from a corpus. Most SyBig-r-Morph words passed the stricter phonotactic criteria, confirming the tool’s sound design and linguistic adequacy. Full article
(This article belongs to the Special Issue Computational Linguistics: From Text to Speech Technologies)
Show Figures

Figure 1

Back to TopTop