Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (648)

Search Parameters:
Keywords = basin water yield

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 21227 KB  
Article
Full-Cycle Evaluation of Multi-Source Precipitation Products for Hydrological Applications in the Magat River Basin, Philippines
by Jerome G. Gacu, Sameh Ahmed Kantoush and Binh Quang Nguyen
Remote Sens. 2025, 17(19), 3375; https://doi.org/10.3390/rs17193375 - 7 Oct 2025
Abstract
Satellite Precipitation Products (SPPs) play a crucial role in hydrological modeling, particularly in data-scarce and climate-sensitive basins such as the Magat River Basin (MRB), Philippines—one of Southeast Asia’s most typhoon-prone and infrastructure-critical watersheds. This study presents the first full-cycle evaluation of nine widely [...] Read more.
Satellite Precipitation Products (SPPs) play a crucial role in hydrological modeling, particularly in data-scarce and climate-sensitive basins such as the Magat River Basin (MRB), Philippines—one of Southeast Asia’s most typhoon-prone and infrastructure-critical watersheds. This study presents the first full-cycle evaluation of nine widely used multi-source precipitation products (2000–2024), integrating raw validation against rain gauge observations, bias correction using quantile mapping, and post-correction re-ranking through an Entropy Weight Method–TOPSIS multi-criteria decision analysis (MCDA). Before correction, SM2RAIN-ASCAT demonstrated the strongest statistical performance, while CHIRPS and ClimGridPh-RR exhibited robust detection skills and spatial consistency. Following bias correction, substantial improvements were observed across all products, with CHIRPS markedly reducing systematic errors and ClimGridPh-RR showing enhanced correlation and volume reliability. Biases were decreased significantly, highlighting the effectiveness of quantile mapping in improving both seasonal and annual precipitation estimates. Beyond conventional validation, this framework explicitly aligns SPP evaluation with four critical hydrological applications: flood detection, drought monitoring, sediment yield modeling, and water balance estimation. The analysis revealed that SM2RAIN-ASCAT is most suitable for monitoring seasonal drought and dry periods, CHIRPS excels in detecting high-intensity and erosive rainfall events, and ClimGridPh-RR offers the most consistent long-term volume-based estimates. By integrating validation, correction, and application-specific ranking, this study provides a replicable blueprint for operational SPP assessment in monsoon-dominated, data-limited basins. The findings underscore the importance of tailoring product selection to hydrological purposes, supporting improved flood early warning, drought preparedness, sediment management, and water resources governance under intensifying climatic extremes. Full article
31 pages, 1093 KB  
Article
Sustainable Intensification of Olive Agroecosystems via Barley, Triticale, and Pea Intercropping
by Andreas Michalitsis, Paschalis Papakaloudis, Chrysanthi Pankou, Anastasios Lithourgidis and Christos Dordas
Agronomy 2025, 15(10), 2333; https://doi.org/10.3390/agronomy15102333 - 2 Oct 2025
Abstract
In the Mediterranean basin, olive cultivation occupies the largest share of agricultural land, due to the region’s favorable soil and climatic conditions. However, the intensification of farming systems has had negative environmental impacts, for which diversified approaches such as agroforestry offer a potential [...] Read more.
In the Mediterranean basin, olive cultivation occupies the largest share of agricultural land, due to the region’s favorable soil and climatic conditions. However, the intensification of farming systems has had negative environmental impacts, for which diversified approaches such as agroforestry offer a potential solution. The objective of the present study was to determine the growth of barley, triticale, and pea as cover crops, as well as the respective intercrops in olive orchards and their productivity. The results showed that the intercropping of pea with barley and triticale had the highest yields in dry biomass compared to the other treatments, while barley monoculture recorded the highest yield in terms of grain. The findings demonstrated that intercropping enhances resource-use efficiency, particularly in terms of land productivity, Radiation-Use Efficiency, and Water-Use Efficiency. However, competitive dynamics varied significantly between species and across years, with pea often exhibiting dominance in biomass production, while cereals showed trade-offs in seed yield components due to shading and interspecific competition. These findings can be used for sustainable intensification strategies, ensuring higher productivity while minimizing external inputs in climate-vulnerable regions. Full article
Show Figures

Figure 1

16 pages, 2992 KB  
Article
The Prediction of Oil and Water Content in Tight Oil Fluid: A Case Study of the Gaotaizi Oil Reservoir in Songliao Basin
by Junhui Li, Jie Li, Xiuli Fu, Junwen Li, Shuangfang Lu, Zhong Chu and Nengwu Zhou
Energies 2025, 18(19), 5186; https://doi.org/10.3390/en18195186 - 30 Sep 2025
Abstract
The oil content in a produced fluid plays a crucial role in oil production engineering. In this paper, a predictive model for the oil and water proportions in produced fluid was established through nuclear magnetic resonance coupling displacement. This model successfully predicts the [...] Read more.
The oil content in a produced fluid plays a crucial role in oil production engineering. In this paper, a predictive model for the oil and water proportions in produced fluid was established through nuclear magnetic resonance coupling displacement. This model successfully predicts the oil proportion in the produced fluid from each block within the Gaotaizi oil reservoir of the Songliao Basin and elucidates the reasons for its variation across different blocks. The production of pure oil in a vertical well area was attributed to the reservoir fluid exhibiting high bound water saturation, resulting in oil being the primary movable phase. In the testing and extended areas, variations in oil saturation combined with the pore size distribution governing oil and water occupancy are likely responsible for the differing oil-water ratios observed in the produced fluid. Specifically, a higher oil-to-water ratio (7:3) was produced in the testing area, while the extended area yielded a lower oil-to-water ratio (3:7). Furthermore, the model predicts an oil-to-water ratio of 4:6 for the produced fluid in the Fangxing area. To enhance oil production in the extended area, narrowing the fracture interval is proposed. However, this measure may not prove effective in other blocks. Full article
Show Figures

Figure 1

36 pages, 20880 KB  
Article
NDGRI: A Novel Sentinel-2 Normalized Difference Gamma-Radiation Index for Pixel-Level Detection of Elevated Gamma Radiation
by Marko Simić, Boris Vakanjac and Siniša Drobnjak
Remote Sens. 2025, 17(19), 3331; https://doi.org/10.3390/rs17193331 - 29 Sep 2025
Abstract
This study introduces the Normalized Difference Gamma Ray Index (NDGRI), a novel spectral composite derived from Sentinel 2 imagery for mapping elevated natural gamma radiation in semi-arid and arid basins. We hypothesized that water-sensitive spectral indices correlate with gamma-ray hotspots in arid regions [...] Read more.
This study introduces the Normalized Difference Gamma Ray Index (NDGRI), a novel spectral composite derived from Sentinel 2 imagery for mapping elevated natural gamma radiation in semi-arid and arid basins. We hypothesized that water-sensitive spectral indices correlate with gamma-ray hotspots in arid regions of Mongolia, where natural radionuclide distribution is influenced by hydrological processes. Leveraging historical car-borne gamma spectrometry data collected in 2008 across the Sainshand and Zuunbayan uranium project areas, we evaluated twelve spectral bands and five established moisture-sensitive indices against radiation heatmaps in Naarst and Zuunbayan. Using Pearson and Spearman correlations alongside two percentile-based overlap metrics, indices were weighted to yield a composite performance score. The best performing indices (MI—Moisture Index and NDSII_1—Normalized Difference Snow and Ice Index) guided the derivation of ten new ND constructs incorporating SWIR bands (B11, B12) and visible bands (B4, B8A). The top performer, NDGRI = (B4 − B12)/(B4 + B12) achieved a precision of 62.8% for detecting high gamma-radiation areas and outperformed benchmarks of other indices. We established climatological screening criteria to ensure NDGRI reliability. Validation at two independent sites (Erdene, Khuvsgul) using 2008 airborne gamma ray heatmaps yielded 76.41% and 85.55% spatial overlap accuracy, respectively. Our results demonstrate that NDGRI effectively delineates gamma radiation hotspots where moisture-controlled spectral contrasts prevail. The index’s stringent acquisition constraints, however, limit the temporal availability of usable scenes. NDGRI offers a rapid, cost-effective remote sensing tool to prioritize ground surveys in uranium prospective basins and may be adapted for other radiometric applications in semi-arid and arid regions. Full article
(This article belongs to the Special Issue Remote Sensing in Engineering Geology (Third Edition))
Show Figures

Figure 1

17 pages, 4446 KB  
Article
Study on Production System Optimization and Productivity Prediction of Deep Coalbed Methane Wells Considering Thermal–Hydraulic–Mechanical Coupling Effects
by Sukai Wang, Yonglong Li, Wei Liu, Siyu Zhang, Lipeng Zhang, Yan Liang, Xionghui Liu, Quan Gan, Shiqi Liu and Wenkai Wang
Processes 2025, 13(10), 3090; https://doi.org/10.3390/pr13103090 - 26 Sep 2025
Abstract
Deep coalbed methane (CBM) resources possess significant potential. However, their development is challenged by geological characteristics such as high in situ stress and low permeability. Furthermore, existing production strategies often prove inadequate. In order to achieve long-term stable production of deep coalbed methane [...] Read more.
Deep coalbed methane (CBM) resources possess significant potential. However, their development is challenged by geological characteristics such as high in situ stress and low permeability. Furthermore, existing production strategies often prove inadequate. In order to achieve long-term stable production of deep coalbed methane reservoirs and increase their final recoverable reserves, it is urgent to construct a scientific and reasonable drainage system. This study focuses on the deep CBM reservoir in the Daning-Jixian Block of the Ordos Basin. First, a thermal–hydraulic–mechanical (THM) multi-physics coupling mathematical model was constructed and validated against historical well production data. Then, the model was used to forecast production. Finally, key control measures for enhancing well productivity were identified through production strategy adjustment. The results indicate that controlling the bottom-hole flowing pressure drop rate at 1.5 times the current pressure drop rate accelerates the early-stage pressure drop, enabling gas wells to reach the peak gas production earlier. The optimized pressure drop rates for each stage are as follows: 0.15 MPa/d during the dewatering stage, 0.057 MPa/d during the gas production rise stage, 0.035 MPa/d during the stable production stage, and 0.01 MPa/d during the production decline stage. This strategy increases peak daily gas production by 15.90% and cumulative production by 3.68%. It also avoids excessive pressure drop, which can cause premature production decline during the stable phase. Consequently, the approach maximizes production over the entire life cycle of the well. Mechanistically, the 1.5× flowing pressure drop offers multiple advantages. Firstly, it significantly shortens the dewatering and production ramp-up periods. This acceleration promotes efficient gas desorption, increasing the desorbed gas volume by 1.9%, and enhances diffusion, yielding a 39.2% higher peak diffusion rate, all while preserving reservoir properties. Additionally, this strategy synergistically optimizes the water saturation and temperature fields, which mitigates the water-blocking effect. Furthermore, by enhancing coal matrix shrinkage, it rebounds permeability to 88.9%, thus avoiding stress-induced damage from aggressive extraction. Full article
Show Figures

Figure 1

18 pages, 3079 KB  
Article
Optimizing Water–Sediment, Ecological, and Socioeconomic Management in Cascade Reservoirs in the Yellow River: A Multi-Target Decision Framework
by Donglin Li, Rui Li, Gang Liu and Chang Zhang
Water 2025, 17(19), 2823; https://doi.org/10.3390/w17192823 - 26 Sep 2025
Abstract
Multi-target optimization management of reservoirs plays a crucial role in balancing multiple scheduling objectives, thereby contributing to watershed sustainability. In this study, a model was developed for the multi-target optimization scheduling of water–sediment, ecological, and socioeconomic objectives of reservoirs with multi-dimensional scheduling needs, [...] Read more.
Multi-target optimization management of reservoirs plays a crucial role in balancing multiple scheduling objectives, thereby contributing to watershed sustainability. In this study, a model was developed for the multi-target optimization scheduling of water–sediment, ecological, and socioeconomic objectives of reservoirs with multi-dimensional scheduling needs, including flood control, sediment discharge, ecological protection, and socio-economic development. After obtaining the Pareto solution set by solving the optimization model, a decision model based on cumulative prospect theory (CPT) was constructed to select optimal scheduling schemes, resulting in the development of a multi-target decision framework for reservoirs. The proposed framework not only mitigates multi-target conflicts among water–sediment, ecological, and socioeconomic objectives but also quantifies the different preferences of decision-makers. The framework was then applied to six cascade reservoirs (Longyangxia, Liujiaxia, Haibowan, Wanjiazhai, Sanmenxia, and Xiaolangdi) in the Yellow River basin of China. A whole-river multi-target decision model was developed for water–sediment, ecological, and socioeconomic objectives, and the cooperation–competition dynamics among multiple objectives and decision schemes were analyzed for wet, normal, and dry years. The results demonstrated the following: (1) sediment discharge goals and ecological goals were somewhat competitive, and sediment discharge goals and power generation goals were highly competitive, while ecological goals and power generation goals were cooperative, and cooperation–competition relationships among the three objectives was particularly pronounced in dry years; (2) the decision plans for abundant, normal, and low water years were S293, S241, and S386, respectively, and all are consistent with actual dispatch conditions; (3) compared to local models, the whole-river multi-target scheduling model achieved increases of 71.01 × 106 t in maximum sediment discharge, 0.72% in maximum satisfaction rate of suitable ecological flow, and 0.20 × 109 kW·h in maximum power generation; and (4) compared to conventional decision methods, the CPT-based approach yielded rational results with substantially enhanced sensitivity, indicating its suitability for selecting and decision-making of various schemes. This study provides insights into the establishment of multi-target dispatching models for reservoirs and decision-making processes for scheduling schemes. Full article
Show Figures

Figure 1

32 pages, 36553 KB  
Article
Evaluation of the Economic Convenience Deriving from Reforestation Actions to Reduce Soil Erosion and Safeguard Ecosystem Services in an Apulian River Basin
by Giuliano Rocco Romanazzi, Giovanni Ottomano Palmisano, Marilisa Cioffi, Claudio Acciani, Annalisa De Boni, Giovanni Francesco Ricci, Vincenzo Leronni, Francesco Gentile and Rocco Roma
Land 2025, 14(10), 1936; https://doi.org/10.3390/land14101936 - 24 Sep 2025
Viewed by 13
Abstract
Soil erosion is a widespread problem leading to land degradation in many watersheds, including the Lato Basin, an Apulian permanent river that supplies water used for irrigation in many agricultural territories along the Ionian coast with considerable economic importance for crop production. The [...] Read more.
Soil erosion is a widespread problem leading to land degradation in many watersheds, including the Lato Basin, an Apulian permanent river that supplies water used for irrigation in many agricultural territories along the Ionian coast with considerable economic importance for crop production. The loss of fertile soil makes land less productive for agriculture; soil erosion decreases soil fertility, which can negatively affect crop yields. The present research aimed to determine soil loss (t/ha/year) in the Lato watershed in 2024, and then four ecosystem services—loss of carbon, habitat quality, crop productivity and sustainable tourism suitability—directly or indirectly linked to erosion, were defined and evaluated in monetary terms. These ecosystem service evaluations were made for the actual basin land use, and also for two hypothetical scenarios applying different afforestation strategies to the watershed. The first scenario envisages afforestation interventions in the areas with the highest erosion; the second scenario envisages afforestation interventions in the areas with medium erosion, cultivated with cereal crops. Each scenario was also used to evaluate the economic convenience and the effects of sustainable land management practices (e.g., reforestation) to reduce soil erosion and loss of ecosystem services. This study demonstrates that soil erosion is related to land use. It also underlines that reforestation reduces soil erosion and increases the value of ecosystem services. Furthermore, the economic analysis shows that crop productivity is the most incisive ecosystem service, as the lands with high productivity achieve higher economic values, making conversion to wooded areas economically disadvantageous if not supported with economic aid. The results of this study may help development of new management strategies for the Lato Basin, to be implemented through the distribution of community funds for rural development programs that consider the real economic productivity of each area through naturalistic engineering interventions. The reforestation measures need to be implemented over a long time frame to perform their functions; this requires relevant investments from the public sector due to cost management, requesting monetary compensation from EU funds for companies involved in forestation projects on highly productive areas that will bring benefits for the entire community. Full article
Show Figures

Figure 1

25 pages, 8517 KB  
Article
Development of an Optical–Radar Fusion Method for Riparian Vegetation Monitoring and Its Application to Representative Rivers in Japan
by Han Li, Hiroki Kurusu, Yuzuna Suzuki and Yuji Kuwahara
Remote Sens. 2025, 17(19), 3281; https://doi.org/10.3390/rs17193281 - 24 Sep 2025
Viewed by 124
Abstract
Riparian vegetation plays a critical role in maintaining ecosystem function, ensuring drainage capacity, and enhancing disaster prevention and mitigation. However, existing ground-based survey methods are limited in both spatial coverage and temporal resolution, which increases the difficulty of meeting the growing demand for [...] Read more.
Riparian vegetation plays a critical role in maintaining ecosystem function, ensuring drainage capacity, and enhancing disaster prevention and mitigation. However, existing ground-based survey methods are limited in both spatial coverage and temporal resolution, which increases the difficulty of meeting the growing demand for rapid, dynamic, and fine-scale monitoring of riverine vegetation. To address this challenge, this study proposes a remote sensing approach that integrates Sentinel-1 synthetic aperture radar imagery with Sentinel-2 optical data. A composite vegetation index was developed by combining the normalized difference vegetation index and synthetic aperture radar backscatter coefficients, thereby enabling the joint characterization of horizontal and vertical vegetation activity. The method was first tested in the Kuji River Basin in Japan and subsequently validated across eight representative river systems nationwide using 16 sets of satellite images acquired between 2016 and 2023. The results demonstrate that the proposed method achieves an average geometric correction error of less than three pixels and yields a spatial distribution of the composite index that closely aligns with the actual vegetation conditions. Moreover, the difference rate between sparse and dense vegetation exceeded 90% across all rivers, indicating a strong discriminative capability and temporal sensitivity. Overall, this method is well-suited for the multiregional and multitemporal monitoring of riparian vegetation and offers a reliable quantitative tool for water environment management and ecological assessment. Full article
Show Figures

Figure 1

21 pages, 9820 KB  
Article
Assessment of Deep Water-Saving Practice Effects on Crop Coefficients and Water Consumption Processes in Cultivated Land–Wasteland–Lake Systems of the Hetao Irrigation District
by Jiamin Li, Guoshuai Wang, Delong Tian, Hexiang Zheng, Haibin Shi, Zekun Li, Jie Ren and Ruiping Li
Plants 2025, 14(18), 2933; https://doi.org/10.3390/plants14182933 - 21 Sep 2025
Viewed by 199
Abstract
Water scarcity, soil salinization, and desertification threaten sustainable agricultural ecosystems of Hetao irrigation district, Yellow River Basin (YRB). Precise quantification of soil water dynamics and plant water consumption processes is essential for the agricultural sustainability of the irrigation district. Therefore, this study mainly [...] Read more.
Water scarcity, soil salinization, and desertification threaten sustainable agricultural ecosystems of Hetao irrigation district, Yellow River Basin (YRB). Precise quantification of soil water dynamics and plant water consumption processes is essential for the agricultural sustainability of the irrigation district. Therefore, this study mainly focused on the crop coefficients and water consumption processes of three representative plant types in the Hetao irrigation district, each corresponding to a specific land system: Helianthus annuus (cultivated land), Tamarix chinensis (wasteland), and Phragmites australis (lake). The SIMDualKc model was calibrated and validated based on situ observation data (soil water content and yield) during 2018 (conventional conditions), 2023 and 2024 (deep water-saving conditions). Results show strong agreement between simulated and observed soil moisture and crop yields. The results indicate that the process curves of Kcb (basal crop coefficient) and Kcbadj (adjusted crop coefficient) nearly overlapped for the three plant types in 2018 and 2023. However, under the deep water-saving project implemented in 2024, the Kcbadj process curves for all three plant types exhibited a significant reduction (approximately 15%). Soil evaporation fractions (E/ETcadj) were stable at 19–30% during the 2018, 2023, and 2024. The contribution of capillary rise to ET reached 38.61–43.18% in cultivated land (Helianthus annuus), 41.52–48.93% in wasteland (Tamarix chinensis), and 38.08–46.57% in lake boundary areas (Phragmites australis), which underscores the significant role of groundwater recharge in sustaining plant water consumption. Actual-to-potential transpiration ratios (Ta/Tp) during 2023–2024 decreased by 3–11% for Helianthus annuus, 5–12% for Tamarix chinensis, and 23% for Phragmites australis compared to Ta/Tp values in 2018. Capillary rise decreased approximately 10% during the whole system. Deep water-saving practices increased the groundwater depth and restricted groundwater recharge to plants via capillary rise, thereby impairing plant transpiration and growth. These findings provide scientific support for sustainable agriculture and ecological security in the Yellow River Basin. Full article
Show Figures

Figure 1

22 pages, 3346 KB  
Brief Report
Effects of Water Stress on Growth and Leaf Water Physiology of Major Plants in the Qaidam Basin
by Mei Dong, Han Luo and Qingning Wang
Diversity 2025, 17(9), 652; https://doi.org/10.3390/d17090652 - 17 Sep 2025
Viewed by 334
Abstract
Water stress represents one of the most critical limiting factors affecting plant distribution, growth rate, biomass accumulation, and crop yield across diverse growth stages. Variations in species’ drought tolerance fundamentally shape global biodiversity patterns by influencing survival rates, distribution ranges, and community composition [...] Read more.
Water stress represents one of the most critical limiting factors affecting plant distribution, growth rate, biomass accumulation, and crop yield across diverse growth stages. Variations in species’ drought tolerance fundamentally shape global biodiversity patterns by influencing survival rates, distribution ranges, and community composition under changing environmental conditions. This study investigated the physiological responses of six plant species (Haloxylon ammodendron (H.A.), Nitraria tangutorum Bobr. (N.T.B.), Sympegma regelii Bge. (S.R.B.), Tamarix chinensis (T.C.), Potentilla fruticosa (P.F.R.), and Sabina chinensis (Linn.) Ant. (S.C.A.)) to varying water stress levels through controlled water gradient experiments. Four treatment levels were established: W1 (full water supply, >70% field water holding capacity); W2 (mild stress, 50–55%); W3 (moderate stress, 35–40%); and W4 (severe stress, 20–25%). Height growth and leaf mass per area decreased significantly with increasing water stress across all species. S.C.A. consistently exhibited the highest leaf mass per area among the six species, while H.A. showed the lowest values across all treatments. Leaf water content declined progressively with intensifying water stress, with T.C. and P.F.R. showing the most pronounced reductions (T.C.: 16.53%, 18.07%, and 33.37% under W2, W3, and W4, respectively; P.F.R.: 19.45%, 28.52%, and 36.08%), whereas N.T.B. and H.A. demonstrated superior water retention capacity (N.T.B.: 2.44%, 6.64%, and 9.76%; H.A.: 1.44%, 4.39%, and 5.52%). Water saturation deficit increased correspondingly with declining soil moisture. Diurnal leaf water potential patterns exhibited a characteristic V-shaped curve under well-watered (W1) and mildly stressed (W2) conditions, transitioning to a double-valley pattern with unstable fluctuations under moderate (W3) and severe (W4) stress. Leaf water potential showed linear relationships with air temperature and relative humidity, and a quadratic relationship with atmospheric water potential. For all six species, the relationship between pre-dawn leaf water potential and soil water content followed the curve equation y = a + b/x. Under water-deficient conditions, S.C.A. exhibited the greatest water physiological changes, followed by P.F.R. Both logarithmic and power function relationships between leaf and soil water potentials were highly significant (all F > 55.275, all p < 0.01). T.C. leaf water potential was the most sensitive to soil water potential changes, followed by S.C.A., while H.A. demonstrated the least sensitivity. These findings provide essential theoretical foundations for selecting drought-resistant plant species in arid regions of the Qaidam Basin. This study elucidates the response mechanisms of six distinct drought-tolerant plant species under water stress. It provides critical theoretical support for selecting drought-tolerant species, designing community configurations, and implementing water management strategies in vegetation restoration projects within the arid Qaidam Basin. Furthermore, it contributes empirical data at the plant physiological level to understanding the mechanisms sustaining species diversity in arid ecosystems. Full article
(This article belongs to the Special Issue Ecology and Diversity of Plants in Arid and Semi-Arid Ecosystems)
Show Figures

Figure 1

15 pages, 1630 KB  
Article
Sustainability Under Deforestation and Climate Variability in Tropical Savannas: Water Yield in the Urucuia River Basin, Brazil
by Thomas Rieth Corrêa, Eraldo Aparecido Trondoli Matricardi, Solange Filoso, Juscelina Arcanjo dos Santos, Aldicir Osni Scariot, Carlos Moreira Miquelino Eleto Torres, Lucietta Guerreiro Martorano and Eder Miguel Pereira
Sustainability 2025, 17(18), 8169; https://doi.org/10.3390/su17188169 - 11 Sep 2025
Viewed by 360
Abstract
By 2023, deforestation in the Cerrado biome surpassed 50% of its original area, primarily due to the conversion of native vegetation to pasture and agricultural land. In addition to anthropogenic pressure, climate change has intensified hydrological stress by reducing precipitation and decreasing river [...] Read more.
By 2023, deforestation in the Cerrado biome surpassed 50% of its original area, primarily due to the conversion of native vegetation to pasture and agricultural land. In addition to anthropogenic pressure, climate change has intensified hydrological stress by reducing precipitation and decreasing river flows, thereby threatening water security, quality, and availability in that biome. The Annual Water Yield (AWY) model from the InVEST platform provides a tool to assess ecosystem services by estimating the balance between precipitation and evapotranspiration (ET). In this study, we applied the AWY model to the Urucuia River Basin, analyzing water yield trends from 1991 to 2020. We evaluated climate variables, land use dynamics, and river discharge data and validated the model validation using observed stream flow data. Although the model exhibited low performance in simulating observed streamflow (NSE = −0.14), scenario analyses under reduced precipitation and increased evapotranspiration (ET) revealed consistent water yield responses to climatic variability, supporting the model’s heuristic value for assessing the relative impacts of land use and climate change. The effects of deforestation on estimated water yield were limited, as land use changes resulted in only moderate shifts in basin-wide ET. This was primarily due to the offsetting effects of land conversion: while the replacement of savannas with pasture reduced ET, the expansion of agricultural areas increased it, leading to a net balancing effect. Nevertheless, other ecosystem services—such as water quality, soil erosion, and hydrological regulation—may have been affected, threatening long-term regional sustainability. Trend analysis showed a significant decline in river discharge, likely driven by the expansion of irrigated agriculture, particularly center pivot systems, despite the absence of significant trends in precipitation or ET. Full article
Show Figures

Figure 1

19 pages, 3219 KB  
Article
Spatial Targeting and Budget-Adaptive Optimization of Best Management Practices for Cost-Effective Nitrogen Reduction
by Yunkai Fan, Huazhi Zhang, Bing Yu, Ming Cong and Zhuohang Xin
Water 2025, 17(17), 2651; https://doi.org/10.3390/w17172651 - 8 Sep 2025
Viewed by 497
Abstract
This study developed a Soil and Water Assessment Tool (SWAT) model for the Fuzhou River Basin in China to quantify the spatial distribution, sources, and reduction potential of total nitrogen (TN) load. We comprehensively evaluated the effectiveness of eight Best Management Practices (BMPs) [...] Read more.
This study developed a Soil and Water Assessment Tool (SWAT) model for the Fuzhou River Basin in China to quantify the spatial distribution, sources, and reduction potential of total nitrogen (TN) load. We comprehensively evaluated the effectiveness of eight Best Management Practices (BMPs) and 186 combinations thereof in reducing TN load. Our analysis demonstrated that adding more BMPs did not yield proportionally additive benefits but instead led to reduced cost-effectiveness (CE) once the number of BMPs exceeded three. Targeting BMPs to Critical Source Areas (CSAs) increased CE by an average of 15.6% compared to watershed-wide application, although the environmental benefit (EB) was lower (22.0% versus 32.8% on average). We identified a critical budget threshold of 70 million CNY. Below this threshold, CSA-targeting optimized BMPs delivered the most cost-effective TN reductions (123.0 kg/104 CNY per year). However, with a sufficient budget exceeding this threshold, our findings support implementing BMPs throughout the entire watershed, which maximized the TN reduction rate to over 40%. Overall, our findings highlight that spatial targeting and budget-adaptive implementation of BMPs are essential for maximizing both economic efficiency and environmental benefits, providing a practical decision approach for nutrient management in river basins. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

23 pages, 9602 KB  
Article
Evolution and Attribution Analysis of the Relationship Among Soil Erosion Negative Service, Carbon Sequestration, and Water Yield in the Yellow River Basin After the Grain for Green Program
by Menghao Yang, Ming Wang, Lianhai Cao, Haipeng Zhang, Huhu Niu and Jun Liu
Remote Sens. 2025, 17(17), 3028; https://doi.org/10.3390/rs17173028 - 1 Sep 2025
Viewed by 861
Abstract
Understanding the tradeoff and synergy among ecosystem services (ESs) and their influencing factors is a prerequisite for simultaneously managing multiple ESs and holds significant importance for achieving harmonious regional development between humans and nature. Existing research predominantly focuses on the overall characteristics of [...] Read more.
Understanding the tradeoff and synergy among ecosystem services (ESs) and their influencing factors is a prerequisite for simultaneously managing multiple ESs and holds significant importance for achieving harmonious regional development between humans and nature. Existing research predominantly focuses on the overall characteristics of tradeoff and synergy, while studies on spatially differentiated tradeoff and synergy characteristics remain limited. In addition, their driving mechanisms are not yet fully understood, especially in large-scale river basins. This study, taking the Yellow River Basin (YRB) from 2000 to 2023 as the study area, employed multi-source data and multiple models to quantify three ESs, including soil erosion negative service (indirectly reflecting the soil conservation service function), carbon sequestration, and water yield. Combining Pearson correlation analysis, a geographically weighted regression model, and optimal parameter geographical detection, we identified the spatiotemporal interaction relationships and their dominant drivers. The results indicated that soil erosion negative services decreased by 24.89%, while carbon sequestration and water yield increased by 53.30% and 38.47%, respectively. The most significant improvements in the three ESs were observed in the midstream of the YRB. Spatially, soil erosion negative service decreased from west to east. Carbon sequestration exhibited a spatial pattern of higher values in the south and east and lower values in the north and west. Water yield decreased from south to north. Tradeoff relationships existed between soil erosion negative service and carbon sequestration and between soil erosion negative service and water yield. A synergistic relationship existed between carbon sequestration and water yield. Over time, the proportion of areas showing synergy among these three ESs decreased. However, synergistic areas remained more common than tradeoff areas. This was especially evident in the relationship between carbon sequestration and water yield, where synergy consistently accounted for over 78% of the YRB. Rainfall, soil properties, and fractional vegetation cover were identified as important drivers of the tradeoff/synergy between soil erosion negative service and carbon sequestration. Rainfall, temperature, fractional vegetation cover, and elevation were significant drivers of the interactions between carbon sequestration and water yield. Population density, fractional vegetation cover, GDP density, and rainfall were the main influencing factors for the tradeoff/synergy between soil erosion negative service and water yield. Our general methodology and results provide valuable decision-making references for policymakers, highlighting the necessity of considering the spatiotemporal heterogeneity in ESs tradeoff characteristics and their underlying driving factors. Full article
Show Figures

Figure 1

26 pages, 8278 KB  
Article
Radiative Forcing and Albedo Dynamics in the Yellow River Basin: Trends, Variability, and Land-Cover Effects
by Long He, Qianrui Xi, Mei Sun, Hu Zhang, Junqin Xie and Lei Cui
Remote Sens. 2025, 17(17), 3009; https://doi.org/10.3390/rs17173009 - 29 Aug 2025
Viewed by 580
Abstract
Climate change results from disruptions in Earth’s radiation energy balance. Radiative forcing is the dominant factor of climate change. Yet, most studies have focused on radiative effects within the calculated actual albedo, usually overlooking the angle effect of regions with large-scale and highly [...] Read more.
Climate change results from disruptions in Earth’s radiation energy balance. Radiative forcing is the dominant factor of climate change. Yet, most studies have focused on radiative effects within the calculated actual albedo, usually overlooking the angle effect of regions with large-scale and highly varied terrain. This study produced the actual albedo databases by using albedo retrieval look-up tables. And then we investigated the spatiotemporal variations in land surface albedo and its corresponding radiative effects in the Yellow River Basin from 2000 to 2022 using MODIS-derived reflectance data. We employed time-series, trend, and anomaly detection analyses alongside surface downward shortwave radiation measurements to quantify the radiative forcing induced by land-cover changes. Our key findings reveal that (i) the basin’s average surface albedo was 0.171, with observed values ranging from 0.058 to 0.289; the highest variability was noted in the Loess Plateau during winter—primarily due to snowfall and low temperatures; (ii) a notable declining trend in the annual average albedo was observed in conjunction with rising temperatures, with annual values fluctuating between 0.165 and 0.184 and monthly averages spanning 0.1595 to 0.1853; (iii) land-cover transitions exerted distinct radiative forcing effects: conversions from grassland, shrubland, and wetland to water bodies produced forcings of 2.657, 2.280, and 2.007 W/m2, respectively, while shifts between barren land and cropland generated forcings of 4.315 and 2.696 W/m2. In contrast, transitions from cropland to shrubland and from grassland to shrubland resulted in minimal forcing, and changes from impervious surfaces and forested areas to other cover types yielded negative forcing, thereby exerting a net cooling effect. These findings not only deepen our understanding of the interplay between land-cover transitions and radiative forcing within the Yellow River Basin but also offer robust scientific support for regional climate adaptation, ecological planning, and sustainable land use management. Full article
Show Figures

Graphical abstract

20 pages, 3048 KB  
Article
Distribution and Source Appointment of Potentially Toxic Elements in Rivers via Self-Organizing Map and Positive Matrix Factorization (Qinghai–Tibet Plateau, China)
by Na Cai, Xueping Wang, Xiaoyang Liu and Li Deng
Water 2025, 17(17), 2547; https://doi.org/10.3390/w17172547 - 28 Aug 2025
Viewed by 963
Abstract
The fragile ecological environment of the Qinghai–Tibet Plateau (QTP) is significantly affected by human activities. This study employed a self-organizing map (SOM) for cluster analysis and positive matrix factorization (PMF) to trace the source of potentially toxic elements (PTEs) in the surface water [...] Read more.
The fragile ecological environment of the Qinghai–Tibet Plateau (QTP) is significantly affected by human activities. This study employed a self-organizing map (SOM) for cluster analysis and positive matrix factorization (PMF) to trace the source of potentially toxic elements (PTEs) in the surface water of rivers. The results revealed that the average concentration of PTEs in the rivers was generally low. However, at some sampling points, especially in areas near the Qarhan Salt Lake, the content of Cu, Hg, and Ni were high. The water quality index (WQI), contamination factor (CF), and modified contamination index (mCd) identified good water quality, while potential Ni in the Quanji and Golmud River basins were the primary contaminants of concern. The potential ecological risk index (PERI) showed a low ecological risk. The SOM yielded four clusters of water PTEs, including Hg, Cu-Ni, Pb-Cd-Zn, and As. PMF model further revealed PTE sources, with industrial sources (39.73%) as the primary anthropogenic factor, followed by natural weathering (33.44%), vehicle emissions (21.52%), and atmospheric deposition (5.31%). This study laid the foundation for the ecological monitoring of rivers on the QTP and provided a reference for balancing industrial development and ecological protection in Qarhan Salt Lake areas. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

Back to TopTop