Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (18,126)

Search Parameters:
Keywords = basins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5520 KB  
Article
Revealing Phenotypic Differentiation in Ochetobius elongatus from the Middle Yangtze River Through Geometric Morphometrics
by Fangtao Cai, Zhiyuan Qi, Ziheng Hu, Dongdong Zhai, Yuanyuan Chen, Fei Xiong and Hongyan Liu
Animals 2025, 15(19), 2870; https://doi.org/10.3390/ani15192870 - 30 Sep 2025
Abstract
Ochetobius elongatus, a critically endangered (CR) fish species of the Yangtze River Basin in China, has experienced a severe decline in its wild population. Understanding its mechanisms of phenotypic variation is essential for developing effective conservation and restoration strategies. Using geometric morphometrics [...] Read more.
Ochetobius elongatus, a critically endangered (CR) fish species of the Yangtze River Basin in China, has experienced a severe decline in its wild population. Understanding its mechanisms of phenotypic variation is essential for developing effective conservation and restoration strategies. Using geometric morphometrics based on 14 landmarks, we examined the phenotypic difference among five populations from the mainstem, the tributary, and the river-connected lakes of the middle Yangtze River. The results showed that significant phenotypic divergence was detected between river and lake populations. River individuals exhibited a more elongated body, smaller head, inferior mouth position, larger operculum, and narrower caudal peduncle, whereas lake individuals showed a deeper body, and anterior shift in the origin of pelvic fin. The first canonical variable effectively distinguished river and lake populations, with the accuracy of both original and cross-validation classification exceeding 90%, indicating that habitat heterogeneity was the primary driver of phenotypic differentiation. No significant correlation was found between morphological distance and geographical distance. Water temperature, flow velocity, water depth, and food abundance significantly influenced phenotypic variation, but their individual effects were limited, which suggested that environmental shaping of morphology depended more on synergistic effects. Our findings provide important insights into the adaptive evolution of this critically endangered species and offer a scientific basis for conservation efforts. Full article
34 pages, 33165 KB  
Article
Spatiotemporal Agricultural Drought Assessment and Mapping Its Vulnerability in a Semi-Arid Region Exhibiting Aridification Trends
by Fatemeh Ghasempour, Sevim Seda Yamaç, Aliihsan Sekertekin, Muzaffer Can Iban and Senol Hakan Kutoglu
Agriculture 2025, 15(19), 2060; https://doi.org/10.3390/agriculture15192060 - 30 Sep 2025
Abstract
Agricultural drought, increasingly intensified by climate change, poses a significant threat to food security and water resources in semi-arid regions, including Türkiye’s Konya Closed Basin. This study evaluates six satellite-derived indices—Vegetation Health Index (VHI), Vegetation Condition Index (VCI), Temperature Condition Index (TCI), Precipitation [...] Read more.
Agricultural drought, increasingly intensified by climate change, poses a significant threat to food security and water resources in semi-arid regions, including Türkiye’s Konya Closed Basin. This study evaluates six satellite-derived indices—Vegetation Health Index (VHI), Vegetation Condition Index (VCI), Temperature Condition Index (TCI), Precipitation Condition Index (PCI), Evapotranspiration Condition Index (ETCI), and Soil Moisture Condition Index (SMCI)—to monitor agricultural drought (2001–2024) and proposes a drought vulnerability map using a novel Drought Vulnerability Index (DVI). Integrating Moderate Resolution Imaging Spectroradiometer (MODIS), Climate Hazards Center InfraRed Precipitation with Station (CHIRPS), and Land Data Assimilation System (FLDAS) datasets, the DVI combines these indices with weighted contributions (VHI: 0.27, ETCI: 0.25, SMCI: 0.22, PCI: 0.26) to spatially classify vulnerability. The results highlight severe drought episodes in 2001, 2007, 2008, 2014, 2016, and 2020, with extreme vulnerability concentrated in the southern and central basin, driven by prolonged vegetation stress and soil moisture deficits. The DVI reveals that 38% of the agricultural area in the basin is classified as moderately vulnerable, while 29% is critically vulnerable—comprising 22% under high vulnerability and 7% under extreme vulnerability. The proposed drought vulnerability map offers an actionable framework to support targeted water management strategies and policy interventions in drought-prone agricultural systems. Full article
Show Figures

Figure 1

17 pages, 11223 KB  
Article
Hydrocarbon-Bearing Hydrothermal Fluid Migration Adjacent to the Top of the Overpressure Zone in the Qiongdongnan Basin, South China Sea
by Dongfeng Zhang, Ren Wang, Hongping Liu, Heting Huang, Xiangsheng Huang and Lei Zheng
Appl. Sci. 2025, 15(19), 10587; https://doi.org/10.3390/app151910587 - 30 Sep 2025
Abstract
The Qiongdongnan Basin constitutes a sedimentary basin characterized by elevated temperatures, significant overpressures, and abundant hydrocarbons. Investigations within this basin have identified hydrothermal fluid movements linked to overpressure conditions, comprising two vertically separated overpressured intervals. The shallow overpressure compartment is principally caused by [...] Read more.
The Qiongdongnan Basin constitutes a sedimentary basin characterized by elevated temperatures, significant overpressures, and abundant hydrocarbons. Investigations within this basin have identified hydrothermal fluid movements linked to overpressure conditions, comprising two vertically separated overpressured intervals. The shallow overpressure compartment is principally caused by a combination of undercompaction and clay diagenesis. In contrast, the deeper high-pressure compartment results from hydrocarbon gas generation. Numerical pressure modeling indicates late-stage (post-5 Ma) development of significant overpressure within the deep compartment. It is proposed that accelerated subsidence in the Pliocene-Quaternary initiated substantial gas generation, thereby promoting the formation of the deep overpressured system. Multiple organic maturation parameters, combined with fluid inclusion microthermometry, reveal a thermal anomaly adjacent to the upper boundary of the deep overpressured zone. This anomaly indicates vertical transport of hydrothermal fluids ascending from the underlying high-pressure zone. Laser Raman spectroscopy confirms the presence of both hydrocarbons and carbon dioxide within these migrating fluids. Integration of fluid inclusion thermometry with burial history modeling constrains the timing of hydrocarbon-carrying fluid charge to the interval from 4.2 Ma onward, synchronous with modeled peak gas generation and a phase of pronounced overpressure buildup. We propose that upon exceeding the fracture gradient threshold, fluid pressure triggered upward migration of deeply sourced, hydrocarbon-enriched fluids through hydrofracturing pathways. This process led to localized dissolution and fracturing near the top of the deep overpressured system, while simultaneously facilitating significant hydrocarbon accumulation and forming preferential accumulation zones. These findings provide critical insights into petroleum exploration in overpressured sedimentary basins. Full article
(This article belongs to the Special Issue Advances in Petroleum Exploration and Application)
Show Figures

Figure 1

17 pages, 4081 KB  
Article
A Novel Method to Determine the Grain Size and Structural Heterogeneity of Fine-Grained Sedimentary Rocks
by Fang Zeng, Shansi Tian, Hongli Dong, Zhentao Dong, Bo Liu and Haiyang Liu
Fractal Fract. 2025, 9(10), 642; https://doi.org/10.3390/fractalfract9100642 - 30 Sep 2025
Abstract
Fine-grained sedimentary rocks exhibit significant textural heterogeneity, often obscured by conventional grain size analysis techniques that require sample disaggregation. We propose a non-destructive, image-based grain size characterization workflow, utilizing stitched polarized thin-section photomicrographs, k-means clustering, and watershed segmentation algorithms. Validation against laser granulometry [...] Read more.
Fine-grained sedimentary rocks exhibit significant textural heterogeneity, often obscured by conventional grain size analysis techniques that require sample disaggregation. We propose a non-destructive, image-based grain size characterization workflow, utilizing stitched polarized thin-section photomicrographs, k-means clustering, and watershed segmentation algorithms. Validation against laser granulometry data indicates strong methodological reliability (absolute errors ranging from −5% to 3%), especially for particle sizes greater than 0.039 mm. The methodology reveals substantial internal heterogeneity within Es3 laminated shale samples from the Shahejie Formation (Bohai Bay Basin), distinctly identifying coarser siliceous laminae (grain size >0.039 mm, Φ < 8 based on Udden-Wentworth classification) indicative of high-energy depositional environments, and finer-grained clay-rich laminae (grain size <0.039 mm, Φ > 8) representing low-energy conditions. Conversely, massive mudstones exhibit comparatively homogeneous grain size distributions. Additionally, a multifractal analysis (Multifractal method) based on the S50bi/S50si ratio further quantifies spatial heterogeneity and pore-structure complexity, significantly enhancing facies differentiation and reservoir characterization capabilities. This method significantly improves facies differentiation ability, provides reliable constraints for shale oil reservoir characterization, and has important reference value for the exploration and development of the Bohai Bay Basin and similar petroliferous basins. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

15 pages, 4805 KB  
Article
Lessons Learnt from Restoring a Tidal Marsh by Enlarging the Intertidal Basin (Zwin Inlet, Belgium/The Netherlands)
by Anne-Lise Montreuil, Sebastian Dan, Rik Houthuys and Toon Verwaest
J. Mar. Sci. Eng. 2025, 13(10), 1876; https://doi.org/10.3390/jmse13101876 - 30 Sep 2025
Abstract
Tidal inlets regulate the exchange of water and sediment between the open sea and adjacent basins. In many locations, engineering interventions combined with coastal protections and polders have intensified erosion and scouring. This study reports on a three-year monitoring program following the implementation [...] Read more.
Tidal inlets regulate the exchange of water and sediment between the open sea and adjacent basins. In many locations, engineering interventions combined with coastal protections and polders have intensified erosion and scouring. This study reports on a three-year monitoring program following the implementation of a Nature-based Solution (NbS) at a previous engineering tidal inlet in the Zwin, located along the Belgian–Dutch coast. In 2019, large-scale modifications to the intertidal zone and the opening of a dyke doubled the surface area of the tidal inlet and its associated tidal marsh. Results revealed rapid and substantial morphological adjustments: the main channel deepened, widened, and migrated eastward. Sediment balance analyses showed stability at the inlet entrance but material loss further inland. Tidal prism and cross-sectional measurements indicated a fourfold increase in tidal prism immediately after NbS implementation, triggering strong channel responses. Within a year, the channel cross-sectional area reached a new equilibrium, which remained stable in the following years. These patterns highlight active sediment transport driven by coupled hydrodynamic and morphodynamic processes. Using an extensive data set, a conceptual model is presented to illustrate how the NbS influenced tidal inlet dynamics through the interaction of flow and sedimentation processes. Full article
(This article belongs to the Special Issue Nature-Based Solutions in Coastal Systems)
Show Figures

Figure 1

25 pages, 7449 KB  
Article
Influence of Volumetric Geometry on Meteorological Time Series Measurements: Fractality and Thermal Flows
by Patricio Pacheco Hernández, Gustavo Navarro Ahumada, Eduardo Mera Garrido and Diego Zemelman de la Cerda
Fractal Fract. 2025, 9(10), 639; https://doi.org/10.3390/fractalfract9100639 - 30 Sep 2025
Abstract
This work analyzes the behavior of the boundary layer subjected to stresses by obstacles using hourly measurements, in the form of time series, of meteorological variables (temperature (T), relative humidity (RH), and magnitude of the wind speed (WS)) in a given period. The [...] Read more.
This work analyzes the behavior of the boundary layer subjected to stresses by obstacles using hourly measurements, in the form of time series, of meteorological variables (temperature (T), relative humidity (RH), and magnitude of the wind speed (WS)) in a given period. The study region is Santiago, the capital of Chile. The measurement location is in a rugged basin geography with a nearly pristine atmospheric environment. The time series are analyzed through chaos theory, demonstrating that they are chaotic through the calculation of the parameters Lyapunov exponent (λ > 0), correlation dimension (DC < 5), Kolmogorov entropy (SK > 0), Hurst exponent (0.5 < H < 1), and Lempel–Ziv complexity (LZ > 0). These series are simultaneous measurements of the variables of interest, before and after, of three different volumetric geometries arranged as obstacles: a parallelepiped, a cylinder, and a miniature mountain. The three geometries are subject to the influence of the wind and present the same cross-sectional area facing the measuring instruments oriented in the same way. The entropies calculated for each variable in each geometry are compared. It is demonstrated, in a first approximation, that volumetric geometry impacts the magnitude of the entropic fluxes associated with the measured variables, which can affect micrometeorology and, by extension, the climate in general. Furthermore, the study examines which geometry favors greater information loss or greater fractality in the measured variables. Full article
(This article belongs to the Special Issue Fractals in Earthquake and Atmospheric Science)
Show Figures

Figure 1

19 pages, 10338 KB  
Article
Halophyte-Mediated Metal Immobilization and Divergent Enrichment in Arid Degraded Soils: Mechanisms and Remediation Framework for the Tarim Basin, China
by Jingyu Liu, Lang Wang, Shuai Guo and Hongli Hu
Sustainability 2025, 17(19), 8771; https://doi.org/10.3390/su17198771 - 30 Sep 2025
Abstract
Understanding heavy metal behavior in arid saline soils is critical for phytoremediation in degraded lands. This study investigated metal distribution and plant enrichment in the Tarim Basin using 323 soil and 55 plant samples (Populus euphratica, Tamarix ramosissima, cotton, jujube). [...] Read more.
Understanding heavy metal behavior in arid saline soils is critical for phytoremediation in degraded lands. This study investigated metal distribution and plant enrichment in the Tarim Basin using 323 soil and 55 plant samples (Populus euphratica, Tamarix ramosissima, cotton, jujube). Analyses included redundancy analysis (RDA) and bioconcentration factor (BCF) assessments. Key findings reveal that elevated salinity (total salts, TS > 200 g/kg) and alkalinity (pH > 8.5) immobilized As, Cd, Cu, and Zn. Precipitation and competitive leaching reduced metal mobility by 42–68%. Plant enrichment strategies diverged significantly: P. euphratica hyperaccumulated Cd (BCF = 1.59) and Zn (BCF = 2.41), while T. ramosissima accumulated As and Pb (BCF > 0.05). Conversely, cotton posed Hg transfer risks (BCF = 2.15), and jujube approached Cd safety thresholds in phosphorus-rich soils. RDA indicated that pH and total salinity (TS) jointly suppressed metal bioavailability, explaining 57.6% of variance. Total phosphorus (TP) and soil organic carbon (SOC) enhanced metal availability (36.8% variance), with notable TP-Cd synergy (Pearson’s r = 0.42). We propose a dual-threshold management framework: (1) leveraging salinity–alkalinity suppression (TS > 200 g/kg + pH > 8.5) for natural immobilization; and (2) implementing TP control (TP > 0.8 g/kg) to mitigate crop Cd risks. P. euphratica demonstrates targeted phytoremediation potential for degraded saline agricultural systems. This framework guides practical management by spatially delineating zones for natural immobilization versus targeted remediation (e.g., P. euphratica planting in Cd/Zn hotspots) and implementing phosphorus control in high-risk croplands. Full article
Show Figures

Figure 1

20 pages, 7345 KB  
Article
Integrated Analysis of Heavy-Metal Pollution in Three Gorges Reservoir Sediments: Spatial Distribution, Source Apportionment, and Ecological Risk Assessment
by Haitao Yan, Baocheng Wang, Kaikai Zheng, Chunlan Peng, Jinbo Yan and Bao Qian
Water 2025, 17(19), 2852; https://doi.org/10.3390/w17192852 - 30 Sep 2025
Abstract
The Three Gorges Reservoir, serving as a crucial ecological barrier for the middle-lower Yangtze River basin, faces substantial threats to watershed ecosystems from sediment-associated heavy metal, threatening aquatic ecosystems and human health via bioaccumulation. Leveraging the legislative framework of the Yangtze River Protection [...] Read more.
The Three Gorges Reservoir, serving as a crucial ecological barrier for the middle-lower Yangtze River basin, faces substantial threats to watershed ecosystems from sediment-associated heavy metal, threatening aquatic ecosystems and human health via bioaccumulation. Leveraging the legislative framework of the Yangtze River Protection Law, this study analyzed sediment cores (0–65 cm) collected from 12 representative sites in the Three Gorges Reservoir using 2020 Air–Space–Ground integrated monitoring data from the Changjiang Water Resources Commission. Concentrations of nine heavy metals (Cd, Cu, Pb, Fe, Mn, Cr, As, Hg, and Zn) were quantified to characterize spatial and vertical distribution patterns. Source apportionment was conducted through correlation analysis and principal component analysis (PCA). Contamination severity and ecological risks were assessed via geo-accumulation index (Igeo), potential ecological risk index (RI), and acute toxicity metrics. The findings indicated substantial spatial heterogeneity in sediment heavy-metal concentrations, with the coefficients of variation (CV) for Hg and Cd reaching 214.46% and 116.76%, respectively. Cu and Pb showed surface enrichment, while Cd exhibited distinct vertical accumulation. Source apportionment indicated geogenic dominance for most metals, with anthropogenic contributions specifically linked to Cd and Hg enrichment. Among the metals assessed, Cd emerged as the primary ecological risk driver, with localized strong risk levels (Ei > 320), particularly at FP and SS sites. These findings establish a scientific foundation for precision pollution control and ecological restoration strategies targeting reservoir sediments. Full article
(This article belongs to the Special Issue Sources, Transport, and Fate of Contaminants in Waters and Sediment)
Show Figures

Figure 1

24 pages, 22035 KB  
Article
Terrain-Based High-Resolution Microclimate Modeling for Cold-Air-Pool-Induced Frost Risk Assessment in Karst Depressions
by András Dobos, Réka Farkas and Endre Dobos
Climate 2025, 13(10), 205; https://doi.org/10.3390/cli13100205 - 30 Sep 2025
Abstract
Cold-air pooling (CAP) and frost risk represent significant climate-related hazards in karstic and agricultural environments, where local topography and surface cover strongly modulate microclimatic conditions. This study focuses on the Mohos sinkhole, Hungary’s cold pole, situated on the Bükk Plateau, to investigate the [...] Read more.
Cold-air pooling (CAP) and frost risk represent significant climate-related hazards in karstic and agricultural environments, where local topography and surface cover strongly modulate microclimatic conditions. This study focuses on the Mohos sinkhole, Hungary’s cold pole, situated on the Bükk Plateau, to investigate the formation, structure, and persistence of CAPs in a Central European karst depression. High-resolution terrain-based modeling was conducted using UAV-derived digital surface models combined with multiple GIS tools (Sky-View Factor, Wind Exposition Index, Cold Air Flow, and Diurnal Anisotropic Heat). These models were validated and enriched by multi-level temperature measurements and thermal imaging under various synoptic conditions. Results reveal that temperature inversions frequently form during clear, calm nights, leading to extreme near-surface cold accumulation within the sinkhole. Inversions may persist into the day due to topographic shading and density stratification. Vegetation and basin geometry influence radiative and turbulent fluxes, shaping the spatial extent and intensity of cold-air layers. The CAP is interpreted as part of a broader interconnected multi-sinkhole system. This integrated approach offers a transferable, cost-effective framework for terrain-driven frost hazard assessment, with direct relevance to precision agriculture, mesoscale model refinement, and site-specific climate adaptation in mountainous or frost-sensitive regions. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

13 pages, 1942 KB  
Article
Characterization of Gut Bacteria in Natural Populations of Sand Flies (Diptera: Psychodidae) from Endemic and Non-Endemic Areas of Leishmaniasis in Morocco
by Mohamed Daoudi, Abdelkrim Outammassine, El Mahdi Redouane, Souad Loqman, Mohamed Hafidi, Ali Boumezzough, Martin Olivier, Samia Boussaa and Momar Ndao
Microorganisms 2025, 13(10), 2279; https://doi.org/10.3390/microorganisms13102279 - 30 Sep 2025
Abstract
Leishmaniasis is a vector-borne parasitic disease caused by Leishmania spp., transmitted to humans by phlebotomine sand flies. The development of Leishmania into infective metacyclic promastigotes occurs within the sand fly gut, where the bacterial microbiota plays a pivotal role in parasite development and [...] Read more.
Leishmaniasis is a vector-borne parasitic disease caused by Leishmania spp., transmitted to humans by phlebotomine sand flies. The development of Leishmania into infective metacyclic promastigotes occurs within the sand fly gut, where the bacterial microbiota plays a pivotal role in parasite development and transmission dynamics. This study aimed to characterize the gut bacterial composition of phlebotomine sand flies collected from both endemic (Lalla Aaziza) and non-endemic (Marrakech) regions of leishmaniasis in Morocco. We investigated the microbiota of Phlebotomus papatasi, P. sergenti, P. perniciosus, and P. longicuspis, all proven vectors of cutaneous and visceral leishmaniasis in the Old World, including Morocco, as well as Sergentomyia minuta, a potential vector in the Mediterranean basin. Gut bacteria were isolated using conventional microbiological techniques and identified by MALDI-TOF mass spectrometry. Fifteen bacterial strains from three phyla were identified, with Bacillus pumilus being the most frequently detected species. Significant differences in colony-forming unit (CFU) counts and bacterial richness were observed between sand fly species and collection sites. Notably, Bacillus simplex (in P. papatasi), Nocardia ignorata (in P. sergenti), and Serratia spp. (in P. longicuspis) were identified for the first time in these vectors. This study is the first to investigate the gut bacterial composition of sand flies in Morocco, revealing species and locality-dependent differences in microbial communities. The predominance of Bacillus spp., particularly B. pumilus, suggests a potentially influential role in sand fly physiology and vector competence. Furthermore, the novel detection of B. simplex, N. ignorata, and Serratia spp. underscores previously unrecognized microbial associations that warrant further investigation. These findings provide a critical baseline for future studies exploring the microbiota-mediated modulation of sand fly–Leishmania interactions. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

16 pages, 2992 KB  
Article
The Prediction of Oil and Water Content in Tight Oil Fluid: A Case Study of the Gaotaizi Oil Reservoir in Songliao Basin
by Junhui Li, Jie Li, Xiuli Fu, Junwen Li, Shuangfang Lu, Zhong Chu and Nengwu Zhou
Energies 2025, 18(19), 5186; https://doi.org/10.3390/en18195186 - 30 Sep 2025
Abstract
The oil content in a produced fluid plays a crucial role in oil production engineering. In this paper, a predictive model for the oil and water proportions in produced fluid was established through nuclear magnetic resonance coupling displacement. This model successfully predicts the [...] Read more.
The oil content in a produced fluid plays a crucial role in oil production engineering. In this paper, a predictive model for the oil and water proportions in produced fluid was established through nuclear magnetic resonance coupling displacement. This model successfully predicts the oil proportion in the produced fluid from each block within the Gaotaizi oil reservoir of the Songliao Basin and elucidates the reasons for its variation across different blocks. The production of pure oil in a vertical well area was attributed to the reservoir fluid exhibiting high bound water saturation, resulting in oil being the primary movable phase. In the testing and extended areas, variations in oil saturation combined with the pore size distribution governing oil and water occupancy are likely responsible for the differing oil-water ratios observed in the produced fluid. Specifically, a higher oil-to-water ratio (7:3) was produced in the testing area, while the extended area yielded a lower oil-to-water ratio (3:7). Furthermore, the model predicts an oil-to-water ratio of 4:6 for the produced fluid in the Fangxing area. To enhance oil production in the extended area, narrowing the fracture interval is proposed. However, this measure may not prove effective in other blocks. Full article
Show Figures

Figure 1

16 pages, 7225 KB  
Article
A Holistic Assessment of Water Quality in the Lake and Rivers of Lake Chaohu Basin, China
by Aiping Huang, Xiaobo Liu, Fei Dong, Wenqi Peng, Xiaochen Yang, Bing Ma, Yang Lei, Weihao Wang and Zhuowei Wang
Processes 2025, 13(10), 3125; https://doi.org/10.3390/pr13103125 - 29 Sep 2025
Abstract
The Lake Chaohu Basin (LCB) represents a focal point for water pollution control in China, and its water quality status has drawn substantial attention. We conducted a holistic assessment of water quality using the water quality index (WQI) in the LCB based on [...] Read more.
The Lake Chaohu Basin (LCB) represents a focal point for water pollution control in China, and its water quality status has drawn substantial attention. We conducted a holistic assessment of water quality using the water quality index (WQI) in the LCB based on monthly measurements of 13 water quality parameters at 16 stations during 2016–2020. We observed a general upward trend in the annual average WQI for Lake Chaohu, suggesting an improvement in water quality. A notable shift in the spatial pattern of water quality was observed. The annual average WQI for inflowing rivers also exhibited an overall upward trend. The WQIs of the lake and inflowing rivers, particularly in the western lake, exhibited a significant positive correlation, suggesting that the water quality of the inflowing rivers is a crucial factor influencing the water quality of Lake Chaohu. The crucial water quality parameters influencing the WQI of the LCB included ammonia nitrogen, total phosphorus, total nitrogen, dissolved oxygen, and permanganate index, which were used to construct a minimum WQI (WQImin). The WQImin showed outstanding performance in the LCB. The findings of this study could deepen the understanding of water quality patterns and the response of lake water quality to inflowing river water quality within lake-type basins. Full article
(This article belongs to the Special Issue Advances in Hydrodynamics, Pollution and Bioavailable Transfers)
Show Figures

Figure 1

36 pages, 20880 KB  
Article
NDGRI: A Novel Sentinel-2 Normalized Difference Gamma-Radiation Index for Pixel-Level Detection of Elevated Gamma Radiation
by Marko Simić, Boris Vakanjac and Siniša Drobnjak
Remote Sens. 2025, 17(19), 3331; https://doi.org/10.3390/rs17193331 - 29 Sep 2025
Abstract
This study introduces the Normalized Difference Gamma Ray Index (NDGRI), a novel spectral composite derived from Sentinel 2 imagery for mapping elevated natural gamma radiation in semi-arid and arid basins. We hypothesized that water-sensitive spectral indices correlate with gamma-ray hotspots in arid regions [...] Read more.
This study introduces the Normalized Difference Gamma Ray Index (NDGRI), a novel spectral composite derived from Sentinel 2 imagery for mapping elevated natural gamma radiation in semi-arid and arid basins. We hypothesized that water-sensitive spectral indices correlate with gamma-ray hotspots in arid regions of Mongolia, where natural radionuclide distribution is influenced by hydrological processes. Leveraging historical car-borne gamma spectrometry data collected in 2008 across the Sainshand and Zuunbayan uranium project areas, we evaluated twelve spectral bands and five established moisture-sensitive indices against radiation heatmaps in Naarst and Zuunbayan. Using Pearson and Spearman correlations alongside two percentile-based overlap metrics, indices were weighted to yield a composite performance score. The best performing indices (MI—Moisture Index and NDSII_1—Normalized Difference Snow and Ice Index) guided the derivation of ten new ND constructs incorporating SWIR bands (B11, B12) and visible bands (B4, B8A). The top performer, NDGRI = (B4 − B12)/(B4 + B12) achieved a precision of 62.8% for detecting high gamma-radiation areas and outperformed benchmarks of other indices. We established climatological screening criteria to ensure NDGRI reliability. Validation at two independent sites (Erdene, Khuvsgul) using 2008 airborne gamma ray heatmaps yielded 76.41% and 85.55% spatial overlap accuracy, respectively. Our results demonstrate that NDGRI effectively delineates gamma radiation hotspots where moisture-controlled spectral contrasts prevail. The index’s stringent acquisition constraints, however, limit the temporal availability of usable scenes. NDGRI offers a rapid, cost-effective remote sensing tool to prioritize ground surveys in uranium prospective basins and may be adapted for other radiometric applications in semi-arid and arid regions. Full article
(This article belongs to the Special Issue Remote Sensing in Engineering Geology (Third Edition))
Show Figures

Figure 1

24 pages, 11488 KB  
Article
An Innovative Approach for Forecasting Hydroelectricity Generation by Benchmarking Tree-Based Machine Learning Models
by Bektaş Aykut Atalay and Kasım Zor
Appl. Sci. 2025, 15(19), 10514; https://doi.org/10.3390/app151910514 - 28 Sep 2025
Abstract
Hydroelectricity, one of the oldest and most potent forms of renewable energy, not only provides low-cost electricity for the grid but also preserves nature through flood control and irrigation support. Forecasting hydroelectricity generation is vital for utilizing alleviating resources effectively, optimizing energy production, [...] Read more.
Hydroelectricity, one of the oldest and most potent forms of renewable energy, not only provides low-cost electricity for the grid but also preserves nature through flood control and irrigation support. Forecasting hydroelectricity generation is vital for utilizing alleviating resources effectively, optimizing energy production, and ensuring sustainability. This paper provides an innovative approach to hydroelectricity generation forecasting (HGF) of a 138 MW hydroelectric power plant (HPP) in the Eastern Mediterranean by taking electricity productions from the remaining upstream HPPs on the Ceyhan River within the same basin into account, unlike prior research focusing on individual HPPs. In light of tuning hyperparameters such as number of trees and learning rates, this paper presents a thorough benchmark of the state-of-the-art tree-based machine learning models, namely categorical boosting (CatBoost), extreme gradient boosting (XGBoost), and light gradient boosting machines (LightGBM). The comprehensive data set includes historical hydroelectricity generation, meteorological conditions, market pricing, and calendar variables acquired from the transparency platform of the Energy Exchange Istanbul (EXIST) and MERRA-2 reanalysis of the NASA with hourly resolution. Although all three models demonstrated successful performances, LightGBM emerged as the most accurate and efficient model by outperforming the others with the highest coefficient of determination (R2) (97.07%), the lowest root mean squared scaled error (RMSSE) (0.1217), and the shortest computational time (1.24 s). Consequently, it is considered that the proposed methodology demonstrates significant potential for advancing the HGF and will contribute to the operation of existing HPPs and the improvement of power dispatch planning. Full article
Show Figures

Figure 1

22 pages, 5277 KB  
Article
Colloidal Properties of Clays from Ventzia Basin Enhanced with Chemical Additives and Subjected to Dynamic Thermal Aging Suitable for Water-Based Drilling Fluids
by Dimitriοs Papadimitriou, Ernestos-Nikolas Sarris, Andreas Georgakopoulos and Nikolaos Kantiranis
Colloids Interfaces 2025, 9(5), 65; https://doi.org/10.3390/colloids9050065 - 28 Sep 2025
Abstract
This work examines the colloidal properties of clays sampled from two different locations in Ventzia basin processed as low-density solid additives for water-based drilling fluid applications. The obtained samples were mechanically processed to reach a size less than 2 cm. The material was [...] Read more.
This work examines the colloidal properties of clays sampled from two different locations in Ventzia basin processed as low-density solid additives for water-based drilling fluid applications. The obtained samples were mechanically processed to reach a size less than 2 cm. The material was then activated with 3 wt% soda ash without oven drying, keeping the moisture in environmental conditions to simulate industrial activation conditions. After laying for one month curing time, samples were oven dried at 60 °C and further ground to <120 μm. Two groups of samples were created mixing clays from Ventzia basin and additives. The first group contained clay, xanthan gum and sodium polyacrylate (PAA), while the second group contained clay, xanthan gum and sodium hexametaphosphate (SHMP). Standard tests were performed for the rheological behavior and filtration properties prior to and after dynamic thermal aging. Results obtained were compared with commercial clays from Milos and Wyoming used in drilling fluid systems, after thermally deteriorating also their properties. The obtained results revealed that the enhanced clays under study maintain excellent thermal stability. Notably, the top-performing formulation met the critical American Petroleum Institute (API) benchmark for filtrate loss (<15 mL) and exhibited a robust rheological profile at temperatures up to 105 °C, demonstrating its suitability for water-based fluid (WBF) applications. Full article
(This article belongs to the Special Issue Colloids and Interfaces in Mineral Processing)
Show Figures

Figure 1

Back to TopTop