Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,241)

Search Parameters:
Keywords = bending mode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3467 KB  
Article
Repeated Impact Performance of Carbon Spread-Tow Woven Stitched Composite with Anti-Sandwich Structure
by Minrui Jia, Jingna Su, Ao Liu, Teng Fan, Liwei Wu, Kunpeng Luo, Qian Jiang and Zhenkai Wan
Polymers 2025, 17(19), 2670; https://doi.org/10.3390/polym17192670 - 2 Oct 2025
Abstract
Spread-tow woven fabrics (STWs) have attracted considerable attention owing to their thin-layered characteristics, high fiber strength utilization rate and superior designability, finding wide application in the aerospace field. To meet the application requirements for materials with high specific strength/specific modulus in the aerospace [...] Read more.
Spread-tow woven fabrics (STWs) have attracted considerable attention owing to their thin-layered characteristics, high fiber strength utilization rate and superior designability, finding wide application in the aerospace field. To meet the application requirements for materials with high specific strength/specific modulus in the aerospace field, this study designed an anti-sandwich structured composite with high specific load-bearing capacity. Herein, the core layer was a load-bearing structure composed of STW, while the surface layers were hybrid lightweight structures made of STW and nonwoven (NW) felt. Repeated impact test results showed that increasing the thickness ratio of the core layer enhanced the impact resistant stiffness of the overall structure, whereas increasing the proportion of NW felt in the surface layers improved the energy absorption of the composites but reduced their load-bearing stiffness and strength. The composite exhibited superior repeated impact resistance, achieving a peak impact load of 17.43 kN when the thickness ratio of the core layer to the surface layers was 2:1 and the hybrid ratio of the surface layers was 3:1. No penetration occurred after 20 repeated impacts at the 50 J or 3 repeated impacts at 100 J. Meanwhile, both the maximum displacement and impact duration increased, whereas the bending stiffness declined as the number of impacts increased. The failure mode was mainly characterized by progressive interfacial cracking in the surface layers and fracture in the core layer. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

25 pages, 6701 KB  
Article
Experimental Study on Bearing Characteristics of Pile-Anchor Foundations for Floating Offshore Wind Turbines Under Inclined Loading
by Yuxuan Wang, Pingyu Liu, Bo Liu, Jiaqing Shu, Huiyuan Deng, Mingxing Zhu, Xiaojuan Li, Jie Chen and Haoran Ouyang
J. Mar. Sci. Eng. 2025, 13(10), 1890; https://doi.org/10.3390/jmse13101890 - 2 Oct 2025
Abstract
Pile-anchor foundations, serving as one of the anchoring solutions to ensure the safety and stability of floating offshore wind turbines, are primarily subjected to inclined loading induced by anchor chain forces, resulting in significantly different bearing behavior compared to conventional vertically loaded pile [...] Read more.
Pile-anchor foundations, serving as one of the anchoring solutions to ensure the safety and stability of floating offshore wind turbines, are primarily subjected to inclined loading induced by anchor chain forces, resulting in significantly different bearing behavior compared to conventional vertically loaded pile foundations. However, experimental research on the inclined pullout performance of anchor piles remains insufficient. To address this gap, this study employs a self-developed servo-controlled loading system to investigate the pullout bearing characteristics of anchor piles in dry and saturated sand, considering factors such as pullout angle and loading point depth. The research results show that from the load–displacement curve of the model pile, it can be found that with the increase in displacement, the load it bears first gradually increases to the peak, then decreases, and then gradually stabilizes. The loading angle has a significant impact on the bearing performance of pile-anchor foundations. As the loading angle increases, the failure mode shows pullout failure. When the loading angle increases from 30° to 60°, the bearing performance of the pile foundation decreases by approximately 63%. When the depth of the loading point increases from 0.22 times the pile length to 0.78 times the pile length, the diagonal anchor tensile bearing capacity of the model pile increases by approximately 45%. When the depth of the loading point is the same, the distribution patterns of bending moment and shear force are basically similar. However, the smaller the loading angle, the larger the value. This is because the horizontal load component plays a dominant role. The compression of the piles above and below the loading point, as well as the bending moment, shear force and axial force under saturated sand conditions, are similar to those in dry sand, but their values are reduced by about 50%. It can be seen that the soil conditions have an influence on the bearing characteristics of pile foundations. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

25 pages, 5314 KB  
Article
Experimental Study on Bidirectional Bending Performance of Steel-Ribbed Composite Slabs for Electrical Substations
by Lin Li, Zhenzhong Wei, Yong Liu, Yunan Jiang, Haomiao Chen, Yu Zhang, Kaifa Zhang, Kunjie Rong and Li Tian
Buildings 2025, 15(19), 3540; https://doi.org/10.3390/buildings15193540 - 1 Oct 2025
Abstract
This study investigates the bidirectional bending performance of double- and triple-spliced steel-ribbed composite slabs for substation applications. Full-scale experiments and numerical parametric analyses were conducted to evaluate ultimate load, ductility, stiffness, failure modes, and load-transfer mechanisms. Results indicate that double-spliced slabs exhibit better [...] Read more.
This study investigates the bidirectional bending performance of double- and triple-spliced steel-ribbed composite slabs for substation applications. Full-scale experiments and numerical parametric analyses were conducted to evaluate ultimate load, ductility, stiffness, failure modes, and load-transfer mechanisms. Results indicate that double-spliced slabs exhibit better performance than triple-spliced slabs, showing a 24.5% higher ultimate load and 65.3% greater ductility, with well-developed orthogonal cracks and yielding of both longitudinal prestressing steel and transverse reinforcement. Triple-spliced slabs display partial bidirectional behavior due to reduced transverse integrity, with stresses in edge slabs concentrated at the corners. Compared with monolithic slabs, spliced slabs show nearly identical stiffness at cracking onset but progressively reduced stiffness, load capacity, and ductility in the mid-to-late loading stages. Joint-crossing reinforcement is critical for transverse load transfer, and increasing its diameter is more effective than increasing its strength in preventing premature joint-controlled failure. These findings provide significant theoretical guidance and technical support for the prefabricated construction of high-voltage substation floor systems. Full article
(This article belongs to the Section Building Structures)
25 pages, 4181 KB  
Article
Mechanical Properties Quantification of Steel Fiber-Reinforced Geopolymer Concrete with Slag and Fly Ash
by Reem Adam, Haya Zuaiter, Doha ElMaoued, Adil Tamimi and Mohammad AlHamaydeh
Buildings 2025, 15(19), 3533; https://doi.org/10.3390/buildings15193533 - 1 Oct 2025
Abstract
This study examines the influence of steel fiber reinforcement on the mechanical properties of geopolymer concrete incorporating different slag to fly ash binder ratios (75:25, 50:50, and 25:75). Three fiber contents (0%, 1%, and 2%) by volume were used to assess their impact [...] Read more.
This study examines the influence of steel fiber reinforcement on the mechanical properties of geopolymer concrete incorporating different slag to fly ash binder ratios (75:25, 50:50, and 25:75). Three fiber contents (0%, 1%, and 2%) by volume were used to assess their impact on compressive strength, flexural strength, initial stiffness, and toughness. Compressive tests were conducted at 1, 7, and 28 days, while flexural behavior was evaluated through a four-point bending test at 28 days. The results showed that geopolymer concrete with 75% slag and 25% fly ash experienced the highest compressive strength and modulus of elasticity, regardless of the steel fiber content. The addition of 1% and 2% steel fiber content enhanced the compressive strength by 17.49% and 28.8%, respectively, compared to the control sample. The binder composition of geopolymer concrete plays a crucial role in determining its compressive strength. Reducing the slag content from 75% to 50% and then to 25% resulted in a 15.1% and 33% decrease in compressive strength, respectively. The load–displacement curves of the 2% fiber-reinforced beams display strain-hardening behavior. On the other hand, after the initial crack, a constant increase in load causes the specimen to experience progressive strain until it reaches its maximum load capacity. When the peak load is attained, the curve gradually drops due to a loss in load-carrying capacity known as post-peak softening. This behavior is attributed to steel’s ductility and is evident in specimens 75S25FA2 and 50S50FA2. Concrete with 75% slag and 25% fly ash demonstrated the highest peak load but the lowest ultimate displacement, indicating high strength but brittle behavior. In contrast, concrete with 75% fly ash and 25% slag showed the lowest peak load but the highest displacement. Across all binder ratios, the addition of steel fibers enhanced the flexural strength, initial stiffness, and toughness. This is attributed to the bridging action of steel fibers in concrete. Additionally, steel fiber-reinforced beams exhibited a ductile failure mode, characterized by multiple fine cracks throughout the midspan, whereas the control beams displayed a single vertical crack in the midspan, indicating a brittle failure mode. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 3270 KB  
Article
Structural Topology Optimisation of a Composite Wind Turbine Blade Under Various Constraints
by Mohamed Noufel Ajmal Khan and Mertol Tüfekci
Wind 2025, 5(4), 23; https://doi.org/10.3390/wind5040023 - 28 Sep 2025
Abstract
This study investigates the topology optimisation of a composite wind turbine blade with the objective of improving its structural performance under static and dynamic constraints. Two distinct optimisation strategies—based on static deformation limits and modal frequency enhancement—are employed to achieve mass reduction while [...] Read more.
This study investigates the topology optimisation of a composite wind turbine blade with the objective of improving its structural performance under static and dynamic constraints. Two distinct optimisation strategies—based on static deformation limits and modal frequency enhancement—are employed to achieve mass reduction while maintaining or improving mechanical performance. The optimisation process incorporates modal characterisation of the first ten natural frequencies and a detailed static stress analysis. Results indicate that the optimised designs achieve a notable increase in the fundamental natural frequency of the blade—from 2.32 Hz to 2.99 Hz—and reduce the overall mass by approximately 49%, lowering it from 4.55 × 105 kg to around 2.34 × 105 kg compared to the original configuration. In particular, the optimised geometry offers improved stiffness and a more uniform stress distribution, especially in the flapwise bending and torsional modes. Higher-order torsional frequencies remain well-separated from typical excitation sources, minimising resonance risks. These findings highlight the effectiveness of constraint-driven topology optimisation in enhancing structural performance and reducing material usage in wind turbine blade design. Full article
Show Figures

Figure 1

17 pages, 4189 KB  
Article
Effect of Fiber Characteristics on Cracking Resistance Properties of Stone Mastic Asphalt (SMA) Mixture
by Kai Yang, Wenyuan Huang, Mutian Sun, Zhixian Zheng and Hongwei Lin
Polymers 2025, 17(19), 2623; https://doi.org/10.3390/polym17192623 - 28 Sep 2025
Abstract
Cracking is a critical distress that reduces an asphalt pavement’s service life, and fiber reinforcement is an effective strategy to enhance anti-cracking capacity. However, the effects of fiber type, morphology, and length on key cracking modes remain insufficiently understood, limiting rational fiber selection [...] Read more.
Cracking is a critical distress that reduces an asphalt pavement’s service life, and fiber reinforcement is an effective strategy to enhance anti-cracking capacity. However, the effects of fiber type, morphology, and length on key cracking modes remain insufficiently understood, limiting rational fiber selection in practice. This study systematically evaluated the influence of four representative fiber types on the anti-cracking performance of Stone Mastic Asphalt (SMA) mixture, combining mechanical testing and microstructural analysis. The fibers included lignin fiber (LF); polyester fiber (PF); chopped basalt fiber (CBF) with lengths of 3 mm, 6 mm, 9 mm; and flocculent basalt fiber (FBF). Key mechanical tests assessed specific cracking behaviors: three-point bending (low-temperature cracking), indirect tensile (tensile cracking), pre-cracked semi-circular bending (crack propagation), overlay (reflective cracking), and four-point bending (fatigue resistance) tests. A scanning electron microscopy (SEM) test characterized fiber morphology and fiber–asphalt interface interactions, revealing microstructural mechanisms underlying performance improvements. The results showed that all fibers improved anti-cracking performance, but their efficacy varied with fiber type, appearance, and length. PF exhibited the best low-temperature cracking resistance, with a 26.8% increase in bending strength and a 16.6% increase in maximum bending strain. For tensile and crack propagation resistance, 6 mm CBF and FBF outperformed the other fibers, with fracture energy increases of up to 53.2% (6 mm CBF) and CTindex improvements of 72.8% (FBF). FBF optimized reflective cracking resistance, increasing the loading cycles by 48.0%, while 6 mm CBF achieved the most significant fatigue life improvement (36.9%) by balancing rigidity and deformation. Additionally, SEM analysis confirmed that effective fiber dispersion and strong fiber–asphalt bonding were critical for enhancing stress transfer and inhibiting crack initiation/propagation. These findings provide quantitative insights into the relationship between fiber characteristics (type, morphology, length) and anti-cracking performance, offering practical guidance for rational fiber selection to improve pavement durability. Full article
(This article belongs to the Special Issue Polymer Materials for Pavement Applications)
Show Figures

Graphical abstract

34 pages, 15203 KB  
Article
Influence of External Store Distribution on the Flutter Characteristics of the Romanian IAR-99 HAWK Aircraft
by Tudor Vladimirescu, Ion Fuiorea, Tudor Vladimirescu and Grigore Cican
Processes 2025, 13(10), 3065; https://doi.org/10.3390/pr13103065 - 25 Sep 2025
Abstract
This study presents a flutter answer analysis of the Romanian IAR-99 HAWK advanced trainer aircraft equipped with multiple external store configurations. A high-fidelity finite element model (FEM) of the complete aircraft, including pylons and external stores, was coupled with a Doublet Lattice Method [...] Read more.
This study presents a flutter answer analysis of the Romanian IAR-99 HAWK advanced trainer aircraft equipped with multiple external store configurations. A high-fidelity finite element model (FEM) of the complete aircraft, including pylons and external stores, was coupled with a Doublet Lattice Method (DLM) aerodynamic model. The aeroelastic framework was validated against Ground Vibration Test (GVT) data to ensure structural accuracy. Four representative configurations were assessed: (A) RS-250 drop tanks on inboard pylons and PRN 16 × 57 unguided rocket launchers on outboard pylons; (B) four B-250 bombs; (C) eight B-100 bombs mounted on twin racks; and (D) a hybrid layout with B-100 bombs inboard and PRN 32 × 42 launchers outboard. Results show that spanwise distribution governs aeroelastic stability more strongly than total carried mass. Distributed stores lower wing-bending frequencies and densify the modal spectrum, producing critical pairs and subsonic crossings near M ≈ 0.82 at sea level, whereas compact heavy loads remain subsonic-stable. A launcher-specific modal family around ≈29.8 Hz is also identified in the hybrid layout. The validated FEM–DLM framework captures store-driven mode families (≈4–7 Hz) and provides actionable guidance for payload placement, certification, and modernization of the IAR-99 and similar platforms. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

45 pages, 2444 KB  
Review
A Review of Modified/Consistent Couple Stress and Strain Gradient Theories for Analyzing Static and Dynamic Behaviors of Functionally Graded Microscale Plates and Shells
by Chih-Ping Wu and Ting-Yu Chang
Materials 2025, 18(19), 4475; https://doi.org/10.3390/ma18194475 - 25 Sep 2025
Abstract
This paper provides an overview of various size-dependent theories based on modified/consistent couple stress and strain gradient theories (CSTs and SGTs), highlighting the development of two-dimensional (2D) refined and advanced shear deformation theories (SDTs) and three-dimensional (3D) pure analytical and semi-analytical numerical methods, [...] Read more.
This paper provides an overview of various size-dependent theories based on modified/consistent couple stress and strain gradient theories (CSTs and SGTs), highlighting the development of two-dimensional (2D) refined and advanced shear deformation theories (SDTs) and three-dimensional (3D) pure analytical and semi-analytical numerical methods, including their applications, for analyzing the static and dynamic behaviors of microscale plates and shells made from advanced materials such as fiber-reinforced composites, functionally graded (FG) materials, and carbon nanotube/graphene platelet-reinforced composite materials. The strong and weak formulations of the 3D consistent CST, along with their corresponding boundary conditions for FG microplates, are derived and presented for illustration. A comparison study is provided to show the differences in the results of a simply supported FG microplate’s central deflection, stress, and lowest natural frequency obtained using various 2D size-dependent SDTs and 3D analytical and numerical methods based on the consistent CST. A parametric study is conducted to examine how primary factors, such as the effects of dilatational and deviatoric strain gradients and couple stress, impact the static bending and free vibration behaviors of a simply supported FG microplate using a size-dependent local Petrov–Galerkin meshless method based on the consistent SGT. Influences such as the inhomogeneity index and length-to-thickness ratio are considered. It is shown that the significance of the impact of various material length-scale parameters on the central deflection and its lowest natural frequency (in the flexural mode) of the FG microplate is ranked, from greatest to least, as follows: the couple stress effect, the deviatoric strain gradient effect, and finally the dilatational strain gradient effect. Additionally, when the microplate’s thickness is less than 10−7 m, the couple stress effect on its static and dynamic behaviors becomes saturated. Conversely, the impact of the dilatational and deviatoric strain gradients consistently influences the microplate’s static and dynamic behaviors. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

13 pages, 3922 KB  
Article
Circular Slab Track—Structural Analysis of Adapting Composite Materials to Ballastless Track Systems
by Lasse Hansen, Lars Voll, Dragan Marinkovic and Birgit Milius
Infrastructures 2025, 10(10), 257; https://doi.org/10.3390/infrastructures10100257 - 24 Sep 2025
Viewed by 64
Abstract
Rail transport is widely regarded as an efficient and environmentally sustainable mode of mobility, although lifecycle emissions from infrastructure can diminish its ecological benefits. This study assesses a novel slab track system design that replaces conventional concrete components with recycled polymeric composite sleepers, [...] Read more.
Rail transport is widely regarded as an efficient and environmentally sustainable mode of mobility, although lifecycle emissions from infrastructure can diminish its ecological benefits. This study assesses a novel slab track system design that replaces conventional concrete components with recycled polymeric composite sleepers, supporting circular economy objectives. Analytical calculations (per EN 16432-2 and EN 13230-6) and finite element analysis (FEA) were conducted on a 2.6 m polymeric composite sleeper model under static vertical loading. The results demonstrate that bonded base layers comprising asphalt and hydraulically bound materials reduce bending stresses within the sleeper to 1.307 N/mm2, substantially below the 5.50 N/mm2 observed without bound layers and well below both characteristic fatigue limits. Laboratory validation via strain-gauge measurements corroborates the numerical model. Despite minor torsional effects from first-batch production, the polymeric composite sleeper design is structurally viable for slab track applications. The methodology is directly transferable to alternative composite designs, allowing material-based adaptation of mechanical performance. These findings support the use of recycled polymeric composite sleepers in slab track systems, combining structural adequacy with enhanced circularity. Further research can base itself on the findings and should incorporate long-term durability testing. Full article
Show Figures

Figure 1

15 pages, 1938 KB  
Article
Low-Loss and Stable Light Transmission in Nano-Core Plus Node-Free Anti-Resonant Hollow-Core Fiber
by Yuyi Yin, Tingwu Ge, Tong Zhang and Zhiyong Wang
Nanomaterials 2025, 15(18), 1458; https://doi.org/10.3390/nano15181458 - 22 Sep 2025
Viewed by 174
Abstract
Anti-resonant hollow-core fibers (AR-HCFs) are emerging as highly promising candidates for high-power laser transmission and low-loss optical communication. Despite their advantages, issues such as scattering loss and core-mode instability remain significant obstacles for their practical implementation. In this study, we propose a novel [...] Read more.
Anti-resonant hollow-core fibers (AR-HCFs) are emerging as highly promising candidates for high-power laser transmission and low-loss optical communication. Despite their advantages, issues such as scattering loss and core-mode instability remain significant obstacles for their practical implementation. In this study, we propose a novel hybrid fiber structure, the nano-core plus node-free anti-resonant hollow-core fiber (NPNANF), which integrates a solid, high-index nano-core within a six-tube node-free anti-resonant cladding. This hybrid design effectively enhances optical confinement while minimizing scattering losses, without relying solely on anti-resonant guidance. Numerical simulations employing the beam propagation method (BPM) and finite element analysis (FEA) demonstrate that an optimal nano-core diameter of 600 nm leads to a remarkable reduction in transmission loss to 0.025 dB/km at 1550 nm, representing a 99.8% decrease compared to conventional NANF designs. A comprehensive loss model is developed, incorporating contributions from confinement, scattering, and absorption losses in both the hollow cladding and the solid core. Parametric studies further illustrate the tunability of the fiber’s design for various high-performance applications. The proposed NPNANF achieves an ultra-low transmission loss of 0.025 dB/km, representing a >99.8% reduction compared to conventional NANF, while confining more than 92% of optical power within the nano-core. Its resistance to bending loss, strong modal stability, and balance between hollow-core and solid-core guidance highlight the advantages of NPNANF for long-haul optical communication and high-power photonics. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Graphical abstract

41 pages, 3541 KB  
Review
Fatigue Testing in Asphalt Mixes: Emerging Trends and Findings from an Integrated Literature Review
by Jessé Valente de Liz, Breno Salgado Barra, Alexandre Mikowski, Gary B. Hughes and Adelino Ferreira
Appl. Sci. 2025, 15(18), 10220; https://doi.org/10.3390/app151810220 - 19 Sep 2025
Viewed by 449
Abstract
This study compiled a dataset of published works relating to fatigue testing in asphalt mixes, covering 2020–2025. The dataset was subjected to bibliometric and textual analyses, including a systematic review, to explore emerging trends and patterns in experimental protocols. Bibliometrix, VOSviewer, and IRaMuTeQ [...] Read more.
This study compiled a dataset of published works relating to fatigue testing in asphalt mixes, covering 2020–2025. The dataset was subjected to bibliometric and textual analyses, including a systematic review, to explore emerging trends and patterns in experimental protocols. Bibliometrix, VOSviewer, and IRaMuTeQ were employed to map the scientific landscape of 368 articles. Following PRISMA guidelines, the 100 most-cited articles were reviewed to identify prevailing test setups and parameters. The results showed a growing scientific production (9.1% per year), concentrated in a few high-impact journals and dominated by China, with emphasis on sustainability. A comparison between scientific output and a road quality index revealed a disconnect between academic research and field implementation. Five thematic clusters emerged: sustainable pavement management, mechanical characterization, binder modification, performance modeling, and evaluation of innovative materials. Indirect tensile and four-point bending tests were the most common loading modes. Considerable variability in protocols, frequent omissions of methodological details, and limited statistical treatment were also observed. The study highlighted the importance of standardized reporting and robust analysis, offering a reproducible framework to understand fatigue behavior and support future research. Full article
(This article belongs to the Special Issue Innovations in Binder and Asphalt Mixture Rheology)
Show Figures

Figure 1

17 pages, 5592 KB  
Article
Experimental and Numerical Analysis of the Collapse Behaviour of a Cracked Box Girder Under Bidirectional Cyclic Bending Moments
by Lei Ao, Fuyou Li, Bin Liu, Nan Zhao and Junlin Deng
J. Mar. Sci. Eng. 2025, 13(9), 1802; https://doi.org/10.3390/jmse13091802 - 17 Sep 2025
Viewed by 229
Abstract
This study presents an integrated experimental and numerical investigation into the collapse characteristics of a cracked box girder subjected to bidirectional cyclic bending moments. An experimental test involving a box girder specimen with a prefabricated transverse crack on the deck panel is conducted [...] Read more.
This study presents an integrated experimental and numerical investigation into the collapse characteristics of a cracked box girder subjected to bidirectional cyclic bending moments. An experimental test involving a box girder specimen with a prefabricated transverse crack on the deck panel is conducted under four-point bending to evaluate the influence of cracking on ultimate strength under cyclic loading. The findings are reported through load–displacement curves, strain measurements, and observations of both global and localised structural failure modes, demonstrating strong consistency with finite element simulations conducted using ABAQUS software (version 2022). The results reveal that cyclic loading prior to ultimate capacity induces negligible stiffness reduction in the box girder structure, consistent with the structural behaviour under monotonic loading. The initial failure mechanism is attributed to local buckling of the deck plate, subsequently followed by significant plastic deformation around the crack tips, ultimately leading to global collapse. Parametric studies are carried out to evaluate the influence of key variables on the girder’s residual strength, such as crack length, cyclic load amplitude and pattern. Full article
Show Figures

Figure 1

34 pages, 8392 KB  
Article
Shear Behavior of Large Keyed Dry Joints in Segmental Precast Bridges: Experiment, Numerical Modeling, and Capacity Prediction
by Yongjun Hou, Duo Liu, Di Qi, Song Liu, Tongwei Wang and Jiandong Zhang
Buildings 2025, 15(18), 3375; https://doi.org/10.3390/buildings15183375 - 17 Sep 2025
Viewed by 259
Abstract
The mechanical properties of the joint are a key factor influencing the overall structural performance of segmental precast beams. This study investigates the shear performance of large keyed dry joints in segmental precast beam specimens under six different conditions, including variations in the [...] Read more.
The mechanical properties of the joint are a key factor influencing the overall structural performance of segmental precast beams. This study investigates the shear performance of large keyed dry joints in segmental precast beam specimens under six different conditions, including variations in the base height of the key, depth-to-height ratio, number of keys, and prestressing reinforcement ratio, using direct shear tests and numerical simulations. The mechanical performance of the joints in segmental precast bridges under combined bending and shear forces is also studied using finite element analysis software. Additionally, a prediction model for the shear strength of the large keyed dry joints is established using machine learning methods. The results show that increasing the base height, depth-to-height ratio, and overall dimensions of the key can enhance the shear strength of dry joints. The depth-to-height ratio of the key not only affects the shear strength of the dry joint but also determines the failure mode of the joint. Furthermore, the shear bearing capacity and displacement stiffness of the keyed dry joint increase with the reinforcement ratio of the prestressing tendons. Compared to smaller keyed joints, larger keyed dry joints exhibit higher shear bearing capacity, smaller relative slip at failure, and a simpler casting process, making them more suitable for application in segmental precast bridges. The influence of bending moment on the shear bearing capacity of the joint section is limited, with the relative variation compared to the pure shear condition being less than 10%. The shear bearing capacity of the joint section in segmental precast bridges can be designed based on its direct shear performance. The developed interface shear strength prediction model effectively captures the nonlinear relationship between various parameters and shear strength, demonstrating strong adaptability and accuracy. Full article
Show Figures

Figure 1

26 pages, 9364 KB  
Article
Shear–Flexural Performance of Steel Fiber-Reinforced Concrete Composite Beams: Experimental Investigation and Modeling
by Qing Zhi, Zihui Xu, Weimin Chen, Huaxin Zhang, Sha Liu and Zhijun Yuan
Materials 2025, 18(18), 4322; https://doi.org/10.3390/ma18184322 - 15 Sep 2025
Viewed by 434
Abstract
Steel fiber-reinforced concrete (SFRC) exhibits superior tensile and flexural strengths, crack resistance, compressive toughness, and ductility. These characteristics make SFRC attractive for precast beam joints, shear-critical regions without stirrups, and retrofitted overlays, thereby enabling composite members. However, the shear and flexural responses of [...] Read more.
Steel fiber-reinforced concrete (SFRC) exhibits superior tensile and flexural strengths, crack resistance, compressive toughness, and ductility. These characteristics make SFRC attractive for precast beam joints, shear-critical regions without stirrups, and retrofitted overlays, thereby enabling composite members. However, the shear and flexural responses of such members often differ from monolithically cast elements. To clarify these effects, nine composite specimens and one cast-in-place control were tested under four-point bending. Key parameters, including load-bearing capacity, failure evolution, and failure modes, were documented, together with load–deformation behavior, reinforcement strains, and concrete deformations. Results showed that horizontal joints reduced shear resistance and altered crack propagation compared to monolithic beams. Incorporating 1.0% hooked-end steel fibers improved both shear and flexural performance. SFRC above the joint was more effective for shear, while SFRC in both zones improved flexure. The fully SFRC specimen without stirrups achieved 63% higher shear capacity than its NC counterpart, with ductility rising from 2.2 to 3.1. A 1.0% fiber dosage provided shear resistance equivalent to D8@200 stirrups, confirming the potential of SFRC to reduce transverse reinforcement. Analytical models, including a fiber beam–column element and strut-and-tie approach, showed reasonable agreement with experiments. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

44 pages, 9623 KB  
Article
Broken Mirrors: Multiple Circular Polarization and Inversion in the Ground and Photoexcited States of Mirror-Symmetric Helical Poly(di-iso-alkylsilane)s in Achiral Molecular Solvents
by Michiya Fujiki, Takashi Mori, Julian R. Koe and Mohamed Mehawed Abdellatif
Symmetry 2025, 17(9), 1544; https://doi.org/10.3390/sym17091544 - 15 Sep 2025
Viewed by 328
Abstract
This paper comprehensively reports experimental proof of parity violation in the ground and photoexcited states of three mirror-symmetric Si–Si bond polymers in homogeneous solutions of achiral molecules under non-stirring conditions by analyzing 370 chiroptical datasets relating to multiple second-order helix–helix transitions in the [...] Read more.
This paper comprehensively reports experimental proof of parity violation in the ground and photoexcited states of three mirror-symmetric Si–Si bond polymers in homogeneous solutions of achiral molecules under non-stirring conditions by analyzing 370 chiroptical datasets relating to multiple second-order helix–helix transitions in the circular dichroism (CD) of poly(di-i-butylsilane) (iBS), poly(di-i-pentylsilane) (iPS), and poly(di-i-hexylsilane) (iHS) in achiral alkanols and p-dioxane-h8/-d8. Particularly large (–)-CD of gabs = −3.1 × 10−2 at 290 nm was found for iBS in i-pentanol at 25 °C. Notably, iPS in n-propanol at −5 °C generated (–)-CD with gabs = −0.48 × 10−2 at 300 nm, but (+)-circularly polarized luminescence (CPL) with glum = +0.84 × 10−2 at 326 nm. In contrast, iHS in n-octanol at 0 °C showed only very weak (–)-CD of gabs ~−0.03 × 10−2 at 310 nm. The H/D isotopes of p-dioxane-h8/-d8 weakly affected the helix–helix transition characteristics of iBS. (–)-Sign vibrational CD signals assigned to the handed symmetric and asymmetric bending modes of the CH3 and CH2 groups of the solvents and other achiral molecules were observed. We assumed (i) three 1H nuclear-spin-1/2 induced handed motions of CH3 rotors at i-alkyl side chains and achiral alkanols, and (ii) helical main-chain Si atoms +) coordinated by handed lone pairs at oxygen ) in gauche-containing n- and i-alkanols induced by the CH3 rotors. A possible origin of biomolecular handedness is proposed based on the first observation of far-UV CD and UV spectra of zwitterionic glycine bearing H3N+ rotor in neutral H2O. Full article
(This article belongs to the Section Chemistry: Symmetry/Asymmetry)
Show Figures

Graphical abstract

Back to TopTop