Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (817)

Search Parameters:
Keywords = beneficial fungi

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 486 KB  
Article
Effect of Selected Truffle-Associated Bacteria and Fungi on the Mycorrhization of Quercus ilex Seedlings with Tuber melanosporum
by Eva Gómez-Molina, Pedro Marco, Sergi Garcia-Barreda, Vicente González and Sergio Sánchez
BioTech 2025, 14(3), 69; https://doi.org/10.3390/biotech14030069 (registering DOI) - 1 Sep 2025
Abstract
The success of truffle cultivation is especially dependent on the quality of truffle-mycorrhized seedlings, which are typically produced in nurseries under aseptic conditions to avoid root colonization by undesired ectomycorrhizal fungi. However, such practices may also eliminate beneficial microorganisms that could support truffle [...] Read more.
The success of truffle cultivation is especially dependent on the quality of truffle-mycorrhized seedlings, which are typically produced in nurseries under aseptic conditions to avoid root colonization by undesired ectomycorrhizal fungi. However, such practices may also eliminate beneficial microorganisms that could support truffle symbiosis and improve seedling quality. In this study, twelve endophytic bacterial and fungal strains, isolated from the Tuber melanosporum environment (gleba tissue, mycorrhizae and truffle brûlé), were tested for their effect on T. melanosporum mycorrhization levels in inoculated Quercus ilex seedlings under nursery conditions. Co-inoculation with a strain of Agrobacterium tumefaciens significantly enhanced root colonization by T. melanosporum, supporting its potential role as mycorrhizal helper bacterium. In contrast, a strain of Trichoderma harzianum negatively affected mycorrhization. The remaining strains did not show significant effects on seedling mycorrhization or seedling growth. Our findings support the hypothesis that specific bacterial strains associated with truffles can act as mycorrhizal helper bacteria, highlighting the potential for co-inoculation strategies to enhance quality of truffle-inoculated seedlings in nurseries. However, further research is needed to gain a deeper understanding of the interactions within the mycorrhizosphere that could contribute to improving nursery seedling quality. Full article
(This article belongs to the Section Industry, Agriculture and Food Biotechnology)
Show Figures

Figure 1

19 pages, 1498 KB  
Article
Identification and Characterization of Antiyeast Organic Acids Produced by Lactiplantibacillus plantarum 3121M0s Derived from Mongolian Traditional Fermented Milk, Airag
by Md. Bakhtiar Lijon, Yuko Matsu-ura, Takumi Ukita, Kensuke Arakawa and Taku Miyamoto
Microorganisms 2025, 13(9), 2017; https://doi.org/10.3390/microorganisms13092017 - 29 Aug 2025
Viewed by 189
Abstract
Lactic acid bacteria are beneficial for food biopreservation by inhibiting not only bacteria but also fungi. However, reports on the control of fungi, especially yeasts, by lactic acid bacteria are limited. In this study, strain 3121M0s derived from Mongolian traditional fermented milk, airag, [...] Read more.
Lactic acid bacteria are beneficial for food biopreservation by inhibiting not only bacteria but also fungi. However, reports on the control of fungi, especially yeasts, by lactic acid bacteria are limited. In this study, strain 3121M0s derived from Mongolian traditional fermented milk, airag, was selected with relatively high antiyeast activity among 236 strains, and identified as Lactiplantibacillus plantarum. The activity was exhibited under acidic conditions and remained stable after heating. It was also highly resistant to catalase and proteases, indicating that the primary antiyeast substances of 3121M0s were neither H2O2 nor peptides. Then, organic acids (lactic acid, acetic acid, 4-hydroxyphenyllactic acid, 4-hydroxybenzoic acid, and 3-phenyllactic acid) were detected and quantified in the ethyl acetate extract of the 3121M0s culture supernatant. Among them, only acetic acid showed antiyeast activity on its own, and the activity was enhanced by lactic acid or 3-phenyllactic acid. Compared to the type strain of L. plantarum, the production of lactic acid from 3121M0s was almost equal, but acetic acid and 3-phenyllactic acid were about 1.5 times higher. These results suggest that strain 3121M0s would be useful as a biopreservative starter for fermented foods susceptible to yeast contamination due to being produced in open environments without final sterilization. Full article
(This article belongs to the Special Issue Microbial Fermentation in Food Processing)
Show Figures

Figure 1

20 pages, 5547 KB  
Article
High-Throughput Sequencing Reveals Fungal Microbiome of Apricots Grown Under Organic and Integrated Pest Management Systems
by Milan Navrátil, Dana Šafářová, Radek Čmejla, Martin Duchoslav and Jiří Sedlák
Agriculture 2025, 15(17), 1825; https://doi.org/10.3390/agriculture15171825 - 27 Aug 2025
Viewed by 242
Abstract
Apricots are affected by many abiotic and biotic factors that could negatively impact their vitality and yield, leading to branch and tree dieback. Knowledge of the microbiome composition is key to choosing the optimal measurement strategy. The effect of the two different growing [...] Read more.
Apricots are affected by many abiotic and biotic factors that could negatively impact their vitality and yield, leading to branch and tree dieback. Knowledge of the microbiome composition is key to choosing the optimal measurement strategy. The effect of the two different growing systems, i.e., organic (ORG) and integrated pest management (IPM), on the apricot fungal microbiome was studied. The inner bark was used to isolate DNA, and the present fungi were analyzed using a metagenomics high-throughput sequencing (HTS) profiling approach of the data obtained based on the Illumina sequencing of the ITS1-ITS2 amplicons of the 18S rRNA gene. Of the 20 analyzed samples, Ascomycota was the dominant phylum, and Dothiomycetes was the most abundant. Basidiomycota was the less frequent, with Tremellomycetes being the predominant within this phylum. PCA analysis showed the complete separation of the samples obtained from the orchards grown under the ORG and IPM systems. Cladosporia, Alternaria, Aureobasidium, and Visniacozyma were detected in all samples, but they dominated the IPM samples. Filobasiadiales were recognized as an indicator species for ORG management, while Caliciales, Lecanorales, Lichinales, Mycosphaerellales, Myriangiales, Phacidiales, Teloschistales, and Thelebolales were identified as indicator species for IPM management. Based on the order and genus levels, a significantly higher fungal microbiome richness was detected in the ORG samples. This could be connected to the environmentally beneficial growing system applied in the orchard, but it is impossible to assess the risk of trunk disease development or premature apricot tree decline. Full article
Show Figures

Figure 1

20 pages, 1655 KB  
Article
Probiotic Potential of Some Lactic Acid Bacteria Isolated from Blue Maize Atole Agrio from Veracruz, México
by Margarita Torres-Gregorio, Rosa María Ribas-Aparicio, María Guadalupe Aguilera-Arreola, Gustavo F. Gutiérrez-López and Humberto Hernández-Sánchez
Fermentation 2025, 11(8), 474; https://doi.org/10.3390/fermentation11080474 - 19 Aug 2025
Viewed by 358
Abstract
Mexican culture offers a great variety of traditional maize-based fermented foods that are beneficial for human health. Atole agrio (sour atole), prepared from blue maize (Zea mays) in the state of Veracruz, has been scarcely studied as a potential functional food. [...] Read more.
Mexican culture offers a great variety of traditional maize-based fermented foods that are beneficial for human health. Atole agrio (sour atole), prepared from blue maize (Zea mays) in the state of Veracruz, has been scarcely studied as a potential functional food. The purpose of this study was to select endogenous potentially probiotic lactic acid bacteria (LAB) from freshly fermented blue maize atole agrio. Samples of spontaneously fermented atole agrio were used for the isolation of LAB on MRS agar. The abilities to tolerate acidic pH, bile salts, and sodium chloride, as well as surface hydrophobicity and aggregation capabilities, were used as criteria for probiotic potential. Selected LAB were identified using MALDI-TOF-MS. Finally, safety-related characterizations, such as hemolytic activity and antibiotic susceptibility, were performed. In the initial stages of fermentation, the presence of fungi, yeasts, coliform organisms, and LAB were detected, and in the final fermentation process, where the blue atole agrio reached a pH of 4, 49 isolates of LAB were obtained. Sixteen isolates showed high tolerance to pH 2, and seven of them showed tolerance to 3% bile salts and 4% sodium chloride. The seven isolates were identified as Pediococcus pentosaceus. Although the seven isolates showed low hydrophobicity to hexadecane and chloroform, they had medium autoaggregation and coaggregation with pathogens. The seven isolates showed notable antibacterial properties against Staphylococcus aureus, Salmonella enterica serovar Typhimurium, Escherichia coli, and Listeria monocytogenes, as well as good amylolytic capacity. All the P. pentosaceus strains were non-hemolytic, sensible to clindamycin and resistant to the other 11 antibiotics tested. Only subtle differences were found among the seven isolates, which can be considered potential candidates for probiotics. The freshly fermented blue maize atole agrio can be considered a functional food containing potentially probiotic LAB and the antioxidant phenolic compounds present in blue maize. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

17 pages, 2159 KB  
Article
Eco-Friendly Suppression of Grapevine Root Rot: Synergistic Action of Biochar and Trichoderma spp. Against Fusarium equiseti
by Sabrina Esposito Oliveira da Mota, Jamilly Alves de Barros, Kedma Maria Silva Pinto, José Eduardo Cordeiro Cezar Santos, Alberto dos Passos Vieira, Elisiane Martins de Lima, Diogo Paes da Costa, Gustavo Pereira Duda, José Romualdo de Sousa Lima, Mairon Moura da Silva, Carlos Alberto Fragoso de Souza, Rafael José Vilela de Oliveira, Claude Hammecker and Erika Valente de Medeiros
Agriculture 2025, 15(16), 1774; https://doi.org/10.3390/agriculture15161774 - 19 Aug 2025
Viewed by 408
Abstract
The application of biochar and beneficial microorganisms has gained attention as a sustainable strategy to enhance soil health and plant resistance to pathogens. Trichoderma spp. play critical roles in nutrient mobilization, rhizosphere colonization, and suppression of soilborne diseases. However, little is known about [...] Read more.
The application of biochar and beneficial microorganisms has gained attention as a sustainable strategy to enhance soil health and plant resistance to pathogens. Trichoderma spp. play critical roles in nutrient mobilization, rhizosphere colonization, and suppression of soilborne diseases. However, little is known about the interactive effects of biochar and Trichoderma on the suppression of Fusarium equiseti (P1I3)-induced root rot in grapevine seedlings. In this study, we investigated the effects of two Trichoderma aureoviride strains (URM 6668 and URM 3734), with and without grapevine pruning-derived biochar (BVP), on disease severity, plant growth, and soil properties. Our results revealed that the combination of biochar and Trichoderma significantly reduced disease incidence and promoted biomass accumulation. Notably, BVP and T. aureoviride URM 3734 were the most effective at reducing leaf disease severity, resulting in a 53% decrease. Conversely, the combination of BVP and T. aureoviride URM 6668 led to the greatest reduction in root disease severity, with a 56% decrease. These findings suggest a synergistic relationship between biochar and beneficial fungi, reinforcing the role of organic soil amendments in promoting plant health. The integrated use of biochar and Trichoderma strains offers a viable, environmentally sound approach for managing grapevine root rot and enhancing seedling health in sustainable viticulture systems. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

24 pages, 9791 KB  
Article
The Role of Coffee Microbiomes in Pathogen Resistance Across Varieties and Ecological Niches
by Yihong Wu, Xiu Zhao, Zuquan Wang, Xuejun Li, Xuesong Zhang, Chun Xie, Huabo Du, Kuaile Jiang, Peng Qu and Chuanli Zhang
Microorganisms 2025, 13(8), 1909; https://doi.org/10.3390/microorganisms13081909 - 15 Aug 2025
Viewed by 373
Abstract
The plant microbiome plays a role in pathogen defense, but its role in different resistant varieties and ecological niches remains unclear. This study used 16S rRNA and ITS sequencing to investigate microbial communities and interactions in disease-resistant (PT) and susceptible (Bourbon) coffee varieties [...] Read more.
The plant microbiome plays a role in pathogen defense, but its role in different resistant varieties and ecological niches remains unclear. This study used 16S rRNA and ITS sequencing to investigate microbial communities and interactions in disease-resistant (PT) and susceptible (Bourbon) coffee varieties of five ecological niches: leaves, fruits, roots, rhizosphere soil, and non-rhizosphere soil. We found that the microbial communities differed significantly between the two varieties. The resistant variety was enriched in beneficial bacteria from the Actinobacteriota phylum and a stable, modular microbial network dominated by saprotrophic fungi. In contrast, the susceptible variety had a higher abundance of opportunistic pathogens and stress-indicator fungi, including Neurospora spp., which were more prominent in the rhizosphere and non-rhizosphere soils. These networks were fragile and dominated by pathotrophic fungi, reflecting ecological imbalance. Our findings show that plant disease resistance is influenced not only by host genetics but also by co-evolutionary interactions with the microbiome. These insights provide a foundation for developing targeted biocontrol strategies to manage plant-associated microbial communities. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

14 pages, 9053 KB  
Article
Response of Chaetomium sp. to Nitrogen Input and Its Potential Role in Rhizosphere Enrichment of Lycium barbarum
by Ru Wan, Hezhen Wang, Xiaojie Liang, Xuan Zhou, Yajun Wang, Yehan Tian, Zhigang Shi and Yuekun Li
Microorganisms 2025, 13(8), 1864; https://doi.org/10.3390/microorganisms13081864 - 9 Aug 2025
Viewed by 346
Abstract
Lycium barbarum L. (goji berry), a traditional Chinese medicinal plant, depends heavily on nitrogen input to maintain productivity. Nitrogen application also profoundly influences rhizosphere microbial dynamics, which are critical for soil health and plant performance. This study aimed to investigate how the rhizosphere [...] Read more.
Lycium barbarum L. (goji berry), a traditional Chinese medicinal plant, depends heavily on nitrogen input to maintain productivity. Nitrogen application also profoundly influences rhizosphere microbial dynamics, which are critical for soil health and plant performance. This study aimed to investigate how the rhizosphere fungal community responds to nitrogen input and explore the potential role of beneficial fungi (e.g., Chaetomium) in goji berry rhizosphere enrichment. A field experiment with four nitrogen levels (0, 53.82, 67.62, and 80.73 g·N m−2·year−1, designated as N0, N1, N2, and N3) was conducted to analyze the fungal community structure in the rhizosphere of goji berry using ITS rRNA gene amplicon sequencing. The results showed that nitrogen input significantly altered the rhizosphere fungal community composition and diversity. Redundancy analysis (RDA) and Mantel tests indicated that soil electrical conductivity, total phosphorus, available phosphorus, and nitrate nitrogen were key environmental factors driving the fungal communities’ shifts. Notably, specific fungal genera, including Chaetomium, Cladosporium, Gibberella, Fusarium, Pyxidiophora, Acaulium, and Lophotrichus, exhibited differential enrichment across nitrogen levels. In particular, Chaetomium was significantly enriched under the conventional nitrogen treatment (N2), a strain of Chaetomium sp. LC101 was successfully isolated from the goji berry rhizosphere, and its functional roles were verified via pot experiments. Inoculation with Chaetomium sp. LC101 significantly promoted goji berry growth, with the most pronounced effects observed under N0 treatments, root fresh weight, root vitality, and leaf chlorophyll content increased by up to 55.10%, 15.69%, and 43.27%, respectively, compared to non-inoculated controls. Additionally, Chaetomium sp. LC101 regulated rhizosphere nitrogen transformation by enhancing urease, nitrite reductase, and polyphenol oxidase activities while inhibiting nitrate reductase activity. These findings demonstrate that Chaetomium responds sensitively to nitrogen input, with enrichment under moderate nitrogen levels, and acts as a beneficial rhizosphere fungus by promoting plant growth and regulating nitrogen cycling. This study provides novel insights for nitrogen management in the goji berry industry, where synergistic regulation via “nitrogen reduction combined with microbial inoculation” can reduce nitrogen loss, improve yield and quality through functional fungi, and contribute to ecological sustainability. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

31 pages, 698 KB  
Review
Mechanistic Role of Heavy Metals in Driving Antimicrobial Resistance: From Rhizosphere to Phyllosphere
by Rahul Kumar, Tanja P. Vasić, Sanja P. Živković, Periyasamy Panneerselvam, Gustavo Santoyo, Sergio de los Santos Villalobos, Adeyemi Nurudeen Olatunbosun, Aditi Pandit, Leonard Koolman, Debasis Mitra and Pankaj Gautam
Appl. Microbiol. 2025, 5(3), 79; https://doi.org/10.3390/applmicrobiol5030079 - 4 Aug 2025
Viewed by 508
Abstract
Heavy metal pollution represents a pervasive environmental challenge that significantly exacerbates the ever-increasing crisis of antimicrobial resistance and the capacity of microorganisms to endure and proliferate despite antibiotic interventions. This review examines the intricate relationship between heavy metals and AMR, with an emphasis [...] Read more.
Heavy metal pollution represents a pervasive environmental challenge that significantly exacerbates the ever-increasing crisis of antimicrobial resistance and the capacity of microorganisms to endure and proliferate despite antibiotic interventions. This review examines the intricate relationship between heavy metals and AMR, with an emphasis on the underlying molecular mechanisms and ecological ramifications. Common environmental metals, including arsenic, mercury, cadmium, and lead, exert substantial selective pressures on microbial communities. These induce oxidative stress and DNA damage, potentially leading to mutations that enhance antibiotic resistance. Key microbial responses include the overexpression of efflux pumps that expel both metals and antibiotics, production of detoxifying enzymes, and formation of protective biofilms, all of which contribute to the emergence of multidrug-resistant strains. In the soil environment, particularly the rhizosphere, heavy metals disrupt plant–microbe interactions by inhibiting beneficial organisms, such as rhizobacteria, mycorrhizal fungi, and actinomycetes, thereby impairing nutrient cycling and plant health. Nonetheless, certain microbial consortia can tolerate and detoxify heavy metals through sequestration and biotransformation, rendering them valuable for bioremediation. Advances in biotechnology, including gene editing and the development of engineered metal-resistant microbes, offer promising solutions for mitigating the spread of metal-driven AMR and restoring ecological balance. By understanding the interplay between metal pollution and microbial resistance, we can more effectively devise strategies for environmental protection and public health. Full article
Show Figures

Graphical abstract

27 pages, 3015 KB  
Article
Preparation of Auricularia auricula-Derived Immune Modulators and Alleviation of Cyclophosphamide-Induced Immune Suppression and Intestinal Microbiota Dysbiosis in Mice
by Ming Zhao, Huiyan Huang, Bowen Li, Yu Pan, Chuankai Wang, Wanjia Du, Wenliang Wang, Yansheng Wang, Xue Mao and Xianghui Kong
Life 2025, 15(8), 1236; https://doi.org/10.3390/life15081236 - 4 Aug 2025
Viewed by 436
Abstract
With the acceleration of the pace of life, increased stress levels, and changes in lifestyle factors such as diet and exercise, the incidence of diseases such as cancer and immunodeficiency has been on the rise, which is closely associated with the impaired antioxidant [...] Read more.
With the acceleration of the pace of life, increased stress levels, and changes in lifestyle factors such as diet and exercise, the incidence of diseases such as cancer and immunodeficiency has been on the rise, which is closely associated with the impaired antioxidant capacity of the body. Polypeptides and polysaccharides derived from edible fungi demonstrate significant strong antioxidant activity and immunomodulatory effects. Auricularia auricula, the second most cultivated mushroom in China, is not only nutritionally rich but also offers considerable health benefits. In particular, its polysaccharides have been widely recognized for their immunomodulatory activities, while its abundant protein content holds great promise as a raw material for developing immunomodulatory peptides. To meet the demand for high-value utilization of Auricularia auricula resources, this study developed a key technology for the stepwise extraction of polypeptides (AAPP1) and polysaccharides (AAPS3) using a composite enzymatic hydrolysis process. Their antioxidant and immunomodulatory effects were assessed using cyclophosphamide (CTX)-induced immune-suppressed mice. The results showed that both AAPP1 and AAPS3 significantly reversed CTX-induced decreases in thymus and spleen indices (p < 0.05); upregulated serum levels of cytokines (e.g., IL-4, TNF-α) and immunoglobulins (e.g., IgA, IgG); enhanced the activities of hepatic antioxidant enzymes SOD and CAT (p < 0.05); and reduced the content of MDA, a marker of oxidative damage. Intestinal microbiota analysis revealed that these compounds restored CTX-induced reductions in microbial α-diversity, increased the abundance of beneficial bacteria (Paramuribaculum, Prevotella; p < 0.05), decreased the proportion of pro-inflammatory Duncaniella, and reshaped the balance of the Bacteroidota/Firmicutes phyla. This study represents the first instance of synergistic extraction of polypeptides and polysaccharides from Auricularia auricula using a single process. It demonstrates their immune-enhancing effects through multiple mechanisms, including “antioxidation-immune organ repair-intestinal microbiota regulation.” The findings offer a theoretical and technical foundation for the deep processing of Auricularia auricula and the development of functional foods. Full article
(This article belongs to the Special Issue Research Progress of Cultivation of Edible Fungi: 2nd Edition)
Show Figures

Figure 1

22 pages, 5809 KB  
Article
Multistrain Microbial Inoculant Enhances Yield and Medicinal Quality of Glycyrrhiza uralensis in Arid Saline–Alkali Soil and Modulate Root Nutrients and Microbial Diversity
by Jun Zhang, Xin Li, Peiyao Pei, Peiya Wang, Qi Guo, Hui Yang and Xian Xue
Agronomy 2025, 15(8), 1879; https://doi.org/10.3390/agronomy15081879 - 3 Aug 2025
Viewed by 555
Abstract
Glycyrrhiza uralensis (G. uralensis), a leguminous plant, is an important medicinal and economic plant in saline–alkaline soils of arid regions in China. Its main bioactive components include liquiritin, glycyrrhizic acid, and flavonoids, which play significant roles in maintaining human health and [...] Read more.
Glycyrrhiza uralensis (G. uralensis), a leguminous plant, is an important medicinal and economic plant in saline–alkaline soils of arid regions in China. Its main bioactive components include liquiritin, glycyrrhizic acid, and flavonoids, which play significant roles in maintaining human health and preventing and adjuvantly treating related diseases. However, the cultivation of G. uralensis is easily restricted by adverse soil conditions in these regions, characterized by high salinity, high alkalinity, and nutrient deficiency. This study investigated the impacts of four multistrain microbial inoculants (Pa, Pb, Pc, Pd) on the growth performance and bioactive compound accumulation of G. uralensis in moderately saline–sodic soil. The aim was to screen the most beneficial inoculant from these strains, which were isolated from the rhizosphere of plants in moderately saline–alkaline soils of the Hexi Corridor and possess native advantages with excellent adaptability to arid environments. The results showed that inoculant Pc, comprising Pseudomonas silesiensis, Arthrobacter sp. GCG3, and Rhizobium sp. DG1, exhibited superior performance: it induced a 0.86-unit reduction in lateral root number relative to the control, while promoting significant increases in single-plant dry weight (101.70%), single-plant liquiritin (177.93%), single-plant glycyrrhizic acid (106.10%), and single-plant total flavonoids (107.64%). Application of the composite microbial inoculant Pc induced no significant changes in the pH and soluble salt content of G. uralensis rhizospheric soils. However, it promoted root utilization of soil organic matter and nitrate, while significantly increasing the contents of available potassium and available phosphorus in the rhizosphere. High-throughput sequencing revealed that Pc reorganized the rhizospheric microbial communities of G. uralensis, inducing pronounced shifts in the relative abundances of rhizospheric bacteria and fungi, leading to significant enrichment of target bacterial genera (Arthrobacter, Pseudomonas, Rhizobium), concomitant suppression of pathogenic fungi, and proliferation of beneficial fungi (Mortierella, Cladosporium). Correlation analyses showed that these microbial shifts were linked to improved plant nutrition and secondary metabolite biosynthesis. This study highlights Pc as a sustainable strategy to enhance G. uralensis yield and medicinal quality in saline–alkali ecosystems by mediating microbe–plant–nutrient interactions. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

20 pages, 3604 KB  
Article
Analysis of the Differences in Rhizosphere Microbial Communities and Pathogen Adaptability in Chili Root Rot Disease Between Continuous Cropping and Rotation Cropping Systems
by Qiuyue Zhao, Xiaolei Cao, Lu Zhang, Xin Hu, Xiaojian Zeng, Yingming Wei, Dongbin Zhang, Xin Xiao, Hui Xi and Sifeng Zhao
Microorganisms 2025, 13(8), 1806; https://doi.org/10.3390/microorganisms13081806 - 1 Aug 2025
Viewed by 420
Abstract
In chili cultivation, obstacles to continuous cropping significantly compromise crop yield and soil health, whereas crop rotation can enhance the microbial environment of the soil and reduce disease incidence. However, its effects on the diversity of rhizosphere soil microbial communities are not clear. [...] Read more.
In chili cultivation, obstacles to continuous cropping significantly compromise crop yield and soil health, whereas crop rotation can enhance the microbial environment of the soil and reduce disease incidence. However, its effects on the diversity of rhizosphere soil microbial communities are not clear. In this study, we analyzed the composition and characteristics of rhizosphere soil microbial communities under chili continuous cropping (CC) and chili–cotton crop rotation (CR) using high-throughput sequencing technology. CR treatment reduced the alpha diversity indices (including Chao1, Observed_species, and Shannon index) of bacterial communities and had less of an effect on fungal community diversity. Principal component analysis (PCA) revealed distinct compositional differences in bacterial and fungal communities between the treatments. Compared with CC, CR treatment has altered the structure of the soil microbial community. In terms of bacterial communities, the relative abundance of Firmicutes increased from 12.89% to 17.97%, while the Proteobacteria increased by 6.8%. At the genus level, CR treatment significantly enriched beneficial genera such as RB41 (8.19%), Lactobacillus (4.56%), and Bacillus (1.50%) (p < 0.05). In contrast, the relative abundances of Alternaria and Fusarium in the fungal community decreased by 6.62% and 5.34%, respectively (p < 0.05). Venn diagrams and linear discriminant effect size analysis (LEfSe) further indicated that CR facilitated the enrichment of beneficial bacteria, such as Bacillus, whereas CC favored enrichment of pathogens, such as Firmicutes. Fusarium solani MG6 and F. oxysporum LG2 are the primary chili root-rot pathogens. Optimal growth occurs at 25 °C, pH 6: after 5 days, MG6 colonies reach 6.42 ± 0.04 cm, and LG2 5.33 ± 0.02 cm, peaking in sporulation (p < 0.05). In addition, there are significant differences in the utilization spectra of carbon and nitrogen sources between the two strains of fungi, suggesting their different ecological adaptability. Integrated analyses revealed that CR enhanced soil health and reduced the root rot incidence by optimizing the structure of soil microbial communities, increasing the proportion of beneficial bacteria, and suppressing pathogens, providing a scientific basis for microbial-based soil management strategies in chili cultivation. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

18 pages, 2312 KB  
Review
Macromycete Edible Fungi as a Functional Poultry Feed Additive: Influence on Health, Welfare, Eggs, and Meat Quality—Review
by Damian Duda, Klaudia Jaszcza and Emilia Bernaś
Molecules 2025, 30(15), 3241; https://doi.org/10.3390/molecules30153241 - 1 Aug 2025
Viewed by 656
Abstract
Over the years, macromycete fungi have been used as a source of food, part of religious rites and rituals, and as a medicinal remedy. Species with strong health-promoting potential include Hericium erinaceus, Cordyceps militaris, Ganoderma lucidum, Pleurotus ostreatus, Flammulina [...] Read more.
Over the years, macromycete fungi have been used as a source of food, part of religious rites and rituals, and as a medicinal remedy. Species with strong health-promoting potential include Hericium erinaceus, Cordyceps militaris, Ganoderma lucidum, Pleurotus ostreatus, Flammulina velutipes, and Inonotus obliquus. These species contain many bioactive compounds, including β-glucans, endo- and exogenous amino acids, polyphenols, terpenoids, sterols, B vitamins, minerals, and lovastatin. The level of some biologically active substances is species-specific, e.g., hericenones and erinacines, which have neuroprotective properties, and supporting the production of nerve growth factor in the brain for Hericium erinaceus. Due to their high health-promoting potential, mushrooms and substances isolated from them have found applications in livestock nutrition, improving their welfare and productivity. This phenomenon may be of particular importance in the nutrition of laying hens and broiler chickens, where an increase in pathogen resistance to antibiotics has been observed in recent years. Gallus gallus domesticus is a key farm animal for meat and egg production, so the search for new compounds to support bird health is important for food safety. Studies conducted to date indicate that feed supplementation with mushrooms has a beneficial effect on, among other things, bird weight gain; bone mineralisation; and meat and egg quality, including the lipid profile and protein content and shell thickness, and promotes the development of beneficial microbiota, thereby increasing immunity. Full article
Show Figures

Figure 1

25 pages, 4954 KB  
Article
Local Fungi Promote Plant Growth by Positively Affecting Rhizosphere Metabolites to Drive Beneficial Microbial Assembly
by Deyu Dong, Zhanling Xie, Jing Guo, Bao Wang, Qingqing Peng, Jiabao Yang, Baojie Deng, Yuan Gao, Yuting Guo, Xueting Fa and Jianing Yu
Microorganisms 2025, 13(8), 1752; https://doi.org/10.3390/microorganisms13081752 - 26 Jul 2025
Viewed by 502
Abstract
Ecological restoration in the cold and high-altitude mining areas of the Qinghai–Tibet Plateau is faced with dual challenges of extreme environments and insufficient microbial adaptability. This study aimed to screen local microbial resources with both extreme environmental adaptability and plant-growth-promoting functions. Local fungi [...] Read more.
Ecological restoration in the cold and high-altitude mining areas of the Qinghai–Tibet Plateau is faced with dual challenges of extreme environments and insufficient microbial adaptability. This study aimed to screen local microbial resources with both extreme environmental adaptability and plant-growth-promoting functions. Local fungi (DK; F18-3) and commercially available bacteria (B0) were used as materials to explore their regulatory mechanisms for plant growth, soil physicochemical factors, microbial communities, and metabolic profiles in the field. Compared to bacterial treatments, local fungi treatments exhibited stronger ecological restoration efficacy. In addition, the DK and F18-3 strains, respectively, increased shoot and root biomass by 23.43% and 195.58% and significantly enhanced soil nutrient content and enzyme activity. Microbiome analysis further implied that, compared with the CK, DK treatment could significantly improve the α-diversity of fungi in the rhizosphere soil (the Shannon index increased by 14.27%) and increased the amount of unique bacterial genera in the rhizosphere soil of plants, totaling fourteen genera. Meanwhile, this aggregated the most biomarkers and beneficial microorganisms and strengthened the interactions among beneficial microorganisms. After DK treatment, twenty of the positively accumulated differential metabolites (DMs) in the plant rhizosphere were highly positively associated with six plant traits such as shoot length and root length, as well as beneficial microorganisms (e.g., Apodus and Pseudogymnoascus), but two DMs were highly negatively related to plant pathogenic fungi (including Cistella and Alternaria). Specifically, DK mainly inhibited the growth of pathogenic fungi through regulating the accumulation of D-(+)-Malic acid and Gamma-Aminobutyric acid (Cistella and Alternaria decreased by 84.20% and 58.53%, respectively). In contrast, the F18-3 strain mainly exerted its antibacterial effect by enriching Acidovorax genus microorganisms. This study verified the core role of local fungi in the restoration of mining areas in the Qinghai–Tibet Plateau and provided a new direction for the development of microbial agents for ecological restoration in the Qinghai–Tibet Plateau. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

24 pages, 836 KB  
Article
Effect of Farming System and Irrigation on Physicochemical and Biological Properties of Soil Under Spring Wheat Crops
by Elżbieta Harasim and Cezary A. Kwiatkowski
Sustainability 2025, 17(14), 6473; https://doi.org/10.3390/su17146473 - 15 Jul 2025
Viewed by 455
Abstract
A field experiment in growing spring wheat (Triticum aestivum L.—cv. ‘Monsun’) under organic, integrated and conventional farming systems was conducted over the period of 2020–2022 at the Czesławice Experimental Farm (Lubelskie Voivodeship, Poland). The first experimental factor analyzed was the farming system: [...] Read more.
A field experiment in growing spring wheat (Triticum aestivum L.—cv. ‘Monsun’) under organic, integrated and conventional farming systems was conducted over the period of 2020–2022 at the Czesławice Experimental Farm (Lubelskie Voivodeship, Poland). The first experimental factor analyzed was the farming system: A. organic system (control)—without the use of chemical plant protection products and NPK mineral fertilization; B. conventional system—the use of plant protection products and NPK fertilization in the range and doses recommended for spring wheat; C. integrated system—use of plant protection products and NPK fertilization in an “economical” way—doses reduced by 50%. The second experimental factor was irrigation strategy: 1. no irrigation—control; 2. double irrigation; 3. multiple irrigation The aim of the research was to determine the physical, chemical, and enzymatic properties of loess soil under spring wheat crops as influenced by the factors listed above. The highest organic C content of the soil (1.11%) was determined in the integrated system with multiple irrigation of spring wheat, whereas the lowest one (0.77%)—in the conventional system without irrigation. In the conventional system, the highest contents of total N (0.15%), P (131.4 mg kg−1), and K (269.6 mg kg−1) in the soil were determined under conditions of multiple irrigation. In turn, the organic system facilitated the highest contents of Mg, B, Cu, Mn, and Zn in the soil, especially upon multiple irrigation of crops. It also had the most beneficial effect on the evaluated physical parameters of the soil. In each farming system, the multiple irrigation of spring wheat significantly increased moisture content, density, and compaction of the soil and also improved its total sorption capacity (particularly in the integrated system). The highest count of beneficial fungi, the lowest population number of pathogenic fungi, and the highest count of actinobacteria were recorded in the soil from the organic system. Activity of soil enzymes was the highest in the integrated system, followed by the organic system—particularly upon multiple irrigation of crops. Summing up, the present study results demonstrate varied effects of the farming systems on the quality and health of loess soil. From a scientific point of view, the integrated farming system ensures the most stable and balanced physicochemical and biological parameters of the soil due to the sufficient amount of nutrients supplied to the soil and the minimized impact of chemical plant protection products on the soil. The multiple irrigation of crops resulting from indications of soil moisture sensors mounted on plots (indicating the real need for irrigation) contributed to the improvement of almost all analyzed soil quality indices. Multiple irrigation generated high costs, but in combination with fertilization and chemical crop protection (conventional and integrated system), it influenced the high productivity of spring wheat and compensated for the incurred costs (the greatest profit). Full article
(This article belongs to the Special Issue Soil Fertility and Plant Nutrition for Sustainable Cropping Systems)
Show Figures

Figure 1

13 pages, 2110 KB  
Article
Comparison of Rhizosphere Microbial Diversity in Soybean and Red Kidney Bean Under Continuous Monoculture and Intercropping Systems
by Huibin Qin, Aohui Li, Shuyu Zhong, Yingying Zhang, Chuhui Li, Zhixin Mu, Haiping Zhang and Jing Wu
Agronomy 2025, 15(7), 1705; https://doi.org/10.3390/agronomy15071705 - 15 Jul 2025
Viewed by 508
Abstract
The long-term monocropping of red kidney beans in agricultural fields can lead to the occurrence of soil-borne diseases. Alterations in the composition of the soil microbial community are a primary cause of soil-borne diseases and a key factor in continuous cropping obstacles. Research [...] Read more.
The long-term monocropping of red kidney beans in agricultural fields can lead to the occurrence of soil-borne diseases. Alterations in the composition of the soil microbial community are a primary cause of soil-borne diseases and a key factor in continuous cropping obstacles. Research exploring how different cultivation modes can modify the diversity and composition of the rhizosphere microbial community in red kidney beans, and thus mitigate the effects of continuous cropping obstacles, is ongoing. This study employed three cultivation modes: the continuous monocropping of red kidney beans, continuous monocropping of soybeans, and red kidney bean–soybean intercropping. To elucidate the composition and diversity of rhizosphere microbial communities, we conducted amplicon sequencing targeting the V3-V4 hypervariable regions of the bacterial 16S rRNA gene and the ITS1 region of fungal ribosomal DNA across distinct growth stages. The obtained sequencing data provide a robust basis for estimating soil microbial diversity. We observed that, under the intercropping mode, the composition of both bacteria and fungi more closely resembled that of soybean monocropping. The monocropping of red kidney beans increased the richness of rhizosphere bacteria and fungi and promoted the accumulation of pathogenic microorganisms. In contrast, intercropping cultivation and soybean monocropping favored the accumulation of beneficial bacteria such as Bacillus and Streptomyce, reduced pathogenic fungi including Alternaria and Mortierell, and exhibited less microbial variation across different growth stages. Compared to the monocropping of red kidney beans, these systems demonstrated more stable microbial structure and composition. The findings of this study will inform sustainable agricultural practices and soil management strategies. Full article
Show Figures

Figure 1

Back to TopTop