Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (468)

Search Parameters:
Keywords = bilayer film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1451 KB  
Article
A Theoretical Solution for Analyzing Bi-Layer Structures with Differing Thermal Properties
by Qianhua Peng, Siyuan Zhou, Yan Shi and Xiaohui Qian
Micromachines 2025, 16(12), 1320; https://doi.org/10.3390/mi16121320 - 25 Nov 2025
Viewed by 141
Abstract
Based on the Hilbert–Riemann theory, this paper develops a simplified model to address interfacial fracture in bi-layer laminated solar cells with significantly dissimilar thermal properties. The model is used to analyze interfacial normal stress distributions and identify critical stress points, taking into account [...] Read more.
Based on the Hilbert–Riemann theory, this paper develops a simplified model to address interfacial fracture in bi-layer laminated solar cells with significantly dissimilar thermal properties. The model is used to analyze interfacial normal stress distributions and identify critical stress points, taking into account the substantial mismatch in the coefficients of thermal expansion between the semiconductor and encapsulation layers. The predicted temperature and stress fields are validated through finite element simulations. Furthermore, by investigating commonly used encapsulation films and solar cell modules, the coupled effects of the thermal expansion coefficient and elastic modulus are elucidated. The results demonstrate that, under a constant layer thickness, the position of the stress critical point is governed by two dimensionless parameters: the ratio of thermal expansion coefficients and the ratio of elastic moduli. This work offers an efficient and practical approach for predicting thermal stress concentration trends in laminated solar cell structures, thereby providing useful insights for the design and fabrication of solar modules. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

25 pages, 3671 KB  
Article
Fabrication of a Chitosan–Gelatin/Polylactic Acid Bilayer Active Film Loaded with Tannic Acid for Enhancing Shelf-Life of Refrigerated Baby Clams
by Arunachalasivamani Ponnusamy, Suriya Palamae, Thummanoon Prodpran, Jun Tae Kim, Bin Zhang, Lukai Ma and Soottawat Benjakul
Foods 2025, 14(22), 3934; https://doi.org/10.3390/foods14223934 - 17 Nov 2025
Viewed by 497
Abstract
Active bilayer (BL) packaging films were developed by depositing chitosan/fish gelatin blend containing tannic acid (TA) at varying levels (1, 3, and 5%; w/w) onto a polylactic acid layer. Augmenting TA levels enhanced strength (17.27 MPa to 27.57 MPa) but [...] Read more.
Active bilayer (BL) packaging films were developed by depositing chitosan/fish gelatin blend containing tannic acid (TA) at varying levels (1, 3, and 5%; w/w) onto a polylactic acid layer. Augmenting TA levels enhanced strength (17.27 MPa to 27.57 MPa) but reduced flexibility (85.03% to ~38%) due to enhanced polymer cross-linking induced by TA, as confirmed by FTIR. The films exhibited exceptional UV-blocking capabilities, in which UVB protection reached 98.34% and 100% for films with 1% and 3% TA, respectively. SEM micrographs revealed uniform dispersion of TA with defect-free matrices. The antioxidant activity of the films upsurged with rising TA levels. When baby clam edible portions (BC-EP) were packed in pouches made with BL films, the pouches containing 5% TA most effectively slowed lipid oxidation and inhibited spoilage during 12 days of refrigerated storage. Total viable count, psychrotrophic bacteria count, and counts of specific spoilage organisms were decreased. Reductions in spoilage bacteria including Shewanella and Pseudomonas and dominance of lactic acid bacteria were confirmed using next-generation sequencing analysis. The release kinetics of TA followed Fickian diffusion, enabling sustained antioxidant and antimicrobial action. TA-containing pouches therefore effectively extended the shelf life of BC-EP through synergistic barrier, antioxidant, and antimicrobial mechanisms, offering a sustainable alternative to conventional plastic packaging. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Graphical abstract

15 pages, 8690 KB  
Article
Large-Area Pulsed Laser Deposition Growth of Transparent Conductive Al-Doped ZnO Thin Films
by Elena Isabela Bancu, Valentin Ion, Mihai Adrian Sopronyi, Stefan Antohe and Nicu Doinel Scarisoreanu
Nanomaterials 2025, 15(22), 1722; https://doi.org/10.3390/nano15221722 - 14 Nov 2025
Viewed by 302
Abstract
High-quality AZO thin films were produced on a 4-inch Si substrate using large-area PLD equipment at a substrate temperature of 330 °C, with a ZnO: Al (98:2 wt.%) target. This study aims to enhance the electrical, optical, morphological and structural properties of large-area [...] Read more.
High-quality AZO thin films were produced on a 4-inch Si substrate using large-area PLD equipment at a substrate temperature of 330 °C, with a ZnO: Al (98:2 wt.%) target. This study aims to enhance the electrical, optical, morphological and structural properties of large-area PLD-grown AZO thin films by tuning the deposition pressures. The samples were prepared under high-vacuum (HV) conditions, as well as in oxygen atmospheres of 0.005 mbar O2, 0.01 mbar O2, and 0.1 mbar O2. Consequently, a bilayer AZO film was prepared in a combination of two deposition pressures (first layer prepared under HV, followed by the second layer prepared at 0.01 mbar O2). Additionally, morphological and structural characterization revealed that high-quality columnar growth AZO thin films free of droplets, with a strong (002) orientation, were achieved on a 4-inch Si substrate. Moreover, Hall measurements in the Van der Pauw configuration were used to assess the electrical properties. A low electrical resistivity of 3.98 × 10−4 Ω cm, combined with a high carrier concentration (n) of 1.05 × 1021 cm−3 and a charge carrier mobility of 17.9 cm2/V s, was achieved at room temperature for the sample prepared under HV conditions. The optical characterization conducted through spectroscopic ellipsometry measurements showed that the large-area AZO sample exhibits an increased optical transparency in the visible (VIS) range with a near-zero extinction coefficient (k) and a wide bandgap of 3.75 eV, fulfilling the standards for materials classified as TCO. In addition, the increased thickness uniformity of the prepared AZO films over a large area represents a significant step in scaling the PLD technique for industrial applications. Full article
Show Figures

Figure 1

14 pages, 5002 KB  
Article
Perception of Structural Colors in Nanostructured Anodic Aluminum Oxide Films
by Woong Ki Jang, Yoo Su Kang, Young Ho Seo and Byeong Hee Kim
Coatings 2025, 15(11), 1260; https://doi.org/10.3390/coatings15111260 - 1 Nov 2025
Viewed by 412
Abstract
This study investigates the fabrication of anodic aluminum oxide (AAO)/Al bilayer films using a two-step aluminum anodization process and explores the perception and prediction of structural colors through these films. A composite AAO film with an AAO/Ni/Al structure was fabricated by electroplating an [...] Read more.
This study investigates the fabrication of anodic aluminum oxide (AAO)/Al bilayer films using a two-step aluminum anodization process and explores the perception and prediction of structural colors through these films. A composite AAO film with an AAO/Ni/Al structure was fabricated by electroplating an AAO/Al bilayer film with an AAO/Al structure. The fabricated composite AAO film was used to produce structural colors through changes in optical characteristics caused by Ni nanoplugs. Constructive-interference wavelengths resulting from variations in the pore diameter and interpore distance of AAO/Al bilayer films and composite AAO films were predicted using the Bragg–Snell law, with a maximum error margin of 9%. Additionally, the composite AAO film exhibited RGB colors within the predicted constructive-interference wavelength range. These results demonstrate that structural colors can be reliably predicted by estimating the constructive-interference wavelengths of composite AAO films. The approach provides a practical design rule for target colors in AAO-based coatings under normal incidence. The key advance is a single closed-form rule that links Dt, Dint, DP, and Dni to λ_peak at normal incidence, enabling forward and inverse color design without numerical optimization. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

13 pages, 1798 KB  
Article
Direct Synthesis of Single-Crystalline Bilayer Graphene on Dielectric Substrate
by Zuoquan Tan, Xianqin Xing, Yimei Fang, Le Huang, Shunqing Wu, Zhiyong Zhang, Le Wang, Xiangping Chen and Shanshan Chen
Nanomaterials 2025, 15(21), 1629; https://doi.org/10.3390/nano15211629 - 25 Oct 2025
Viewed by 607
Abstract
Direct growth of high-quality, Bernal-stacked bilayer graphene (BLG) on dielectric substrates is crucial for electronic and optoelectronic devices, yet it remains hindered by poor film quality, uncontrollable thickness, and high-density grain boundaries. In this work, a facile, catalyst-assisted method to grow high-quality, single-crystalline [...] Read more.
Direct growth of high-quality, Bernal-stacked bilayer graphene (BLG) on dielectric substrates is crucial for electronic and optoelectronic devices, yet it remains hindered by poor film quality, uncontrollable thickness, and high-density grain boundaries. In this work, a facile, catalyst-assisted method to grow high-quality, single-crystalline BLG directly on dielectric substrates (SiO2/Si, sapphire, and quartz) was demonstrated. A single-crystal monolayer graphene template was first employed as a seed layer to facilitate the homoepitaxial synthesis of single-crystalline BLG directly on insulating substrates. Nanostructure Cu powders were used as the remote catalysis to provide long-lasting catalytic activity during the graphene growth. Transmission electron microscopy confirms the single-crystalline nature of the resulting BLG domains, which validates the superiority of the homoepitaxial growth technique. Raman spectroscopy and electrical measurement results indicate that the quality of the as-grown BLG is comparable to that on metal substrate surfaces. Field-effect transistors fabricated directly on the as-grown BLG/SiO2/Si showed a room temperature carrier mobility as high as 2297 ± 3 cm2 V−1 s−1, which is comparable to BLG grown on Cu and much higher than that reported on in-sulators. Full article
Show Figures

Graphical abstract

35 pages, 8289 KB  
Article
Tuning Optical and Photoelectrochemical Properties of TiO2/WOx Heterostructures by Reactive Sputtering: Thickness-Dependent Insights
by Lucas Diniz Araujo, Bianca Sartori, Matheus Damião Machado Torres, David Alexandro Graves, Benedito Donizeti Botan-Neto, Mariane Satomi Weber Murase, Nilton Francelosi Azevedo Neto, Douglas Marcel Gonçalves Leite, Rodrigo Sávio Pessoa, Argemiro Soares da Silva Sobrinho and André Luis Jesus Pereira
Nanomanufacturing 2025, 5(4), 15; https://doi.org/10.3390/nanomanufacturing5040015 - 15 Oct 2025
Viewed by 502
Abstract
Metal-oxide heterostructures represent an effective strategy to overcome the limitations of pristine TiO2, including its ultraviolet-only light absorption and rapid electron–hole recombination, which hinder its performance in solar-driven applications. Among various configurations, coupling TiO2 with tungsten oxide (WOx) [...] Read more.
Metal-oxide heterostructures represent an effective strategy to overcome the limitations of pristine TiO2, including its ultraviolet-only light absorption and rapid electron–hole recombination, which hinder its performance in solar-driven applications. Among various configurations, coupling TiO2 with tungsten oxide (WOx) forms a favorable type-II band alignment that enhances charge separation. However, a comprehensive understanding of how WOx overlayer thickness affects the optical and photoelectrochemical (PEC) behavior of device-grade thin films remains limited. In this study, bilayer TiO2/WOx heterostructures were fabricated via reactive DC magnetron sputtering, with controlled variation in WOx thickness to systematically investigate its influence on the structural, optical, and PEC properties. Adjusting the WOx deposition time enabled precise tuning of light absorption, interfacial charge transfer, and donor density, resulting in markedly distinct PEC responses. The heterostructure obtained with 30 min of WOx deposition demonstrated a significant enhancement in photocurrent density under AM 1.5G illumination, along with reduced charge-transfer resistance and improved capacitive behavior, indicating efficient charge separation and enhanced charge storage at the electrode–electrolyte interface. These findings underscore the potential of sputtered TiO2/WOx bilayers as advanced photoanodes for solar-driven hydrogen generation and light-assisted energy storage applications. Full article
Show Figures

Graphical abstract

17 pages, 4203 KB  
Article
Degradation and Disintegration Behavior of PHBV- and PLA-Based Films Under Composting Conditions
by Pavlo Lyshtva, Argo Kuusik and Viktoria Voronova
Sustainability 2025, 17(19), 8657; https://doi.org/10.3390/su17198657 - 26 Sep 2025
Viewed by 944
Abstract
This study investigated the degradation and disintegration behavior of novel biobased multilayered films composed of poly(lactic acid) (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) during controlled composting tests performed at the laboratory scale. The compostability of monolayer PLA and PHBV films, hot-pressed bilayers, and coextruded multilayer [...] Read more.
This study investigated the degradation and disintegration behavior of novel biobased multilayered films composed of poly(lactic acid) (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) during controlled composting tests performed at the laboratory scale. The compostability of monolayer PLA and PHBV films, hot-pressed bilayers, and coextruded multilayer films produced in industrial or semi-industrial settings was systematically evaluated. Materials supplied by Fraunhofer LBF (Darmstadt, Germany) were tested as specified by the EVS-EN standard ISO 14855-1:2012 and EVS-EN ISO 20200:2016 standards. Composting took place in sealed, aerated vessels at 58 ± 2 °C with 50 ± 5% moisture and >6% oxygen. Biodegradation was measured via CO2 evolution, and disintegration was assessed visually and physically. PLA-1OLA films achieved 98.59% biodegradation and 91.13% disintegration. PHBV-5OLA and multilayer PLA-1OLA/PHBV-5OLA films showed biodegradation rates of 85.49% and 73.14%, with disintegration degrees of 89.93% and 79.18%, respectively. However, modified multilayer structures displayed slightly reduced compostability compared with pure compounds, likely due to the influence of additional components. To meet the 90% biodegradability threshold required by EVS-EN 13432:2003, increasing the PLA-1OLA content is recommended. This study introduces a novel combination of biobased polymers and plasticizers in multilayer formats, offering a deeper understanding of structure–property–degradation relationships. Its significance lies in advancing the design of sustainable packaging materials that balance functionality with environmental compatibility. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

18 pages, 2832 KB  
Article
Corrosion Behavior of Biocompatible Ti3Mn Alloy in Different Physiological Conditions for Biomedical Applications
by Clara Mihaela Soare, Cristina Jimenez-Marcos, Santiago Brito-Garcia, Julia Claudia Mirza-Rosca and Ionelia Voiculescu
Materials 2025, 18(18), 4346; https://doi.org/10.3390/ma18184346 - 17 Sep 2025
Viewed by 486
Abstract
Titanium–manganese alloys have emerged as a promising option of β-phase titanium alloys, which have recently gained popularity thanks to their exceptional cold strength, deformability, and high specific strength. In this study, the vacuum arc melting process was used to obtain a Ti3Mn alloy, [...] Read more.
Titanium–manganese alloys have emerged as a promising option of β-phase titanium alloys, which have recently gained popularity thanks to their exceptional cold strength, deformability, and high specific strength. In this study, the vacuum arc melting process was used to obtain a Ti3Mn alloy, and its behavior in three physiological conditions was analyzed: at room temperature, simulated fever conditions (at 40 °C), and simulated severe infection conditions (pH = 1.2). Optical and scanning electron microscopy were employed to study the effect of Mn addition on the Ti-base alloy microstructure. It was observed the formation of fine precipitates of Mn2Ti, localized at the grain boundaries, allow for the increase in microhardness and blocked their growth. The beta phase of titanium was obtained as fine lamellae with a low level of porosity. The microhardness values were higher than those reported for cp-Ti. The electrochemical tests have shown a high resistance to corrosion in the three analyzed conditions. On the sample’s surface, there is a passive bilayer film, composed of a porous one being in contact with the physiological liquid and a compact one in contact with the bulk alloy. The results obtained suggest that Ti3Mn alloy can be a promising low-cost biomaterial for biomedical applications. Full article
Show Figures

Figure 1

27 pages, 4027 KB  
Article
Fast-Disintegrating Oral Films Containing Nisin-Loaded Niosomes
by Ali A. Amer, Yasir Karkar, Lewis Bingle, Amal Ali Elkordy and Cheng Shu Chaw
Molecules 2025, 30(18), 3715; https://doi.org/10.3390/molecules30183715 - 12 Sep 2025
Cited by 1 | Viewed by 1095
Abstract
Nisin, a food preservative lantibiotic produced by Lactococcus lactis, exhibits potent antimicrobial activity against a wide range of Gram-positive pathogens, including antibiotic-resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA). This study explores the development of a novel nano drug delivery platform comprising [...] Read more.
Nisin, a food preservative lantibiotic produced by Lactococcus lactis, exhibits potent antimicrobial activity against a wide range of Gram-positive pathogens, including antibiotic-resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA). This study explores the development of a novel nano drug delivery platform comprising nisin-loaded niosomes, formulated via microfluidic mixing, and integrated into fast-dissolving oral films for targeted buccal administration. Microfluidic synthesis enabled the precise control of critical parameters including the flow rate ratio, surfactant composition, and lipid concentration, resulting in uniform niosomal vesicles with optimal size distribution (100–200 nm), low polydispersity index, and high encapsulation efficiency. Span 40 and Span 60 were employed as non-ionic surfactants, stabilized with cholesterol to improve bilayer rigidity and drug retention. The encapsulated nisin demonstrated improved physicochemical stability over time and protection against proteolytic degradation, thus preserving its antimicrobial potency. The niosomal suspensions were subsequently incorporated into polymer-based oral films as a final dosage form composed of polyvinyl alcohol (PVA) as the primary film-forming polymer, polyethylene glycol 400 (PEG400) as a plasticizer, and sucralose and mint as a sweetener and flavoring agent, respectively. A disintegrant was added to accelerate film dissolution in the oral cavity, facilitating the rapid release of niosomal nisin. The films were cast and evaluated for thickness uniformity, mechanical properties, disintegration time, surface morphology, and drug content uniformity. The dried films exhibited desirable flexibility, rapid disintegration (<30 s), and consistent distribution of nisin-loaded vesicles. In vitro antimicrobial assays confirmed that the bioactivity of nisin was retained post-formulation, showing effective inhibition zones (16 mm) against Bacillus subtilis. This delivery system offers a promising platform for localized antimicrobial therapy in the oral cavity, potentially aiding in the treatment of dental plaque, oral infections, and periodontal diseases. Overall, the integration of microfluidic-synthesized nisin niosomes into oral films presents a novel, non-invasive strategy for enhancing the stability and therapeutic efficacy of peptide-based drugs in mucosal environments. Physicochemical characterization of the niosomes and niosome films was performed using Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) to evaluate thermal stability and scanning electron microscopy (SEM) to assess surface morphology. In vitro peptide release studies demonstrated sustained release from both niosomal suspensions and film matrices, and the resulting data were further fitted to established kinetic models to elucidate the underlying drug release mechanisms. This delivery system offers a promising platform for localized antimicrobial therapy in the oral cavity, potentially aiding in the treatment of dental plaque, oral infections, and periodontal diseases. Overall, the integration of microfluidic-synthesized nisin niosomes into oral films presents a novel, non-invasive strategy for enhancing the stability and therapeutic efficacy of peptide-based drugs in mucosal environments. Full article
Show Figures

Figure 1

17 pages, 2030 KB  
Article
3D-Printed Bilayer Active Film with Anise Oil Nano-Emulsion and Carbon Quantum Dots for Shelf-Life Extension of Sugar Tangerines
by Qi Tian, Chongyang Chen, Chaofan Guo, Qingbo Huang, Yongli Jiang and Junjie Yi
Horticulturae 2025, 11(9), 1061; https://doi.org/10.3390/horticulturae11091061 - 4 Sep 2025
Cited by 1 | Viewed by 795
Abstract
This study developed a novel 3D-printed bilayer film (BF) embedded with star anise essential oil nanoemulsion (AEO-NE) and tamarind shell-derived carbon quantum dots (CQDs) for preserving sugar tangerines (Citrus reticulata Blanco). The BF comprised an outer chitosan-alginate-CQD barrier layer and an inner [...] Read more.
This study developed a novel 3D-printed bilayer film (BF) embedded with star anise essential oil nanoemulsion (AEO-NE) and tamarind shell-derived carbon quantum dots (CQDs) for preserving sugar tangerines (Citrus reticulata Blanco). The BF comprised an outer chitosan-alginate-CQD barrier layer and an inner AEO-NE active layer, fabricated using dual-extrusion 3D printing. Results showed that BF-treated fruits had significantly lower weight loss (23.6% reduction) and decay rates (0% spoilage until day 10) compared to controls (p < 0.05). The film’s controlled release (31% AEO release over 15 days) and UV-blocking properties (CQDs) maintained fruit firmness, color stability (ΔE < 2.0), and sugar content (TSS increase of only 3.7%). Sensory evaluation confirmed BF’s superiority, with treated fruits retaining freshness for 15 days, while controls deteriorated rapidly. The study demonstrates that 3D-printed active films synergizing AEO and CQDs offer a sustainable, high-performance solution for citrus preservation, extending shelf life by 10–15 days. Full article
Show Figures

Figure 1

17 pages, 4214 KB  
Article
Resistive Switching Behavior of Sol–Gel-Processed ZnMgO/ZnO Bilayer in Optoelectronic Devices
by Hee Sung Shin, Dong Hyun Kim, Donggu Lee and Jaehoon Kim
Nanomaterials 2025, 15(17), 1353; https://doi.org/10.3390/nano15171353 - 3 Sep 2025
Viewed by 1059
Abstract
Sol–gel-processed zinc oxide (ZnO) and magnesium-doped zinc oxide (ZnMgO) are widely used in quantum dot light-emitting diodes (QLEDs) due to their excellent charge transport properties, ease of fabrication, and tunable film characteristics. In particular, the ZnMgO/ZnO bilayer structure has attracted considerable attention for [...] Read more.
Sol–gel-processed zinc oxide (ZnO) and magnesium-doped zinc oxide (ZnMgO) are widely used in quantum dot light-emitting diodes (QLEDs) due to their excellent charge transport properties, ease of fabrication, and tunable film characteristics. In particular, the ZnMgO/ZnO bilayer structure has attracted considerable attention for its dual functionality: defect passivation by ZnMgO and efficient charge transport by ZnO. However, while the effects of resistive switching (RS) in individual ZnO and ZnMgO layers on the aging behavior of QLEDs have been studied, the RS characteristics of sol–gel-processed ZnMgO/ZnO bilayers remain largely unexplored. In this study, we systematically analyzed RS properties of an indium tin oxide (ITO)/ZnMgO/ZnO/aluminum (Al) device, demonstrating superior performance compared to devices with single layers of either ZnMgO or ZnO. We also investigated the shelf-aging characteristics of RS devices with single and bilayer structures, finding that the bilayer structure exhibited the least variation over time, thereby confirming its enhanced uniformity and reliability. Furthermore, based on basic current–voltage measurements, we estimated accuracy variations in MNIST pattern recognition using a two-layer perceptron model. These results not only identify a promising RS device architecture based on the sol–gel process but also offer valuable insights into the aging behavior of QLEDs incorporating ZnMgO/ZnO bilayers, ITO, and Al electrodes. Full article
Show Figures

Figure 1

25 pages, 6013 KB  
Article
Development and Application of a Novel pH-Responsive Bilayer Indicator Film for Yellowfin Seabream Preservation and Freshness Monitoring
by Shan Xue, Zhi Lin and Jia Liu
Foods 2025, 14(17), 3019; https://doi.org/10.3390/foods14173019 - 28 Aug 2025
Viewed by 1044
Abstract
A pH-responsive bilayer film was developed for real-time freshness monitoring and preservation of yellowfin seabream. The emulsified layer contained chitosan (CS) and flaxseed oil (FO), while the indicator layer comprised carrageenan (CAR), gelatin (GEL), grape seed anthocyanins (GSA), and curcumin (CUR). Optimization via [...] Read more.
A pH-responsive bilayer film was developed for real-time freshness monitoring and preservation of yellowfin seabream. The emulsified layer contained chitosan (CS) and flaxseed oil (FO), while the indicator layer comprised carrageenan (CAR), gelatin (GEL), grape seed anthocyanins (GSA), and curcumin (CUR). Optimization via response surface methodology determined the ideal formulation: CAR/GEL mass ratio 1.11:1, CS concentration 1.70%, and GSA/CUR dosage 53.99 mg/100 mL. The optimized film demonstrated superior mechanical properties (TS = 12.74 MPa, EAB = 68.24%), enhanced hydrophobicity (WVP = 1.21 × 10−11 g·m−1·s−1·Pa−1), and potent antioxidant activity (HRC = 92.35%). FTIR and SEM confirmed stable cross-linking and bilayer compatibility. Distinct color transitions (yellow → reddish-brown) occurred at different pH levels, correlating with fish spoilage indicators. During 25°C storage, the film effectively inhibited quality deterioration (TVB-N, TBARS, moisture loss, lipid oxidation) while extending shelf-life. Strong correlations were observed among TVB-N, TBARS, moisture (|r| > 0.97), and PUFAs’ spoilage contribution (r ≈ −0.99). This intelligent film enables dual-functionality: active preservation and visual freshness monitoring. Full article
(This article belongs to the Special Issue Biosynthesis Technology and Future Functional Foods)
Show Figures

Figure 1

19 pages, 2963 KB  
Article
Theoretical Design of Composite Stratified Nanohole Arrays for High-Figure-of-Merit Plasmonic Hydrogen Sensors
by Jiyu Feng, Yuting Liu, Xinyi Chen, Mingyu Cheng and Bin Ai
Chemosensors 2025, 13(8), 309; https://doi.org/10.3390/chemosensors13080309 - 15 Aug 2025
Viewed by 1024
Abstract
Fast, spark-free detection of hydrogen leaks is indispensable for large-scale hydrogen deployment, yet electronic sensors remain power-intensive and prone to cross-talk. Optical schemes based on surface plasmons enable remote read-out, but single-metal devices offer either weak H2 affinity or poor plasmonic quality. Here [...] Read more.
Fast, spark-free detection of hydrogen leaks is indispensable for large-scale hydrogen deployment, yet electronic sensors remain power-intensive and prone to cross-talk. Optical schemes based on surface plasmons enable remote read-out, but single-metal devices offer either weak H2 affinity or poor plasmonic quality. Here we employ full-wave finite-difference time-domain (FDTD) simulations to map the hydrogen response of nanohole arrays (NAs) that can be mass-produced by colloidal lithography. Square lattices of 200 nm holes etched into 100 nm films of Pd, Mg, Ti, V, or Zr expose an intrinsic trade-off: Pd maintains sharp extraordinary optical transmission modes but shifts by only 28 nm upon hydriding, whereas Mg undergoes a large dielectric transition that extinguishes its resonance. Vertical pairing of a hydride-forming layer with a noble metal plasmonic cap overcomes this limitation. A Mg/Pd bilayer preserves all modes and red-shifts by 94 nm, while the predicted optimum Ag (60 nm)/Mg (40 nm) stack delivers a 163 nm shift with an 83 nm linewidth, yielding a figure of merit of 1.96—surpassing the best plasmonic hydrogen sensors reported to date. Continuous-film geometry suppresses mechanical degradation, and the design rules—noble-metal plasmon generator, buried hydride layer, and thickness tuning—are general. This study charts a scalable route to remote, sub-ppm, optical hydrogen sensors compatible with a carbon-neutral energy infrastructure. Full article
(This article belongs to the Special Issue Innovative Gas Sensors: Development and Application)
Show Figures

Figure 1

12 pages, 4818 KB  
Article
Photo-Induced Birefringence in Layered Composite Materials Based on Ge–Te–In and Azo Polymer Prepared Through Different Methods
by Yordanka Trifonova, Ani Stoilova, Deyan Dimov, Georgi Mateev, Vladislava Ivanova, Iliyan Mitov and Olya Surleva
Materials 2025, 18(16), 3837; https://doi.org/10.3390/ma18163837 - 15 Aug 2025
Viewed by 607
Abstract
Bulk chalcogenides from the system (GeTe4)1−xInx, where x = 0; 5 and 10 mol%, were synthesized by a two-step melt quenching technique. New layered composite materials based on them and the azo polymer [1-4-(3-carboxy-4-hydrophenylazo) benzensulfonamido]-1,2-ethanediyl, sodium salt] [...] Read more.
Bulk chalcogenides from the system (GeTe4)1−xInx, where x = 0; 5 and 10 mol%, were synthesized by a two-step melt quenching technique. New layered composite materials based on them and the azo polymer [1-4-(3-carboxy-4-hydrophenylazo) benzensulfonamido]-1,2-ethanediyl, sodium salt] has been prepared through spin coating, electrospray deposition and via vacuum-thermal evaporation of the chalcogenide and spin coating of the azo polymer onto it. Using the latter technology, a material consisting of one chalcogenide and one azo polymer film and three chalcogenide and three azo polymer films has been fabricated. The carried-out SEM analysis shows that in the materials, initially prepared as a bilayer and multilayer structure, diffusion at the chalcogenide/polymer interface occurs leading to the formation of a homogenous composite environment. Birefringence was induced at 444 nm in all the fabricated thin film materials. The highest value of the maximal induced birefringence has been measured for the material fabricated as a stack, Δnmax = 0.118. For the material prepared as a bilayer structure and the composite material obtained through electrospray deposition, the maximal induced birefringence takes values of Δnmax = 0.101 and Δnmax = 0.095, respectively. The sample prepared via spin coating of the chalcogenide/PAZO dispersion has the lowest value of the maximal induced birefringence (Δnmax = 0.066) in comparison to the pure PAZO polymer film (Δnmax = 0.083). Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

15 pages, 2324 KB  
Article
Influence of Aluminum Alloy Substrate Temperature on Microstructure and Corrosion Resistance of Cr/Ti Bilayer Coatings
by Yuqi Wang, Tao He, Xiangyang Du, Alexey Vereschaka, Catherine Sotova, Yang Ding, Kang Chen, Jian Li and Peiyu He
Coatings 2025, 15(8), 891; https://doi.org/10.3390/coatings15080891 - 1 Aug 2025
Cited by 3 | Viewed by 990
Abstract
Cr/Ti bilayer coatings were deposited on 7050 aluminum alloy via magnetron sputtering at substrate temperatures of room temperature (RT), 150 °C, and 300 °C to investigate temperature effects on microstructure, hardness, and corrosion resistance. All coatings exhibited Cr(110) and Ti(002) phases. Temperature significantly [...] Read more.
Cr/Ti bilayer coatings were deposited on 7050 aluminum alloy via magnetron sputtering at substrate temperatures of room temperature (RT), 150 °C, and 300 °C to investigate temperature effects on microstructure, hardness, and corrosion resistance. All coatings exhibited Cr(110) and Ti(002) phases. Temperature significantly modulated corrosion resistance by altering pore density, grain boundary density, and passivation film composition. Increasing temperature from RT to 150 °C raised corrosion rates primarily due to increased pore density. Further increasing to 300 °C reduced corrosion rates mainly through decreased grain boundary density, while passivation film composition changes altered electrochemical reaction kinetics. Substrate-coating interface defect density primarily influenced hardness with minimal effect on corrosion. Consequently, the RT-deposited coating, despite lower hardness, demonstrated optimal corrosion resistance: polarization resistance (7.17 × 104 Ω·cm2), charge transfer resistance (12,400 Ω·cm2), and corrosion current density (2.47 × 10−7 A/cm2), the latter being two orders of magnitude lower than the substrate. Full article
(This article belongs to the Special Issue Innovative Coatings for Corrosion Protection of Alloy Surfaces)
Show Figures

Figure 1

Back to TopTop