Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (19,008)

Search Parameters:
Keywords = biodiversity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1459 KiB  
Article
Polystyrene Microplastic Interferes with Yolk Reserve Utilisation in Early Artemia salina Nauplii
by Chiara Maria Motta, Chiara Fogliano, Marco Trifuoggi, Maria Toscanesi, Anja Raggio, Simona Di Marino, Paola Venditti, Gianluca Fasciolo, Bice Avallone and Rosa Carotenuto
Toxics 2025, 13(8), 700; https://doi.org/10.3390/toxics13080700 (registering DOI) - 20 Aug 2025
Abstract
Polystyrene microfragments are among the most common plastic pollutants globally. They significantly affect aquatic life, harming various organs and tissues. In this study, we examined the effects of 3 µm polystyrene beads (MPs, 20 µg/L) on development and yolk resorption in pre-feeding nauplii [...] Read more.
Polystyrene microfragments are among the most common plastic pollutants globally. They significantly affect aquatic life, harming various organs and tissues. In this study, we examined the effects of 3 µm polystyrene beads (MPs, 20 µg/L) on development and yolk resorption in pre-feeding nauplii of Artemia salina, a lecithotrophic crustacean used in toxicity testing. Results showed a reduced hatching rate, slower growth, and the onset of oxidative stress. Histological analysis revealed no significant morphological alteration; however, yolk platelets lost N-acetyl galactosamine (galNAc), and resorption was delayed. Lectin staining also showed a reduction in N-acetyl glucosamine (glcNAc) in the gut brush border, indicating impaired gut function. Gas chromatography detected the release of nanogram amounts of toxic volatile compounds (VOCs, ethylbenzene, xylene, benzaldehyde, and styrene) into the culture medium. In conclusion, the data demonstrate a delay in larval yolk resorption that can likely be attributed to the release of VOCs, which induce oxidative stress. Further research is urgently needed, given the potential biological and ecological implications of this finding. Full article
16 pages, 10067 KiB  
Article
Forgotten for Decades: Revalidation and Redescription of Raiamas harmandi (Sauvage, 1880) (Cypriniformes: Danionidae) from the Mekong River Basin
by Cai-Xin Liu, Yi-Yang Xu, Yu-Yang Zeng, Thaung Naing Oo and Xiao-Yong Chen
Taxonomy 2025, 5(3), 42; https://doi.org/10.3390/taxonomy5030042 - 20 Aug 2025
Abstract
The genus Raiamas currently comprises 18 valid species, only 2 of which occur in Asia; the remaining 16 are endemic to Africa. Raiamas harmandi was originally described by Sauvage in 1880 as Bola harmandi, which is distributed in the Great Lakes, Cambodia, [...] Read more.
The genus Raiamas currently comprises 18 valid species, only 2 of which occur in Asia; the remaining 16 are endemic to Africa. Raiamas harmandi was originally described by Sauvage in 1880 as Bola harmandi, which is distributed in the Great Lakes, Cambodia, the Mekong River Basin. It was considered a synonym of R. guttatus by later researchers. In this study, we examined 49 Raiamas individuals from the Mekong, Irrawaddy, and Salween river basins, recording both meristic counts and morphometric measurements. Based on the morphological evidence, we revised the taxonomy of Raiamas in the Mekong River Basin, confirming R. harmandi as a valid species and providing a comprehensive redescription. Raiamas harmandi can be distinguished from R. guttatus mainly by having more predorsal scales (25–28 vs. 21–23) and a different color pattern on the lateral body. Utilizing a total of 44 aligned COI and Cyt b sequences—including eight newly sequenced individuals of Raiamas from three river basins—we reconstructed its phylogenetic relationships. The analysis strongly supported four R. harmandi individuals from the Mekong River Basin forming a distinct clade, which was the sister to the clade comprising five R. guttatus individuals from the Irrawaddy and Salween river basins. Genetic distances between R. harmandi and R. guttatus ranged from 14.0 to 14.9% for COI and 16.1 to 17.0% for Cyt b. Distributionally, R. harmandi occurs throughout the Mekong River Basin, as evidenced by combined voucher specimens and molecular sequence data. Full article
Show Figures

Figure 1

20 pages, 9798 KiB  
Article
Spatiotemporal Risk Assessment of H5 Avian Influenza in China: An Interpretable Machine Learning Approach to Uncover Multi-Scale Drivers
by Xinyi Wang, Yihui Xu and Xi Xi
Animals 2025, 15(16), 2447; https://doi.org/10.3390/ani15162447 - 20 Aug 2025
Abstract
Avian influenza (AI), particularly the H5 subtypes, poses a significant and persistent threat globally. While the influence of environmental factors on AI seasonality is recognized, a comprehensive understanding of the hierarchical and interactive effects of multi-scale drivers in a vast and ecologically diverse [...] Read more.
Avian influenza (AI), particularly the H5 subtypes, poses a significant and persistent threat globally. While the influence of environmental factors on AI seasonality is recognized, a comprehensive understanding of the hierarchical and interactive effects of multi-scale drivers in a vast and ecologically diverse country like China remains limited. We developed an interpretable machine learning framework (XGBoost with SHAP) to analyze the spatiotemporal risk of 1800 H5 AI outbreaks in mainland China from 2000 to 2023. We integrated multi-source data, including dynamic poultry density, Köppen climate classifications, Important Bird and Biodiversity Areas (IBAs), and daily meteorological variables, to identify key drivers and quantify their nonlinear and synergistic effects. The model demonstrated high predictive accuracy (5-fold cross-validation R2 = 0.776). Our analysis revealed that macro-scale ecological contexts, particularly poultry density and specific Köppen climate zones (e.g., Cwa), and strong seasonality were the most dominant drivers of AI risk. We identified significant nonlinear relationships, such as a strong inverse relationship with temperature, and a critical synergistic interaction where high temperatures substantially amplified risk in areas with high poultry density. The final predictive map identified high-risk hotspots primarily concentrated in eastern and southern China. Our findings indicate that H5 AI risk is governed by a hierarchical interplay of multi-scale environmental drivers. This interpretable modeling approach provides a valuable tool for developing targeted surveillance and early warning systems to mitigate the threat of avian influenza. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

23 pages, 10291 KiB  
Article
The Impact of Climate and Land Use Change on Greek Centipede Biodiversity and Conservation
by Elisavet Georgopoulou, Konstantinos Kougioumoutzis and Stylianos M. Simaiakis
Land 2025, 14(8), 1685; https://doi.org/10.3390/land14081685 - 20 Aug 2025
Abstract
Centipedes (Chilopoda, Myriapoda) are crucial soil predators, yet their vulnerability to climate and land use change remains unexplored. We assess the impact of these drivers on Greek centipedes, identify current and future biodiversity hotspots, and evaluate the effectiveness of the Natura 2000 Network [...] Read more.
Centipedes (Chilopoda, Myriapoda) are crucial soil predators, yet their vulnerability to climate and land use change remains unexplored. We assess the impact of these drivers on Greek centipedes, identify current and future biodiversity hotspots, and evaluate the effectiveness of the Natura 2000 Network of protected areas for their conservation. We used an updated species occurrence database of Greek centipedes, derived from literature reviews and museum collections, and evaluated database completeness and geographic sampling biases. Species Distribution Models were employed to predict future distribution shifts under climate and land use change scenarios. Biodiversity hotspots were identified based on species richness (SR) and corrected-weighted endemism (CWE) metrics. We overlapped SR and CWE metrics against the Natura 2000 Network to assess its effectiveness. We found that sampling effort is highly heterogeneous across Greece. All species are projected to experience range contractions, particularly in the 2080s, with variation across scenarios and taxa. Current biodiversity hotspots are concentrated in the south Aegean islands and mainland mountain ranges, where areas of persistent high biodiversity are also projected to occur. The Natura 2000 Network currently covers 52% of SR and 44% of CWE hotspots, with projected decreases in SR coverage but increases in CWE coverage. Our work highlights the vulnerability of Greek centipedes to climate and land use change and reveals conservation shortfalls within protected areas. We identify priority areas for future field surveys, based on sampling bias and survey completeness assessments, and highlight the need for further research into mechanisms driving centipede responses to global change. Full article
(This article belongs to the Special Issue Species Vulnerability and Habitat Loss (Third Edition))
16 pages, 2546 KiB  
Article
Molecular Updates on the ‘Warty Dorid’ Doris verrucosa Linnaeus, 1758 (Mollusca, Nudibranchia) from the Mediterranean Sea
by Giulia Furfaro, Michele Solca, Enric Madrenas, Francesco Tiralongo and Egidio Trainito
Diversity 2025, 17(8), 586; https://doi.org/10.3390/d17080586 - 20 Aug 2025
Abstract
Basic and applied research reveals the importance of sea slugs as a source of new bioactive molecules or of still little-known intra/intercellular processes, mainly linked to the highly specialised defensive strategies typical of this group of shell-less molluscs. In this context, the nudibranch [...] Read more.
Basic and applied research reveals the importance of sea slugs as a source of new bioactive molecules or of still little-known intra/intercellular processes, mainly linked to the highly specialised defensive strategies typical of this group of shell-less molluscs. In this context, the nudibranch Doris verrucosa (Gastropoda, Mollusca), commonly known as ‘warty dorid’, is particularly interesting due to its ability to produce de novo biochemical compounds with pharmacological properties and being the type species of the genus Doris, one of the oldest and richest in species, currently characterised by a troubled systematics. Despite its wide distribution across the Eastern Atlantic Ocean and the Mediterranean Sea, this species has not yet been characterised from a genetic point of view. Considering the importance of assessing species identity to correctly investigate the systematics and to properly unravel potentially useful applications, results from a molecular assessment of such interesting species are provided. Genetic analysis involved species delimitation, phylogeny and haplotype network methods carried out on specimens of D. verrucosa collected from highly anthropised areas of Southern Italy (central Mediterranean Sea). Furthermore, in situ observations allowed us to fill some gaps in knowledge on the ecology and the morphological variability of this species that could be useful for future comparisons. Full article
(This article belongs to the Section Marine Diversity)
21 pages, 2492 KiB  
Article
Evaluating Ecological Contributions of Tree Assemblages in Urban Expressway Interchange Landscapes: A Case Study from Nanjing, China
by Mingxing Xu and Lu Ding
Forests 2025, 16(8), 1355; https://doi.org/10.3390/f16081355 - 20 Aug 2025
Abstract
Urban expressway interchanges, though primarily engineered for traffic efficiency, also serve as crucial ecological nodes within urban landscapes. This study evaluates the ecological functions of arborous vegetation across four typical interchange configurations—cloverleaf, single trumpet, double trumpet, and irregular—along the Nanjing Ring Expressway. Using [...] Read more.
Urban expressway interchanges, though primarily engineered for traffic efficiency, also serve as crucial ecological nodes within urban landscapes. This study evaluates the ecological functions of arborous vegetation across four typical interchange configurations—cloverleaf, single trumpet, double trumpet, and irregular—along the Nanjing Ring Expressway. Using the i-Tree Eco model, we quantified key ecosystem services, including carbon sequestration and storage, air pollutant removal, and stormwater mitigation. Field surveys documented 7985 trees from 45 species, with the 10 most abundant accounting for over two-thirds of total individuals. Results revealed that the trees sequester around 115 tons of carbon annually and store nearly 1850 tons in total, equivalent to an estimated economic benefit of ¥5.8 million. Trees also removed more than 1.5 tons of air pollutants and intercepted nearly 2400 cubic meters of stormwater each year. Species such as Sophora japonica, Phoebe zhennan, and Cinnamomum camphora emerged as key contributors to ecological performance. Among interchange types, double trumpet configurations yielded the highest overall service value, while single trumpet interchanges demonstrated superior efficiency per unit area. These findings highlight the underutilized ecological potential of transport-adjacent green spaces and underscore the importance of species selection and spatial design in maximizing multifunctional benefits. Full article
(This article belongs to the Special Issue Ecosystem Services of Urban Forest)
24 pages, 6687 KiB  
Article
A Gamified Teaching Proposal Using an Escape Box to Explore Marine Plastic Pollution
by Lourdes Aragón and Carmen Brenes-Cuevas
Sustainability 2025, 17(16), 7528; https://doi.org/10.3390/su17167528 (registering DOI) - 20 Aug 2025
Abstract
This work draws on the principles of Environmental Education as a framework for designing meaningful teaching interventions that foster a critical understanding of socio-environmental issues. The proposal focuses on the specific case of plastic pollution and its impact on marine ecosystems, adopting an [...] Read more.
This work draws on the principles of Environmental Education as a framework for designing meaningful teaching interventions that foster a critical understanding of socio-environmental issues. The proposal focuses on the specific case of plastic pollution and its impact on marine ecosystems, adopting an integrative perspective that connects animal, environmental, and human health. To this end, the One Health approach is incorporated, highlighting the close interdependence between the health of ecosystems, animals, and people, which allows the issue to be analyzed from a systemic and global perspective. The intervention is grounded in the principles of Transformative Environmental Education—a pedagogical orientation that seeks to promote deep changes in how students understand their environment and engage with the challenges of today’s world. This approach encourages ethical reflection, critical thinking, and the ability to imagine sustainable futures, as well as the development of competencies for action and civic engagement. The teaching proposal takes the form of a learning experience designed and implemented in three 7th-grade classrooms (1º ESO) in Cádiz, Spain, through a mixed-methods approach with 79 students (12–13 years old), structured around an escape box activity. This is a variation of the escape room format in which students, working in teams, must open a series of boxes by solving a sequence of puzzles. In this case, the escape box is set in a marine context. Through a gamified narrative, students receive a suitcase containing objects, clues, and materials that require the application of scientific knowledge about ocean acidification, biodiversity loss, and types of plastics. Data were collected through field notes, student artifacts, and a final questionnaire. The proposal is designed to foster critical environmental literacy, a holistic vision of environmental challenges, and the capacity to propose collective solutions from a One Health perspective. The results revealed high levels of motivation, engagement with the storyline, and a solid understanding of the link between marine plastic pollution and its effects on animal and human health, aligned with the One Health perspective. Full article
Show Figures

Figure 1

22 pages, 1768 KiB  
Article
Dissolved Oxygen Decline in Northern Beibu Gulf Summer Bottom Waters: Reserve Management Insights from Microbiome Analysis
by Chunyan Peng, Ying Liu, Yuyue Qin, Dan Sun, Jixin Jia, Zongsheng Xie and Bin Gong
Microorganisms 2025, 13(8), 1945; https://doi.org/10.3390/microorganisms13081945 - 20 Aug 2025
Abstract
The Sanniang Bay (SNB) and Dafeng River Estuary (DFR) in the Northern Beibu Gulf, China, are critical habitats for the Indo-Pacific humpback dolphin (Sousa chinensis). However, whether and how the decreased dissolved oxygen (DO) has happened in bottom seawater remains poorly [...] Read more.
The Sanniang Bay (SNB) and Dafeng River Estuary (DFR) in the Northern Beibu Gulf, China, are critical habitats for the Indo-Pacific humpback dolphin (Sousa chinensis). However, whether and how the decreased dissolved oxygen (DO) has happened in bottom seawater remains poorly understood. This study investigated DO depletion and microbial community responses using a multidisciplinary approach. High-resolution spatiotemporal sampling (16 stations across four seasons) was combined with functional annotation of prokaryotic taxa (FAPROTAX) to characterize anaerobic metabolic pathways and quantitative PCR (qPCR) targeting dsrA and dsrB genes to quantify sulfate-reducing bacteria. Partial least-squares path modeling (PLS-PM) was employed to statistically link environmental variables (seawater properties and nutrients) to microbial community structure. Results revealed pronounced bottom DO declining to 5.44 and 7.09 mg L−1, a level approaching sub-optimal state (4.0–4.8 mg L−1) in September. Elevated chlorophyll-a (Chl-a) near the SDH coincided with anaerobic microbial enrichment, including sulfate reducers (dsrA/dsrB abundance: SNB > DFR). PLS-PM identified seawater properties (turbidity, DO, pH) and nitrogen as key drivers of anaerobic taxa distribution. Co-occurrence network analysis further demonstrated distinct microbial modules in SNB (phytoplankton-associated denitrifiers) and DFR (autotrophic sulfur oxidizers, nitrogen fixation, and denitrification). These findings highlight how environmental factors drive decreased DO, reshaping microbial networks and threatening coastal ecosystems. This work underscores the need for regulating aquaculture/agricultural runoff to limit eutrophication-driven hypoxia and temporarily restrict human activities in SNB during peak hypoxia (September–October). Full article
29 pages, 10773 KiB  
Article
Facilitation in the Dry Season: Species Interactions Between a Limestone-Endemic Plant and Moss Altered by Precipitation Dynamics
by Ali Raza, Shao-Jun Ling, Ya-Li Wei, Saraj Bahadur and Ming-Xun Ren
Plants 2025, 14(16), 2588; https://doi.org/10.3390/plants14162588 - 20 Aug 2025
Abstract
Plant-to-plant interactions are essential for structuring plant communities and supporting adaptation in nutrient-poor, seasonally dry environments. This study examined the interactions between moss Leucobryum aduncum Dozy & Molk and Oreocharis hainanensis by analyzing microbial communities and physicochemical parameters across various sample types. These [...] Read more.
Plant-to-plant interactions are essential for structuring plant communities and supporting adaptation in nutrient-poor, seasonally dry environments. This study examined the interactions between moss Leucobryum aduncum Dozy & Molk and Oreocharis hainanensis by analyzing microbial communities and physicochemical parameters across various sample types. These included soil [bare (B), O. hainanensis (O), moss (M), and moss + O. hainanensis (MO)], rhizosphere soil [O. hainanensis (ORS), moss (MRS), and moss + O. hainanensis (MORS)], and root [O. hainanensis (OHR), moss (MR), and moss + O. hainanensis (MOR)] using metagenomics sequencing across dry and wet seasons in limestone habitats on Hainan Island. During the dry season, combined plant samples MOR, MO, and MORS showed higher nutrients, supported by microbes that enhance nutrient turnover, which may indicate facilitation. Conversely, during the wet season, increased moisture leads to decreased nutrient levels and microbial communities shift, associated with slower nutrient turnover in combined plant samples, which may reflect competition. According to KEGG analysis, an increase in oxidative phosphorylation and ABC transporters in the dry season supported the facilitative interaction, while quorum sensing and two-component systems supported the competitive interaction in the wet season. These findings show how shifts between facilitation and competition arise from seasonal conditions and microbes in the limestone ecosystem. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

20 pages, 6354 KiB  
Article
Cloning and Functional Characterization of a Novel Brevinin-1-Type Peptide from Sylvirana guentheri with Anticancer Activity
by Huyen Thi La, Quynh Bach Thi Nhu, Hai Manh Tran, Huyen Thi Ngo, Phuc Minh Thi Le, Hanh Hong Hoang, Linh Trong Nguyen, Dat Tien Nguyen and Thanh Quang Ta
Curr. Issues Mol. Biol. 2025, 47(8), 673; https://doi.org/10.3390/cimb47080673 - 20 Aug 2025
Abstract
Despite significant medical advancements, two major health challenges persist: antibiotic resistance in microbial pathogens and drug resistance in cancer cells. To address these issues, research has increasingly focused on discovering novel natural compounds with dual antimicrobial and anticancer activities. Among such candidates, antimicrobial [...] Read more.
Despite significant medical advancements, two major health challenges persist: antibiotic resistance in microbial pathogens and drug resistance in cancer cells. To address these issues, research has increasingly focused on discovering novel natural compounds with dual antimicrobial and anticancer activities. Among such candidates, antimicrobial peptides (AMPs) have attracted attention due to their ability to selectively target microbial and cancer cells while exhibiting minimal toxicity toward normal cells. Although Vietnam possesses rich biodiversity, including a wide range of Anura species, studies on AMPs from these organisms remain limited. In this study, a novel AMP, brevinin-1 E8.13, was identified from the skin secretion of Sylvirana guentheri, a frog species native to Vietnam. The brevinin-1 E8.13 peptide was successfully cloned, sequenced, and chemically synthesized. Functional assays revealed that brevinin-1 E8.13 possesses strong antibacterial activity against Staphylococcus aureus and exerts significant antiproliferative effects on various human cancer cell lines, including A549 (lung), AGS (gastric), Jurkat (leukemia), HCT116 (colorectal), HL60 (leukemia), and HepG2 (liver). The peptide demonstrated moderate to potent cytotoxic activity, with IC50 values ranging from 7.5 to 14.8 μM, depending on the cell type. Notably, brevinin-1 E8.13 exhibited low cytotoxicity toward normal human dermal fibroblast (HDF) cells and even promoted cell proliferation at lower concentrations. Furthermore, Chemically Activated Fluorescent Expression (CAFLUX) bioassay results confirmed that the peptide significantly downregulated Cyp1a1 gene expression in HepG2 cells. Collectively, these findings highlight the therapeutic potential of brevinin-1 E8.13 as a dual-function antimicrobial and anticancer agent derived from the skin secretion of Sylvirana guentheri. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

11 pages, 2943 KiB  
Article
The Complete Mitochondrial Genome of Aspidophorodon (Eoessigia) indicum (Hemiptera: Aphididae: Aphidinae) and Insights into Its Phylogenetic Position
by Jiayu Ding, Xiaolu Zhang, Liyun Jiang, Gexia Qiao and Jing Chen
Genes 2025, 16(8), 979; https://doi.org/10.3390/genes16080979 (registering DOI) - 20 Aug 2025
Abstract
Background: Aspidophorodon Verma, 1967 (Macrosiphini: Aphidinae), is a genus within Aphididae (aphids) with ecological importance and a unique distribution, but there is a lack of mitogenomic data on the evolutionary relationships within this genus, hindering a comprehensive understanding of its evolutionary history. Methods: [...] Read more.
Background: Aspidophorodon Verma, 1967 (Macrosiphini: Aphidinae), is a genus within Aphididae (aphids) with ecological importance and a unique distribution, but there is a lack of mitogenomic data on the evolutionary relationships within this genus, hindering a comprehensive understanding of its evolutionary history. Methods: In this study, we present the complete mitochondrial genome sequence and features of Aspidophorodon indicum (David, Rajasingh & Narayanan, 1972) (Hemiptera: Aphididae) and further infer its phylogenetic position based on the complete mitochondrial genome sequence. Results: The complete mitochondrial genome of A. indicum is 17,161 bp in length, including 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, a control region, and a repeat region between trnE and trnF. Phylogenetic analyses based on complete mitochondrial genomes of Aphidinae indicated that the two constituent tribes, Macrosiphini and Aphidini, are monophyletic. Aspidophorodon was robustly clustered with the members of Pterocomma and Cavariella. Together, these three genera form the most basal clade within Macrosiphini. Conclusions: The complete mitogenome of A. indicum contains multiple conserved features relative to other aphids, including gene order, nucleotide composition, codon bias, and repeat region. The phylogenetic relationships within Macrosiphini reported here are consistent with previous studies. Our results provide new insights into the phylogenetic position of the genus Aspidophorodon. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

22 pages, 11653 KiB  
Article
Delineating Forest Canopy Phenology: Insights from Long-Term Phenocam Observations in North America
by Chung-Te Chang, Jyh-Min Chiang and Cho-Ying Huang
Remote Sens. 2025, 17(16), 2893; https://doi.org/10.3390/rs17162893 - 20 Aug 2025
Abstract
This study utilized the North American PhenoCam network to evaluate phenological characteristics and their relationships with geographic and climatic factors across deciduous broadleaf (n = 39) and evergreen needleleaf (n = 13) forests over the past decade. Using high temporal resolution [...] Read more.
This study utilized the North American PhenoCam network to evaluate phenological characteristics and their relationships with geographic and climatic factors across deciduous broadleaf (n = 39) and evergreen needleleaf (n = 13) forests over the past decade. Using high temporal resolution near-surface imagery, key phenological indicators including the start, end, and length of growing season were derived and analyzed using linear regression and structural equation modeling. The results revealed substantial spatial variation; the evergreen needleleaf sites exhibited earlier starts to the growing season (112 vs. 130 Julian date), later ends to the growing season (286 vs. 264 Julian date), and longer lengths for the growing season (172 vs. 131 days) compared with the deciduous broadleaf sites. Latitude was significantly related to the start of the growing season and the length of the growing season at the deciduous broadleaf sites (R2 = 0.28–0.41, p < 0.01), while these relationships were weaker at the evergreen needleleaf sites, and elevation had mixed effects. The mean annual temperature strongly influenced the phenology for both forest types (R2 = 0.18–0.76, p < 0.01), whereas longitude, distance to the coast, and precipitation had negligible effects. Temporal trends in the phenological indicators were sporadic across both the deciduous broadleaf and evergreen needleleaf sites. Structural equation modeling revealed distinct causal pathways for each forest type, highlighting complex interactions among the geographical and climatic variables. At the deciduous broadleaf sites, geographical factors (latitude, elevation, and distance to the nearest coast) predominated the mean annual temperature, which in turn significantly affected phenological development (χ2 = 2.171, p = 0.975). At the evergreen needleleaf sites, geographical variables had more complex effects on the climatic factors, start of the growing season, and end of the growing season, with the end of the growing season emerging as the primary determinant of growing season length (χ2 = 0.486, p = 0.784). The PhenoCam network provides valuable fine-scale phenological dynamics, offering great insights for forest management, biodiversity conservation, and understanding carbon cycling under climate change. Full article
Show Figures

Figure 1

15 pages, 6502 KiB  
Article
Farmland Biodiversity Monitoring Using DNA Metabarcoding
by Dirk Steinke, Muhammad Ashfaq, Chris Y. Ho, Kate H. J. Perez, Jayme E. Sones, Stephanie L. DeWaard, Jeremy R. DeWaard, Sujeevan Ratnasingham, Evgeny V. Zakharov and Paul D. N. Hebert
Diversity 2025, 17(8), 585; https://doi.org/10.3390/d17080585 - 20 Aug 2025
Abstract
Although 5–20% of global crop production is lost to arthropod damage, current biomonitoring programs are extremely limited. This study evaluates the feasibility of using metabarcoding to assess overall insect diversity and detect pest species in agricultural settings. It introduces a curated DNA barcode [...] Read more.
Although 5–20% of global crop production is lost to arthropod damage, current biomonitoring programs are extremely limited. This study evaluates the feasibility of using metabarcoding to assess overall insect diversity and detect pest species in agricultural settings. It introduces a curated DNA barcode reference library for Canadian insects that are agricultural pests and applies it to metabarcoding data from the analysis of Malaise trap samples from two experimental farms in Southern Ontario. A total of 7707 arthropod species were collected across the two farms, and projections indicate that another 4000 await detection. These taxa included 231 registered pest species. The composition of the overall arthropod community composition was more heavily influenced by site location than crop type, but pest species composition was influenced by the crop. This study confirms that metabarcoding enables the evaluation of the species composition of arthropod communities in agroecosystems, allowing pest species to be tracked. Full article
(This article belongs to the Section Biodiversity Loss & Dynamics)
Show Figures

Figure 1

22 pages, 1640 KiB  
Review
Advances in Water and Nitrogen Management for Intercropping Systems: Crop Growth and Soil Environment
by Yan Qiu, Zhenye Wang, Debin Sun, Yuanlan Lei, Zhangyong Li and Yi Zheng
Agronomy 2025, 15(8), 2000; https://doi.org/10.3390/agronomy15082000 - 20 Aug 2025
Abstract
Intercropping is an eco-friendly, sustainable agricultural model that significantly improves yield stability, nutrient use efficiency, and soil health through spatiotemporal niche complementarity, increases biodiversity, and improves soil health. Water and nitrogen play crucial roles in limiting and regulating efficient resource utilization and ecological [...] Read more.
Intercropping is an eco-friendly, sustainable agricultural model that significantly improves yield stability, nutrient use efficiency, and soil health through spatiotemporal niche complementarity, increases biodiversity, and improves soil health. Water and nitrogen play crucial roles in limiting and regulating efficient resource utilization and ecological sustainability in intercropping systems. Synchronizing water and nitrogen inputs to match crop demands optimizes the spatiotemporal distribution of these resources, alleviates interspecific competition, and promotes mutualistic interactions, which significantly impacts crop growth, yield, and soil environment. This paper reviews the mechanisms of intercropping and water–nitrogen coupling regulation, aligning water and nitrogen supply with crop growth patterns, spatial configuration parameters, irrigation management techniques, and environmental climate change, and explores the response mechanisms of water–nitrogen coupling on crop growth, yield, and soil environmental adaptation. It can provide some references for researchers, extension agents, and policymakers. Research indicates that water–nitrogen coupling can enhance photosynthetic efficiency, promote root development, optimize nutrient uptake, and improve soil water dynamics, nitrogen cycling, and microbial community structures. Intercropping enhances the climate resilience of agricultural systems by leveraging species complementarity for resource utilization, strengthening ecosystem stability, and improving buffering capacity against climate change impacts such as extreme precipitation and temperature fluctuations. Future studies should further elucidate the differential effect of water–nitrogen coupling across regions and climatic conditions, focusing on multidimensional integrated administration strategies. Combining precision agriculture technologies and climate change predictions facilitates the development of more adaptive water–nitrogen coupling models to provide theoretical support and technical guarantees for sustainable agriculture. Full article
Show Figures

Figure 1

14 pages, 2618 KiB  
Article
Potential Effects of Grassland Restoration on the Water Resources in Nango-Dani, Aso, Japan
by Hiroki Amano, Kei Nakagawa, Tsutomu Ichikawa and Ronny Berndtsson
Water 2025, 17(16), 2466; https://doi.org/10.3390/w17162466 - 20 Aug 2025
Abstract
The semi-natural grasslands of the Aso Caldera, Japan, have historically played a key role in maintaining biodiversity, tourism, and water resources. However, they are now in decline due to a decrease in the number of agricultural workers and an aging workforce, as well [...] Read more.
The semi-natural grasslands of the Aso Caldera, Japan, have historically played a key role in maintaining biodiversity, tourism, and water resources. However, they are now in decline due to a decrease in the number of agricultural workers and an aging workforce, as well as structural changes and stagnation in the agricultural and livestock industries. This study focused on the water resource maintenance function of grasslands by applying a water balance model to quantify the potential impact of grassland restoration on water resources in Nango-Dani, located in the southern part of the Aso Caldera. We simulated groundwater recharge, storage, spring discharge, and baseflow under multiple scenarios involving the conversion of coniferous trees to grasslands. According to the calculation results, replacing 10% of coniferous trees with grassland increased groundwater recharge by approximately 0.86 million m3. This increase is due to grasslands having a higher groundwater recharge capacity, owing to their higher canopy permeability and lower evapotranspiration. The storage volume increased by approximately 0.54 million m3, which is equivalent to the annual water usage of 6700 people. Furthermore, grassland restoration increased spring discharge and baseflow. These results quantitatively demonstrate a significant enhancement of regional water resource sustainability and provide scientific evidence to inform land-use policies. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

Back to TopTop