Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (280)

Search Parameters:
Keywords = biological amendment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2771 KB  
Review
Understanding Salt Stress in Watermelon: Impacts on Plant Performance, Adaptive Solutions, and Future Prospects
by Sukhmanjot Kaur, Milena Maria Tomaz de Oliveira and Amita Kaundal
Int. J. Plant Biol. 2025, 16(3), 93; https://doi.org/10.3390/ijpb16030093 - 16 Aug 2025
Viewed by 350
Abstract
Soil salinity stress, intensified by extreme weather patterns, significantly threatens global watermelon [Citrullus lanatus (Thunb.) Matsum & Nakai] production. Watermelon, a moderately salt-sensitive crop, exhibits reduced germination, stunted growth, and impaired fruit yield and quality under saline conditions. As freshwater resources decline [...] Read more.
Soil salinity stress, intensified by extreme weather patterns, significantly threatens global watermelon [Citrullus lanatus (Thunb.) Matsum & Nakai] production. Watermelon, a moderately salt-sensitive crop, exhibits reduced germination, stunted growth, and impaired fruit yield and quality under saline conditions. As freshwater resources decline and agriculture’s dependency on irrigation leads to soil salinization, we need sustainable mitigation strategies for food security. Recent advances highlight the potential of using salt-tolerant rootstocks and breeding salt-resistant watermelon varieties as long-term genetic solutions for salinity. Conversely, agronomic interventions such as drip irrigation and soil amendments provide practical, short-term strategies to mitigate the impact of salt stress. Biostimulants represent another tool that imparts salinity tolerance in watermelon. Plant growth-promoting microbes (PGPMs) have emerged as promising biological tools to enhance watermelon tolerance to salt stress. PGPMs are an emerging tool for mitigating salinity stress; however, their potential in watermelon has not been fully explored. Nanobiochar and nanoparticles are another unexplored tool for addressing salinity stress. This review highlights the intricate relationship between soil salinity and watermelon production in a unique manner. It explores the various mitigation strategies, emphasizing the potential of PGPM as eco-friendly bio-inoculants for sustainable watermelon management in salt-affected soils. Full article
(This article belongs to the Section Plant Response to Stresses)
Show Figures

Figure 1

29 pages, 2060 KB  
Review
Integrated Management Practices Foster Soil Health, Productivity, and Agroecosystem Resilience
by Xiongwei Liang, Shaopeng Yu, Yongfu Ju, Yingning Wang and Dawei Yin
Agronomy 2025, 15(8), 1816; https://doi.org/10.3390/agronomy15081816 - 27 Jul 2025
Viewed by 853
Abstract
Sustainable farmland management is vital for global food security and for mitigating environmental degradation and climate change. While individual practices such as crop rotation and no-tillage are well-documented, this review synthesizes current evidence to illuminate the critical synergistic effects of integrating four key [...] Read more.
Sustainable farmland management is vital for global food security and for mitigating environmental degradation and climate change. While individual practices such as crop rotation and no-tillage are well-documented, this review synthesizes current evidence to illuminate the critical synergistic effects of integrating four key strategies: crop rotation, conservation tillage, organic amendments, and soil microbiome management. Crop rotation enhances nutrient cycling and disrupts pest cycles, while conservation tillage preserves soil structure, reduces erosion, and promotes carbon sequestration. Organic amendments replenish soil organic matter and stimulate biological activity, and a healthy soil microbiome boosts plant resilience to stress and enhances nutrient acquisition through key functional groups like arbuscular mycorrhizal fungi (AMFs). Critically, the integration of these practices yields amplified benefits that far exceed their individual contributions. Integrated management systems not only significantly increase crop yields (by up to 15–30%) and soil organic carbon but also deliver profound global ecosystem services, with a potential to sequester 2.17 billion tons of CO2 and reduce soil erosion by 2.41 billion tons annually. Despite challenges such as initial yield variability, leveraging these synergies through precision agriculture represents the future direction for the field. This review concludes that a holistic, systems-level approach is essential for building regenerative and climate-resilient agroecosystems. Full article
(This article belongs to the Special Issue Advances in Tillage Methods to Improve the Yield and Quality of Crops)
Show Figures

Figure 1

14 pages, 1388 KB  
Article
The Impact of Different Agricultural Practices on Nematode Biodiversity on Tomato- and Lettuce-Growing Periods Across Two Consecutive Years
by Giada d’Errico and Silvia Landi
Diversity 2025, 17(8), 501; https://doi.org/10.3390/d17080501 - 22 Jul 2025
Viewed by 354
Abstract
Protecting the soil ecosystem’s functioning is one of the main goals of recent regulations of chemicals. It is important to take soil biodiversity into account when designing cropping systems and measuring their impacts. Our main objective was to evaluate the effects of an [...] Read more.
Protecting the soil ecosystem’s functioning is one of the main goals of recent regulations of chemicals. It is important to take soil biodiversity into account when designing cropping systems and measuring their impacts. Our main objective was to evaluate the effects of an organic amendment on soil nematode biodiversity compared to two years of fumigation. The plot-trial was conducted on tomato and lettuce plants under greenhouse, and free-living nematodes were used as bio-indicators of soil health. Treatments included a soil fumigant (applied once or twice over time), water control, and an organic substance. Soil samplings were carried out to determine the Meloidogyne incognita reproduction factor and the soil nematode community analysis using soil biological indicators. Data showed that soil fumigation clearly made the soil increasingly dependent on chemicals. Furthermore, fumigants suppressed pests and pathogens as well as their natural antagonists, causing a lack of biodiversity. While soils treated with organic matter respond slowly to stressors, they are progressively more suppressive thanks to biodiversity enrichment. Nematodes have proven to be useful indicators of the soil biota in response to biotic or abiotic disturbances. Their species richness and functional diversity make them valid bioindicators of soil management impact. Full article
(This article belongs to the Special Issue Distribution, Biodiversity, and Ecology of Nematodes)
Show Figures

Graphical abstract

14 pages, 1342 KB  
Article
Mitigating Deicer-Induced Salinity Through Activated Carbon and Salt-Tolerant Grass Integration: A Case of Pennisetum alopecuroides
by Jae-Hyun Park, Hyo-In Lim, Myung-Hun Lee, Yong-Han Yoon and Jin-Hee Ju
Environments 2025, 12(7), 250; https://doi.org/10.3390/environments12070250 - 20 Jul 2025
Viewed by 745
Abstract
The use of chloride-based deicing salts, particularly sodium chloride (NaCl) and calcium chloride (CaCl2), is a common practice in cold regions for maintaining road safety during winter. However, the accumulation of salt residues in adjacent soils poses serious environmental threats, including [...] Read more.
The use of chloride-based deicing salts, particularly sodium chloride (NaCl) and calcium chloride (CaCl2), is a common practice in cold regions for maintaining road safety during winter. However, the accumulation of salt residues in adjacent soils poses serious environmental threats, including reduced pH, increased electrical conductivity (EC), disrupted soil structure, and plant growth inhibition. This study aimed to evaluate the combined effect of activated carbon (AC) and Pennisetum alopecuroides, a salt-tolerant perennial grass, in alleviating salinity stress under deicer-treated soils. A factorial greenhouse experiment was conducted using three fixed factors: (i) presence or absence of Pennisetum alopecuroides, (ii) deicer type (NaCl or CaCl2), and (iii) activated carbon mixing ratio (0, 1, 2, 5, and 10%). Soil pH, EC, and ion concentrations (Na+, Cl, Ca2+) were measured, along with six plant growth indicators. The results showed that increasing AC concentrations significantly increased pH and reduced EC and ion accumulation, with the 5% AC treatment being optimal in both deicer systems. Plant physiological responses were improved in AC-amended soils, especially under CaCl2 treatment, indicating less ion toxicity and better root zone conditions. The interaction effects between AC, deicer type, and plant presence were statistically significant (p < 0.05), supporting a synergistic remediation mechanism involving both adsorption and biological uptake. Despite the limitations of short-term controlled conditions, this study offers a promising phytomanagement strategy using natural adsorbents and salt-tolerant plants for sustainable remediation of salt-affected soils in road-adjacent and urban environments. Full article
Show Figures

Figure 1

15 pages, 1006 KB  
Review
Multifunctional Applications of Biofloc Technology (BFT) in Sustainable Aquaculture: A Review
by Changwei Li and Limin Dai
Fishes 2025, 10(7), 353; https://doi.org/10.3390/fishes10070353 - 17 Jul 2025
Viewed by 712
Abstract
Biofloc technology (BFT), traditionally centered on feed supplementation and water purification in aquaculture, harbors untapped multifunctional potential as a sustainable resource management platform. This review systematically explores beyond conventional applications. BFT leverages microbial consortia to drive resource recovery, yielding bioactive compounds with antibacterial/antioxidant [...] Read more.
Biofloc technology (BFT), traditionally centered on feed supplementation and water purification in aquaculture, harbors untapped multifunctional potential as a sustainable resource management platform. This review systematically explores beyond conventional applications. BFT leverages microbial consortia to drive resource recovery, yielding bioactive compounds with antibacterial/antioxidant properties, microbial proteins for efficient feed production, and algae biomass for nutrient recycling and bioenergy. In environmental remediation, its porous microbial aggregates remove microplastics and heavy metals through integrated physical, chemical, and biological mechanisms, addressing critical aquatic pollution challenges. Agri-aquatic integration systems create symbiotic loops where nutrient-rich aquaculture effluents fertilize plant cultures, while plants act as natural filters to stabilize water quality, reducing freshwater dependence and enhancing resource efficiency. Emerging applications, including pigment extraction for ornamental fish and the anaerobic fermentation of biofloc waste into organic amendments, further demonstrate its alignment with circular economy principles. While technical advancements highlight its capacity to balance productivity and ecological stewardship, challenges in large-scale optimization, long-term system stability, and economic viability necessitate interdisciplinary research. By shifting focus to its underexplored functionalities, this review positions BFT as a transformative technology capable of addressing interconnected global challenges in food security, pollution mitigation, and sustainable resource use, offering a scalable framework for the future of aquaculture and beyond. Full article
(This article belongs to the Section Sustainable Aquaculture)
Show Figures

Graphical abstract

18 pages, 1777 KB  
Review
Biochar in Agriculture: A Review on Sources, Production, and Composites Related to Soil Fertility, Crop Productivity, and Environmental Sustainability
by Md. Muzammal Hoque, Biplob Kumar Saha, Antonio Scopa and Marios Drosos
C 2025, 11(3), 50; https://doi.org/10.3390/c11030050 - 11 Jul 2025
Cited by 1 | Viewed by 1680
Abstract
Due to soil nutrient depletion and rising food demand from an increasing global population, it is essential to find sustainable ways to boost crop yields, improve soil health, and address the environmental issues induced by agriculture. The most appropriate approach is to consider [...] Read more.
Due to soil nutrient depletion and rising food demand from an increasing global population, it is essential to find sustainable ways to boost crop yields, improve soil health, and address the environmental issues induced by agriculture. The most appropriate approach is to consider sustainable amendments, such as biochar and its derivatives, which are vital constituents of soil health due to their affordability, low reactivity, large surface area, and reduced carbon footprint. In this context, biochar and its derivatives in farming systems focus on improving soil structure, nutrient holding capacity, microbial activities, and the perpetuation of soil fertility. Despite its benefits, biochar, if it is used in high concentration, can sometimes become highly toxic, causing soil erosion due to reducing surface area, increasing pH levels, and altering soil properties. This review highlights the production methods and sources of feedstocks, emphasizing their important contribution to the soil’s physicochemical and biological properties. Furthermore, it critically evaluates the environmental applications and their impacts, providing data built upon the literature on contaminant removal from soil, economic factors, heavy metal immobilization, carbon sequestration, and climate resilience. This review emphasizes the main challenges and future prospects for biochar use in comparison to modified biochar (MB) to propose the best practices for sustainable farming systems. Full article
(This article belongs to the Special Issue Carbons for Health and Environmental Protection (2nd Edition))
Show Figures

Graphical abstract

21 pages, 1384 KB  
Review
Biocontrol Strategies Against Plant-Parasitic Nematodes Using Trichoderma spp.: Mechanisms, Applications, and Management Perspectives
by María Belia Contreras-Soto, Juan Manuel Tovar-Pedraza, Alma Rosa Solano-Báez, Heriberto Bayardo-Rosales and Guillermo Márquez-Licona
J. Fungi 2025, 11(7), 517; https://doi.org/10.3390/jof11070517 - 11 Jul 2025
Viewed by 1224
Abstract
Plant-parasitic nematodes represent a significant threat to agriculture, causing substantial economic losses worldwide. Among the biological alternatives for their control, the genus Trichoderma has emerged as a promising solution for suppressing various nematode species. This article reviews key studies on the interaction between [...] Read more.
Plant-parasitic nematodes represent a significant threat to agriculture, causing substantial economic losses worldwide. Among the biological alternatives for their control, the genus Trichoderma has emerged as a promising solution for suppressing various nematode species. This article reviews key studies on the interaction between Trichoderma spp. and plant-parasitic nematodes, highlighting the most studied species such as Trichoderma harzianum, Trichoderma longibrachiatum, Trichoderma virens, and Trichoderma viride, mainly against the genera Meloidogyne, Pratylenchus, Globodera, and Heterodera. Trichoderma spp. act through mechanisms such as mycoparasitism, antibiosis, competition for space in the rhizosphere, production of lytic enzymes, and modulation of plant defense responses. They also produce metabolites that affect nematode mobility, reproduction, and survival, such as gliotoxin, viridin and cyclosporine A. In addition, they secrete enzymes such as chitinases, proteases, lipases, and glucanases, which degrade the cuticle of nematodes and their eggs. Furthermore, Trichoderma spp. induce systemic resistance in plants through modulation of phytohormones such as jasmonic acid, ethylene, salicylic acid and auxins. The use of Trichoderma in integrated nematode management enables its application in combination with crop rotation, organic amendments, plant extracts, and resistant varieties, thereby reducing the reliance on synthetic nematicides and promoting more sustainable and climate-resilient agriculture. Full article
Show Figures

Figure 1

29 pages, 11618 KB  
Article
Improving Soil Health Using Date Palm Residues in Southern Tunisian Olive Orchards
by Najoua Chniguir, Abdelhakim Bouajila, Ángeles Prieto-Fernández, Zohra Omar, Salah Mahmoudi and Carmen Trasar-Cepeda
Land 2025, 14(7), 1414; https://doi.org/10.3390/land14071414 - 5 Jul 2025
Viewed by 575
Abstract
This study evaluated the effects of different types and rates of locally produced organic residues on soil organic matter (SOM) and soil health in highly degraded loamy soils of olive orchards in arid southern Tunisia. Three residues were tested: poultry manure, raw date [...] Read more.
This study evaluated the effects of different types and rates of locally produced organic residues on soil organic matter (SOM) and soil health in highly degraded loamy soils of olive orchards in arid southern Tunisia. Three residues were tested: poultry manure, raw date palm waste, and composted date palm waste mixed with manure. A randomised field trial was conducted over three years. Two years after application, soil samples were analysed for physical and chemical properties, basal respiration, nitrogen mineralisation, microbial biomass, enzyme activities (dehydrogenase, phosphomonoesterase, β-glucosidase, urease, arylsulphatase), and community-level physiological profiles. All residues increased SOM and available phosphorus (Pi), with dose-dependent effects sustained over time, though significant increases were only observed at the highest application rates. The most notable improvements occurred in soils amended with composted date palm waste. In contrast, biological and biochemical parameters showed little response, even after remoistening to stimulate microbial activity. This limited response was attributed to the absence of vegetation and, consequently, of root exudates and plant residues. This will be further investigated by assessing changes in the same biological and biochemical properties following the implementation of an intercropping system, which is expected to enhance both SOM content and microbial activity in these soils. Full article
Show Figures

Figure 1

18 pages, 766 KB  
Article
Effects of Fertilizers and Soil Amendments on Soil Physicochemical Properties and Carbon Sequestration of Oat (Avena sativa L.) Planted in Saline–Alkaline Land
by Jiao Liu, Yiming Zhu, Hao Wu, Guichun Dong, Guisheng Zhou and Donald L. Smith
Agronomy 2025, 15(7), 1582; https://doi.org/10.3390/agronomy15071582 - 28 Jun 2025
Cited by 1 | Viewed by 461
Abstract
The coastal tidal flat area of Jiangsu Province, China, is vast and has great potential for carbon sequestration. Planting oat in saline–alkaline land can increase carbon sequestration from the atmosphere into soil and, thus, improve soil quality. Harvesting oats can act as a [...] Read more.
The coastal tidal flat area of Jiangsu Province, China, is vast and has great potential for carbon sequestration. Planting oat in saline–alkaline land can increase carbon sequestration from the atmosphere into soil and, thus, improve soil quality. Harvesting oats can act as a biological desalination mechanism, and long-term planting may transform saline–alkaline land into high-quality arable land. Our experiment selected two oat varieties, Caesar (V1) and Menglong (V2), and used urea, organic fertilizer, microbial inoculant, and biochar as experimental factors to investigate the effects of fertilizers and soil amendments on soil improvement and carbon sequestration when cultivating oats. The results showed that when planting V1, the carbon sequestration of the farmland ecosystem was the highest with microbial inoculant and organic fertilizer treatments, and the soil salinity decreased the most with biochar treatment. When planting V2, the carbon sequestration of the farmland ecosystem was the highest with the urea + biochar treatment, the soil salinity decreased the most with organic fertilizer + microbial inoculant treatment, and the soil organic carbon content increased the most with organic fertilizer + biochar treatment. We found that the application of organic fertilizer and biochar significantly increased soil organic carbon (SOC) content by 22.03% compared to the control treatment. Additionally, the combined treatment of urea and biochar resulted in the highest agricultural carbon sink, with a 74.62% increase in oat carbon storage compared to conventional fertilization. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

21 pages, 1894 KB  
Article
Optimizing Cocoa Productivity Through Soil Health and Microbiome Enhancement: Insights from Organic Amendments and a Locally Derived Biofertilizer
by Jennifer E. Schmidt, Julia Flores, Luigy Barragan, Freddy Amores and Sat Darshan S. Khalsa
Microorganisms 2025, 13(6), 1408; https://doi.org/10.3390/microorganisms13061408 - 17 Jun 2025
Viewed by 844
Abstract
Despite growing interest in improving soil health on cocoa farms, applied research on the impacts of specific amendments on soil and plant outcomes is lacking. An integrated assessment of the impacts of two different organic amendments (compost and vermicompost) and a microbial biofertilizer [...] Read more.
Despite growing interest in improving soil health on cocoa farms, applied research on the impacts of specific amendments on soil and plant outcomes is lacking. An integrated assessment of the impacts of two different organic amendments (compost and vermicompost) and a microbial biofertilizer on soil physical, chemical, and biological properties, as well as cocoa flowering, fruit set, and yield, was conducted in Guayaquil, Ecuador. Complementary culture-dependent and culture-independent methods were used to assess the impacts of amendments on microbial diversity, community composition, and specific taxa. Compost or vermicompost application affected soil chemical properties, including potassium, phosphorus, and sodium, and had small but significant effects on fungal beta diversity. Biofertilizer application slightly lowered soil pH and altered the total abundance of specific taxonomic groups including Azotobacter sp. and Trichoderma sp., with borderline significant effects on Azospirillum sp., Lactobacillus sp., Pseudomonas sp., calcium-solubilizing bacteria, and phosphorus-solubilizing bacteria. Amplicon sequencing (16S, ITS) identified 15 prokaryotic and 68 fungal taxa whose relative abundance was influenced by organic amendments or biofertilizer. Biofertilizer application increased cherelle formation by 19% and monthly harvestable pod counts by 11% despite no impact on flowering index or annual pod totals. This study highlights the tangible potential of microbiome optimization to simultaneously improve on-farm yield and achieve soil health goals on cocoa farms. Full article
Show Figures

Figure 1

17 pages, 3950 KB  
Article
Performance of Microbially Induced Carbonate Precipitation for Reinforcing Cohesive Soil in the Reservoir Area
by Xinfa Li, Dingxiang Zhuang and Ru Hu
Crystals 2025, 15(6), 540; https://doi.org/10.3390/cryst15060540 - 5 Jun 2025
Viewed by 730
Abstract
Cohesive soil in the reservoir area is vulnerable to natural disasters because of its poor erosion resistance and low strength. Therefore, it needs to be reinforced. Microbially induced calcium carbonate precipitation (MICP) is a sustaibable soil reinforcement technique with low energy consumption and [...] Read more.
Cohesive soil in the reservoir area is vulnerable to natural disasters because of its poor erosion resistance and low strength. Therefore, it needs to be reinforced. Microbially induced calcium carbonate precipitation (MICP) is a sustaibable soil reinforcement technique with low energy consumption and no pollution. Different combinations of Bacillus subtilis bacterial solution (BS) concentrations and cementing solution (CS) concentrations were set to perform MICP solidification treatment. The characterization of cohesive soil before MICP was carried out by means of Scanning Electron Microscopy (SEM), Fourier-Transform Infrared Spectroscopy (FTIR), and Laser Particle Size Analyzer (LPSA). The results showed that the unreinforced soil showed an amorphous state with low strength and the particle size distribution was dominated by powder particles. However, with the addition of BS concentrations and CS concentrations, SEM results showed that spherical and rhombohedral minerals filled the pores of the cohesive soil, which increased the content of precipitations and enhanced the cementitious characteristics. When the concentrations of CS or BS were fixed, CaCO3 content, deviatoric stress, shear strength, cohesive force, and internal friction angle all showed a trend of first increasing and then decreasing with the increase in CS or BS concentration. The optimal combination of CS and BS concentration was 1.5 mol/L and OD600 = 1.8. Thermochemical analyses showed an improved thermal stability of the reinforcing cohesive soil, with the lowest mass loss (32%) and the highest pyrolysis temperature (812 °C) of the samples at the optimal combination of BS and CS concentration. This study is expected to improve the understanding of the MICP reinforcement process and contribute to the optimal design of future biologically mediated soil amendments, promoting bioremediation. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

17 pages, 879 KB  
Article
Urban Market Gardening Improves Soil Health: A Case Study in Burkina Faso
by Rayangnéwendé Adèle Ouédraogo, Fabèkourè Cédric Kambiré, Laurent Cournac and Charles L. Bielders
Soil Syst. 2025, 9(2), 59; https://doi.org/10.3390/soilsystems9020059 - 4 Jun 2025
Viewed by 532
Abstract
In sub-Saharan Africa, urban market gardening is characterized by the intensive use of chemical inputs, which could have adverse effects on soil health. This study therefore aimed to assess the impact of urban market gardening on soil health. Topsoil samples were collected from [...] Read more.
In sub-Saharan Africa, urban market gardening is characterized by the intensive use of chemical inputs, which could have adverse effects on soil health. This study therefore aimed to assess the impact of urban market gardening on soil health. Topsoil samples were collected from 69 plots at a market gardening site in Bobo-Dioulasso, Burkina Faso, with cultivation histories ranging from 0 to over 50 years. Twenty-six chemical, biological, and physical soil properties were analyzed. Principal component analysis was used to identify minimum data sets for the assessment of soil health. The selected variables were standardized and aggregated into two soil health indices on a scale from 0 to 100: an overall index based on all properties combined and an average index based on the mean of the biological, physical, and chemical components of soil health. Both indices revealed a clear improvement in soil health over time, with the overall index rising from an initial value of 0.35 to 0.64 after 60 years and the average index rising from 0.30 to 0.62. The average index, which enables the separate assessment of its three components, accounted for a greater share of the temporal variability (R2 = 0.59) than the overall index (R2 = 0.47). These findings highlight the positive impact of urban market gardening practices on soil health at the study site, which was attributed to the large additions of organic amendments. Full article
Show Figures

Figure 1

21 pages, 2648 KB  
Article
Sustainable Soil Management: The Dynamic Impact of Combined Use of Crop Rotation and Fertilizers from Agri-Food and Sulfur Hydrocarbon Refining Processes Wastes
by Angela Maffia, Federica Marra, Mariateresa Oliva, Santo Battaglia, Carmelo Mallamaci and Adele Muscolo
Land 2025, 14(6), 1171; https://doi.org/10.3390/land14061171 - 29 May 2025
Viewed by 588
Abstract
Sustainable agriculture increasingly relies on strategies that improve soil fertility while reducing the environmental footprint of chemical inputs. The primary objective of this research was to disentangle the individual and combined effects of crop rotation and fertilization on soil quality. This study aimed [...] Read more.
Sustainable agriculture increasingly relies on strategies that improve soil fertility while reducing the environmental footprint of chemical inputs. The primary objective of this research was to disentangle the individual and combined effects of crop rotation and fertilization on soil quality. This study aimed to determine whether the effectiveness of fertilization was modified by rotational practices—exploring whether these interactions were additive, antagonistic, or synergistic. This study assessed the impact of two-year open-field crop rotations—broccoli–tomato and broccoli–pepper—combined with organic and mineral fertilization on soil chemical and biological properties. Treatments included sulfur bentonite enriched with orange waste (SBO), horse manure (HM), mineral fertilizer (NPK), and an unfertilized control (CTR). Soil samples were collected after each crop cycle and analyzed for enzymatic activities (fluorescein diacetate hydrolase, dehydrogenase, catalase), microbial biomass carbon (MBC), organic matter, total nitrogen, and macro- and micronutrient content. The results showed that organic amendments, particularly SBO and HM, significantly increased microbial activity, MBC, and nutrient availability compared to NPK and CTR. Organic treatments also led to a reduction in soil pH (−12%) and a more balanced ionic profile, enhancing soil biological fertility across both rotations. By contrast, the NPK treatments favored higher nitrate and chloride concentrations (3.5 and 4.6 mg * g−1 dw, respectively) but did not improve biological indicators. Improvements were more pronounced in the second crop cycle, suggesting the cumulative benefits of organic amendments over time. These findings highlight the potential of combining organic fertilization with crop rotation to enhance soil health and support long-term sustainability in horticultural systems. Full article
(This article belongs to the Special Issue Soil Ecological Risk Assessment Based on LULC)
Show Figures

Figure 1

16 pages, 3424 KB  
Article
Amelioration Effects of Soil Fertility and Microbial Responses on a Sandy Loam Soil in Mining Areas Treated with Biochar and Water Jet-Loom Sludge
by Mengmeng Jiang, Xiaofang Zhu, Xunzheng Rao and Jiu Huang
Land 2025, 14(5), 1066; https://doi.org/10.3390/land14051066 - 14 May 2025
Viewed by 455
Abstract
Aiming at the remediation of soil in mining areas caused by mining activities, pot experiments were conducted using water jet-loom sludge (WJLS) and biochar as soil amendments to evaluate their potential for enhancing soil fertility and microbial communities of degraded mining soils. Six [...] Read more.
Aiming at the remediation of soil in mining areas caused by mining activities, pot experiments were conducted using water jet-loom sludge (WJLS) and biochar as soil amendments to evaluate their potential for enhancing soil fertility and microbial communities of degraded mining soils. Six treatments with varying WJLS (0%, 5%, 15%) and biochar (0%, 3%) application rates were evaluated. Results showed that WJLS can significantly improve soil organic carbon (OC), total nitrogen (TN), total phosphorus (TP), and microbial biomass, while reducing soil pH and enhancing ryegrass biomass by 1.6–4.1 times. However, a 3% biochar addition may increase the soil sodium absorption ratio (SAR). Moreover, the role of biochar was mainly reflected in the microbiological properties. The combining of WJLS and biochar increased the soil microbial biomass and obviously improved the diversity and abundance of bacteria and fungi in the soil (p < 0.05) after the amendment, especially in the biochar addition groups. At the phylum level, the relative abundance of Proteobacteria, Firmicutes, and Actinobacteriota accounted for 72.4%~84.2% of soil bacteria in all treatments, while the fungi were dominated by Ascomycota (58.30%~95.36%) and Fungi_unclassified (1.26%~38.97%), all of which were significantly related to enhanced soil properties especially OC, TN, TP, and cation exchange capacity (CEC). Overall, WJLS and biochar demonstrate strong potential as sustainable amendments for improving soil fertility and biological quality in the reclamation of mining-affected lands. Full article
Show Figures

Figure 1

26 pages, 7883 KB  
Article
Technosol Micromorphology Reveals the Early Pedogenesis of Abandoned Rare Earth Element Mining Sites Undergoing Reclamation in South China
by Françoise Watteau, Jean Louis Morel, Chang Liu, Yetao Tang and Hermine Huot
Minerals 2025, 15(5), 514; https://doi.org/10.3390/min15050514 - 14 May 2025
Cited by 1 | Viewed by 571
Abstract
The process of anthropogenic pedogenesis has necessarily become an important aspect of the study of today’s soils. The sustainable reclamation or remediation of soils degraded by industrial or mining activities is currently of great interest worldwide. In this field, the study of thin [...] Read more.
The process of anthropogenic pedogenesis has necessarily become an important aspect of the study of today’s soils. The sustainable reclamation or remediation of soils degraded by industrial or mining activities is currently of great interest worldwide. In this field, the study of thin soil sections can provide relevant answers, particularly to questions concerning the evolution of these soils under the impact of reclamation practices. Here, we describe an experiment to reclaim former rare earth element mining sites in China using organic soil amendments and plantations of a local fiber plant, Boehmeria nivea. Two years after the start of the experiment, a study of soil structure, considered as an indicator of soil biofunctioning, was carried out on the different plots, supplemented by monitoring of physico-chemical properties. Morphological (light microscopy) and analytical (SEM-EDX, µ-XRF) characterization of thin sections allowed us to pinpoint some pedological processes as aggregation with particular reference to the contribution of biological factors and mineral species, highlighting the impact of the practices implemented. Using a soil micromorphology approach enabled us to track the rapid evolution of the early stages of pedogenesis of these Technosols and to provide insight into the potential for reclamation of these mined sites in the future. Full article
(This article belongs to the Special Issue Thin Sections: The Past Serving The Future)
Show Figures

Figure 1

Back to TopTop