Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (862)

Search Parameters:
Keywords = biomimetic system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
429 KB  
Review
Bioinspired Approaches and Their Philosophical–Ethical Dimensions: A Narrative Review
by Louisa Estadieu, Julius Fenn, Michael Gorki, Philipp Höfele and Oliver Müller
Biomimetics 2025, 10(9), 602; https://doi.org/10.3390/biomimetics10090602 (registering DOI) - 9 Sep 2025
Abstract
The environmental crisis demands transformative solutions on both technological and societal levels. Bioinspired approaches, which draw from the principles of natural systems, have emerged as a promising interdisciplinary framework to address these challenges. These approaches not only drive technological innovation but also provoke [...] Read more.
The environmental crisis demands transformative solutions on both technological and societal levels. Bioinspired approaches, which draw from the principles of natural systems, have emerged as a promising interdisciplinary framework to address these challenges. These approaches not only drive technological innovation but also provoke critical philosophical and ethical discourse, particularly in the field of biomimicry. Philosophical and ethical questions include: How can we ethically justify drawing inspiration from nature without exploiting it? How might a shift toward a bioinspired perspective alter our relationship with nature? How could a reorientation toward nature influence ethical frameworks and guide human behavior toward the environment? This narrative review systematically examines key philosophical and ethical perspectives within biomimicry, while focusing on potentials as well as limitations of these approaches to the environmental crisis. In doing so, it explores key perspectives such as “biomimetic ethics”, the “ontology of nature”, “bioinclusivity”, and the “naturalistic fallacy”. Full article
(This article belongs to the Special Issue Biomimetics—A Chance for Sustainable Developments: 2nd Edition)
Show Figures

Figure 1

24 pages, 815 KB  
Review
Porous Structures, Surface Modifications, and Smart Technologies for Total Ankle Arthroplasty: A Narrative Review
by Joshua M. Tennyson, Michael O. Sohn, Arun K. Movva, Kishen Mitra, Conor N. O’Neill, Albert T. Anastasio and Samuel B. Adams
Bioengineering 2025, 12(9), 955; https://doi.org/10.3390/bioengineering12090955 - 5 Sep 2025
Viewed by 282
Abstract
Surface engineering and architectural design represent key frontiers in total ankle arthroplasty (TAA) implant development. This narrative review examines biointegration strategies, focusing on porous structures, surface modification techniques, and emerging smart technologies. Optimal porous architectures with 300–600 µm pore sizes facilitate bone ingrowth [...] Read more.
Surface engineering and architectural design represent key frontiers in total ankle arthroplasty (TAA) implant development. This narrative review examines biointegration strategies, focusing on porous structures, surface modification techniques, and emerging smart technologies. Optimal porous architectures with 300–600 µm pore sizes facilitate bone ingrowth and osseointegration, while functionally graded structures address regional biomechanical demands. Surface modification encompasses bioactive treatments (such as calcium phosphate coatings), topographical modifications (including micro/nanotexturing), antimicrobial approaches (utilizing metallic ions or antibiotic incorporation), and wear-resistant technologies (such as diamond-like carbon coatings). Multifunctional approaches combine strategies to simultaneously address infection prevention, enhance osseointegration, and improve wear resistance. Emerging technologies include biodegradable scaffolds, biomimetic surface nanotechnology, and intelligent sensor-based monitoring systems. While many innovations remain in the research stage, they demonstrate the potential to establish TAA as a comprehensive alternative to arthrodesis. Successful implant design requires integrated surface engineering tailored to the ankle joint’s demanding biomechanical and biological environment Full article
Show Figures

Graphical abstract

26 pages, 1127 KB  
Article
LSTM-Enhanced TD3 and Behavior Cloning for UAV Trajectory Tracking Control
by Yuanhang Qi, Jintao Hu, Fujie Wang and Gewen Huang
Biomimetics 2025, 10(9), 591; https://doi.org/10.3390/biomimetics10090591 - 4 Sep 2025
Viewed by 193
Abstract
Unmanned aerial vehicles (UAVs) often face significant challenges in trajectory tracking within complex dynamic environments, where uncertainties, external disturbances, and nonlinear dynamics hinder accurate and stable control. To address this issue, a bio-inspired deep reinforcement learning (DRL) algorithm is proposed, integrating behavior cloning [...] Read more.
Unmanned aerial vehicles (UAVs) often face significant challenges in trajectory tracking within complex dynamic environments, where uncertainties, external disturbances, and nonlinear dynamics hinder accurate and stable control. To address this issue, a bio-inspired deep reinforcement learning (DRL) algorithm is proposed, integrating behavior cloning (BC) and long short-term memory (LSTM) networks. This method can achieve autonomous learning of high-precision control policy without establishing an accurate system dynamics model. Motivated by the memory and prediction functions of biological neural systems, an LSTM module is embedded into the policy network of the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm. This structure captures temporal state patterns more effectively, enhancing adaptability to trajectory variations and resilience to delays or disturbances. Compared to memoryless networks, the LSTM-based design better replicates biological time-series processing, improving tracking stability and accuracy. In addition, behavior cloning is employed to pre-train the DRL policy using expert demonstrations, mimicking the way animals learn from observation. This biomimetic plausible initialization accelerates convergence by reducing inefficient early-stage exploration. By combining offline imitation with online learning, the TD3-LSTM-BC framework balances expert guidance and adaptive optimization, analogous to innate and experience-based learning in nature. Simulation experimental results confirm the superior robustness and tracking accuracy of the proposed method, demonstrating its potential as a control solution for autonomous UAVs. Full article
(This article belongs to the Special Issue Bio-Inspired Robotics and Applications 2025)
Show Figures

Figure 1

24 pages, 2467 KB  
Review
Suture Materials: Conventional and Stimulatory-Responsive Absorbable Polymers with Biomimetic Function
by Francesco Nappi
Biomimetics 2025, 10(9), 590; https://doi.org/10.3390/biomimetics10090590 - 4 Sep 2025
Viewed by 212
Abstract
Suture materials are of pivotal importance in the process of wound healing, as they provide support to growing tissue. The application of suture materials is an intricate process that extends beyond mere closure of skin wounds. Rather, it encompasses a wide range of [...] Read more.
Suture materials are of pivotal importance in the process of wound healing, as they provide support to growing tissue. The application of suture materials is an intricate process that extends beyond mere closure of skin wounds. Rather, it encompasses a wide range of surgical procedures. It is evident that suture materials possess a high degree of versatility, as evidenced by their application in a broad range of surgical disciplines, including, but not limited to, plastic surgery, neurosurgery, vascular surgery and ocular surgery. Additionally, their application extends to wound treatment and the repair of the musculo-skeletal system and the urogenital tract. This review underscores the pivotal role of sutures in contemporary medicine and surgery. The selection of suture material must be made with the utmost attention to the physical and biological characteristics of the material concerned. The process is characterised by a multifaceted evaluation encompassing the following: first, the assessment of the wound in question; secondly, the healing rate of different tissue types; and thirdly, a thorough appraisal of the patient’s overall physical condition. Advances in suture material technology have given rise to a wider range of sutures, thereby enhancing the existing array of options. Simultaneously, suture needles have undergone a progressive process of technological refinement, resulting in a more comprehensive range of alternatives with a heightened level of precision for specific applications in tissue engineering. Recent experimental investigations have employed an animal model, underpinned by biomechanical analysis. It is evident from the findings of these studies that absorbable sutures fulfil a scaffolding function. The hypothesis concerning the biomimetic function of the materials under investigation was corroborated by the results of biomechanical behaviour and histological examination. This review explores the functionality of both absorbable sutures and novel polymers, investigating their potential application as scaffolding materials within clinical contexts. Full article
(This article belongs to the Special Issue Biological and Bioinspired Materials and Structures: 2nd Edition)
Show Figures

Graphical abstract

42 pages, 3851 KB  
Review
Conjugate Nanoparticles in Cancer Theranostics
by Hossein Omidian, Erma J. Gill and Luigi X. Cubeddu
J. Nanotheranostics 2025, 6(3), 24; https://doi.org/10.3390/jnt6030024 - 4 Sep 2025
Viewed by 191
Abstract
Nanotheranostics combines therapeutic and diagnostic functions within multifunctional nanoparticle platforms to enable precision medicine. This review outlines a comprehensive framework for engineering nanotheranostic systems, focusing on core material composition, surface functionalization, and stimuli-responsive drug delivery. Targeting strategies—from ligand-based recognition to biomimetic interfaces—are examined [...] Read more.
Nanotheranostics combines therapeutic and diagnostic functions within multifunctional nanoparticle platforms to enable precision medicine. This review outlines a comprehensive framework for engineering nanotheranostic systems, focusing on core material composition, surface functionalization, and stimuli-responsive drug delivery. Targeting strategies—from ligand-based recognition to biomimetic interfaces—are examined alongside therapeutic modalities such as chemotherapy, photothermal and photodynamic therapies, gene silencing via RNA interference, and radio sensitization. We discuss advanced imaging techniques (fluorescence imaging FI), magnetic resonance imaging (MRI), positron emission tomography (PET), and photoacoustic imaging for real-time tracking and treatment guidance. Key considerations include physicochemical characterization (e.g., article size, surface charge, and morphology), biocompatibility, in-vitro efficacy, and in-vivo biodistribution. We also address challenges such as rapid biological clearance, tumor heterogeneity, and clinical translation, and propose future directions for developing safe, adaptable, and effective nanotheranostic platforms. This review serves as a roadmap for advancing next-generation nano systems in biomedical applications. Full article
(This article belongs to the Special Issue Advances in Nanoscale Drug Delivery Technologies and Theranostics)
Show Figures

Figure 1

21 pages, 8646 KB  
Article
Influence of Varying Fractal Characteristics on the Dynamic Response of a Semi-Submersible Floating Wind Turbine Platform
by Wanyong Zhang, Haoda Huang, Qingsong Liu, Yangtian Yan, Chun Li, Weipao Miao, Minnan Yue and Wanfu Zhang
J. Mar. Sci. Eng. 2025, 13(9), 1708; https://doi.org/10.3390/jmse13091708 - 4 Sep 2025
Viewed by 181
Abstract
Offshore wind turbines positioned in deepwater areas are increasingly favored due to them providing superior and stable wind resources. However, the dynamic stability of floating offshore wind turbines (FOWTs) under complex environmental loading remains challenging. This study proposes a novel semi-submersible platform featuring [...] Read more.
Offshore wind turbines positioned in deepwater areas are increasingly favored due to them providing superior and stable wind resources. However, the dynamic stability of floating offshore wind turbines (FOWTs) under complex environmental loading remains challenging. This study proposes a novel semi-submersible platform featuring a fractal structure inspired by the venation of Victoria Amazonica and investigates the effects of fractal branching level and biomimetic structural height on platform motions, with the aim of enhancing the overall system stability of FOWTs. Within a high-fidelity computational fluid dynamics (CFD) framework coupled with a dynamic fluid–body interaction (DFBI) model and a volume-of-fluid (VOF) wave model, the dynamic responses of the biomimetic platform are investigated under varying fractal dimensions (Df) and structural heights. The results indicate that increasing fractal complexity enhances the local wall viscosity effect, significantly improving energy dissipation capabilities within the fractal cavities. Specifically, an eight-level fractal structure shows optimal performance, achieving reductions of approximately 16.94%, 23.26%, and 35.63% in heave, pitch, and rotational energy responses, respectively. Additionally, the increasing fractal height further strengthens energy dissipation, markedly enhancing stability, particularly in pitch motion. These findings underscore the substantial potential of biomimetic fractal designs in enhancing the dynamic stability of FOWTs. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

7 pages, 986 KB  
Communication
A Call for Bio-Inspired Technologies: Promises and Challenges for Ecosystem Service Replacement
by Kristina Wanieck, M. Alex Smith, Elizabeth Porter, Jindong Zhang, Dave Dowhaniuk, Andria Jones, Dan Gillis, Mark Lipton, Marsha Hinds Myrie, Dawn Bazely, Marjan Eggermont, Mindi Summers, Christina Smylitopoulos, Claudia I. Rivera Cárdenas, Emily Wolf, Peggy Karpouzou, Nikoleta Zampaki, Heather Clitheroe, Adam Davies, Anibal H. Castillo, Michael Helms, Karina Benessaiah and Shoshanah Jacobsadd Show full author list remove Hide full author list
Biomimetics 2025, 10(9), 578; https://doi.org/10.3390/biomimetics10090578 - 2 Sep 2025
Viewed by 411
Abstract
Ecosystem services are crucial for animals, plants, the planet, and human well-being. Decreasing biodiversity and environmental destruction of ecosystems will have severe consequences. Designing technologies that could support, enhance, or even replace ecosystem services is a complex task that the Manufactured Ecosystems Project [...] Read more.
Ecosystem services are crucial for animals, plants, the planet, and human well-being. Decreasing biodiversity and environmental destruction of ecosystems will have severe consequences. Designing technologies that could support, enhance, or even replace ecosystem services is a complex task that the Manufactured Ecosystems Project team considers to be only achievable with transdisciplinarity, as it unlocks new directions for designing research and development systems. One of these directions in the project is bio-inspiration, learning from natural systems as the foundation for manufacturing ecosystem services. Using soil formation as a case study, text-mining of existing scientific literature reveals a critical gap: fewer than 1% of studies in biomimetics address soil formation technological replacement, despite the rapid global decline in natural soil formation processes. The team sketches scenarios of ecosystem collapse, identifying how bio-inspired solutions for equitable and sustainable innovation can contribute to climate adaptation. The short communication opens the discussion for collaboration and aims to initiate future research. Full article
Show Figures

Figure 1

21 pages, 5447 KB  
Article
Dynamic Responses of Harbor Seal Whisker Model in the Propeller Wake Flow
by Bingzhuang Chen, Zhimeng Zhang, Xiang Wei, Wanyan Lei, Yuting Wang, Xianghe Li, Hanghao Zhao, Muyuan Du and Chunning Ji
Fluids 2025, 10(9), 232; https://doi.org/10.3390/fluids10090232 - 1 Sep 2025
Viewed by 226
Abstract
This study experimentally investigates the wake-induced vibration (WIV) behavior of a bio-inspired harbor seal whisker model subjected to upstream propeller-generated unsteady flows. Vibration amplitudes, frequencies, and wake–whisker interactions were systematically evaluated under various flow conditions. The test matrix included propeller rotational speed N [...] Read more.
This study experimentally investigates the wake-induced vibration (WIV) behavior of a bio-inspired harbor seal whisker model subjected to upstream propeller-generated unsteady flows. Vibration amplitudes, frequencies, and wake–whisker interactions were systematically evaluated under various flow conditions. The test matrix included propeller rotational speed Np = 0~5000 r/min, propeller diameter Dp = 60~100 mm, incoming flow velocity U = 0~0.2 m/s, and separation distance between the whisker model and the propeller L/D = 10~30 (D = 16 mm, diameter of the whisker model). Results show that inline (IL) and crossflow (CF) vibration amplitudes increase significantly with propeller speed and decrease with increasing separation distance. Under combined inflow and wake excitation, non-monotonic trends emerge. Frequency analysis reveals transitions from periodic to subharmonic and broadband responses, depending on wake structure and coherence. A non-dimensional surface fit using L/D and the advance ratio (J = U/(NpDp)) yielded predictive equations for RMS responses with good accuracy. Phase trajectory analysis further distinguishes stable oscillations from chaotic-like dynamics, highlighting changes in system stability. These findings offer new insight into WIV mechanisms and provide a foundation for biomimetic flow sensing and underwater tracking applications. Full article
(This article belongs to the Special Issue Marine Hydrodynamics: Theory and Application)
Show Figures

Figure 1

24 pages, 1013 KB  
Review
Smart Design Aided by Mathematical Approaches: Adaptive Manufacturing, Sustainability, and Biomimetic Materials
by Antreas Kantaros, Theodore Ganetsos, Evangelos Pallis and Michail Papoutsidakis
Designs 2025, 9(5), 102; https://doi.org/10.3390/designs9050102 - 1 Sep 2025
Viewed by 435
Abstract
The increased importance of sustainability imperatives has required a profound reconsideration of the interaction between materials, manufacturing, and design fields. Biomimetic smart materials such as shape-memory polymers, hydrogels, and electro-active composites represent an opportunity to combine adaptability, responsiveness, and ecological intelligence in systems [...] Read more.
The increased importance of sustainability imperatives has required a profound reconsideration of the interaction between materials, manufacturing, and design fields. Biomimetic smart materials such as shape-memory polymers, hydrogels, and electro-active composites represent an opportunity to combine adaptability, responsiveness, and ecological intelligence in systems and products. This work reviews the confluence of such materials with leading-edge manufacturing technologies, notably additive and 4D printing, and how their combining opens the door to the realization of time-responsive, low-waste, and user-adaptive design solutions. Through computational modeling and mathematical simulations, the adaptive performance of these materials can be predicted and optimized, supporting functional integration with high precision. On the basis of case studies in regenerative medicine, architecture, wearables, and sustainable product design, this work formulates the possibility of biomimetic strategies in shifting design paradigms away from static towards dynamic, from fixed products to evolvable systems. Major material categories of stimuli-responsive materials are systematically reviewed, existing 4D printing workflows are outlined, and the way temporal design principles are revolutionizing production, interaction, and lifecycle management is discussed. Quantitative advances such as actuation efficiencies exceeding 85%, printing resolution improvements of up to 50 μm, and lifecycle material savings of over 30% are presented where available, to underscore measurable impact. Challenges such as material scalability, process integration, and design education shortages are critically debated. Ethical and cultural implications such as material autonomy, transparency, and cross-cultural design paradigms are also addressed. By identifying existing limitations and proposing a future-proof framework, this work positions itself within the ongoing discussion on regenerative, interdisciplinary design. Ultimately, it contributes to the advancement of sustainable innovation by equipping researchers and practitioners with a set of adaptable tools grounded in biomimicry, computational intelligence, and temporal design thinking. Full article
Show Figures

Figure 1

13 pages, 432 KB  
Review
The Combined Potential of PRP and Osteoinductive Carrier Matrices for Bone Regeneration
by Anastasiia Yurevna Meglei, Irina Alekseevna Nedorubova, Viktoriia Pavlovna Basina, Viktoria Olegovna Chernomyrdina, Dmitry Vadimovich Goldshtein and Tatiana Borisovna Bukharova
Int. J. Mol. Sci. 2025, 26(17), 8457; https://doi.org/10.3390/ijms26178457 - 30 Aug 2025
Viewed by 263
Abstract
In regenerative medicine, orthobiologics, particularly platelet-rich plasma (PRP), are widely used due to their ability to enhance natural tissue repair mechanisms. PRP contains a concentrated pool of growth factors and cytokines that enhance regeneration while also acting as a biomimetic scaffold, thereby optimizing [...] Read more.
In regenerative medicine, orthobiologics, particularly platelet-rich plasma (PRP), are widely used due to their ability to enhance natural tissue repair mechanisms. PRP contains a concentrated pool of growth factors and cytokines that enhance regeneration while also acting as a biomimetic scaffold, thereby optimizing the microenvironment for tissue healing. In bone tissue engineering, PRP is commonly combined with synthetic or natural biomaterials, as its fibrin matrix alone lacks sufficient mechanical stability. However, even such composite systems frequently exhibit limited osteoinductive capacity, necessitating further supplementation with bioactive components. This review evaluates the regenerative potential of PRP in bone defect healing when combined with osteoinductive agents in preclinical in vivo models. We present compelling experimental evidence supporting the efficacy of this combined therapeutic approach. Full article
(This article belongs to the Special Issue Novel Insights into Regenerative Medicine)
Show Figures

Graphical abstract

26 pages, 12355 KB  
Review
Nature-Inspired Gradient Material Structure with Exceptional Properties for Automotive Parts
by Xunchen Liu, Wenxuan Wang, Yingchao Zhao, Haibo Wu, Si Chen and Lanxin Wang
Materials 2025, 18(17), 4069; https://doi.org/10.3390/ma18174069 - 30 Aug 2025
Viewed by 329
Abstract
Inspired by natural gradient structures observed in biological systems such as lobster exoskeletons and bamboo, this study proposes a biomimetic strategy for developing advanced automotive materials that achieve an optimal balance between strength and ductility. Against this backdrop, the present work systematically reviews [...] Read more.
Inspired by natural gradient structures observed in biological systems such as lobster exoskeletons and bamboo, this study proposes a biomimetic strategy for developing advanced automotive materials that achieve an optimal balance between strength and ductility. Against this backdrop, the present work systematically reviews the design principles underlying natural gradient structures and examines the advantages and limitations of current additive manufacturing—specifically selective laser melting (AM-SLM)—as well as conventional forming and machining processes, in fabricating nature-inspired architectures. The research systematically explores hierarchical gradient designs which endow materials with superior mechanical properties, including enhanced strength, stiffness, and energy absorption capabilities. Two primary strengthening mechanisms—hetero-deformation-induced (HDI) hardening and precipitation hardening—were employed to overcome the conventional strength–ductility trade-off. Gradient-structured materials were fabricated using selective laser melting, and microstructural analyses demonstrated that controlled interface zones and tailored precipitation distribution critically influence property improvements. Based on these findings, an integrated material design strategy combining nature-inspired gradient architectures with post-processing treatments is presented, providing a versatile methodology to meet the specific performance requirements of automotive components. Overall, this work offers new insights for developing next-generation lightweight structural materials with exceptional ductility and damage tolerance and establishes a framework for translating bioinspired concepts into practical engineering solutions. Full article
Show Figures

Figure 1

24 pages, 4005 KB  
Article
Enhancing Antitumor Efficacy of MUC1 mRNA Nano-Vaccine by CTLA-4 siRNA-Mediated Immune Checkpoint Modulation in Triple Negative Breast Cancer Mice Model
by Amir Monfaredan, Sena Şen, Nahideh Karimian Fathi, Didem Taştekin, Alaviyehsadat Hosseininasab, Hamza Uğur Bozbey and Oral Öncül
Int. J. Mol. Sci. 2025, 26(17), 8448; https://doi.org/10.3390/ijms26178448 - 30 Aug 2025
Viewed by 449
Abstract
Immunotherapy, particularly approaches that combine tumor-specific vaccines with immune checkpoint modulation, represents a promising strategy for overcoming tumor immune evasion. While most mRNA-based cancer vaccines focus solely on antigen delivery, there is a need for platforms that simultaneously enhance antigen presentation and modulate [...] Read more.
Immunotherapy, particularly approaches that combine tumor-specific vaccines with immune checkpoint modulation, represents a promising strategy for overcoming tumor immune evasion. While most mRNA-based cancer vaccines focus solely on antigen delivery, there is a need for platforms that simultaneously enhance antigen presentation and modulate the tumor microenvironment to increase therapeutic efficacy. This study presents a novel dual-nanolipid exosome (NLE) platform that simultaneously delivers MUC1 mRNA and CTLA-4-targeted siRNA in a single system. These endogenous lipid-based nanoparticles are structurally designed to mimic exosomes and are modified with mannose to enable selective targeting to dendritic cells (DCs) via mannose receptors. The platform was evaluated both in vitro and in vivo in terms of mRNA encapsulation efficiency, nanoparticle stability, and uptake by DCs. The co-delivery platform significantly enhanced antitumor immune responses compared to monotherapies. Flow cytometry revealed a notable increase in tumor-infiltrating CD8+ T cells (p < 0.01), and ELISPOT assays showed elevated IFN-γ production upon MUC1-specific stimulation. In vivo CTL assays demonstrated enhanced MUC1-specific cytotoxicity. Combined therapy resulted in immune response enhancement compared to vaccine or CTLA-4 siRNA alone. The NLE platform exhibited favorable biodistribution and low systemic toxicity. By combining targeted delivery of dendritic cells, immune checkpoint gene silencing, and efficient antigen expression in a biomimetic nanoparticle system, this study represents a significant advance over current immunotherapy strategies. The NLE platform shows strong potential as a modular and safe approach for RNA-based cancer immunotherapy. Full article
(This article belongs to the Special Issue Biopolymers for Enhanced Health Benefits—2nd Edition)
Show Figures

Figure 1

31 pages, 5394 KB  
Essay
Research on Thermal Characteristics and Algorithm Prediction Analysis of Liquid Cooling System for Leaf Vein Structure Power Battery
by Mingfei Yang, Shanhua Zhang, Han Tian, Li Lv and Jiqing Han
Batteries 2025, 11(9), 326; https://doi.org/10.3390/batteries11090326 - 29 Aug 2025
Viewed by 434
Abstract
With the increase in energy density of power batteries, the risk of thermal runaway significantly increases under extreme working conditions. Therefore, this article proposes a biomimetic liquid cooling plate design based on the fractal structure of fir needle leaf veins, combined with Murray’s [...] Read more.
With the increase in energy density of power batteries, the risk of thermal runaway significantly increases under extreme working conditions. Therefore, this article proposes a biomimetic liquid cooling plate design based on the fractal structure of fir needle leaf veins, combined with Murray’s mass transfer law, which has significantly improved the heat dissipation performance under extreme working conditions. A multi-field coupling model of electrochemistry fluid heat transfer was established using ANSYS 2022 Fluent, and the synergistic mechanism of environmental temperature, coolant parameters, and heating power was systematically analyzed. Research has found that compared to traditional serpentine channels, leaf vein biomimetic structures can reduce the maximum temperature of batteries by 11.78 °C at a flow rate of 4 m/s and 5000 W/m3. Further analysis reveals that there is a critical flow rate threshold of 2.5 m/s for cooling efficiency (beyond which the effectiveness of temperature reduction decreases by 86%), as well as a thermal saturation temperature of 28 °C (with a sudden increase in temperature rise slope by 284%). Under low-load conditions of 2600 W/m 3, the system exhibits a thermal hysteresis plateau of 40.29 °C. To predict the battery temperature in advance and actively intervene in cooling the battery pack, based on the experimental data and thermodynamic laws of the biomimetic liquid cooling system mentioned above, this study further constructed a support vector machine (SVM) prediction model to achieve real-time and accurate prediction of the highest temperature of the battery pack (validation set average relative error 1.57%), providing new ideas for intelligent optimization of biomimetic liquid cooling systems. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

45 pages, 1901 KB  
Review
A Bibliometric Analysis of Strategies for Atherosclerosis Treatment with Organic Nanoparticles
by Jizhuang Ma, Xia Zhao, Xinwen Xu, Lixin A, Qiang Liu and Peng Qu
Pharmaceutics 2025, 17(9), 1131; https://doi.org/10.3390/pharmaceutics17091131 - 29 Aug 2025
Viewed by 500
Abstract
The complex pathological mechanisms of atherosclerosis (AS) involve lipid metabolism disorders, inflammatory responses, and plaque instability, resulting in significant challenges to effective clinical management. Current therapeutic approaches, such as statins and stent implantation, suffer from issues including single-target action, notable side effects, and [...] Read more.
The complex pathological mechanisms of atherosclerosis (AS) involve lipid metabolism disorders, inflammatory responses, and plaque instability, resulting in significant challenges to effective clinical management. Current therapeutic approaches, such as statins and stent implantation, suffer from issues including single-target action, notable side effects, and the risk of restenosis. Nanoparticle-based drug delivery systems have demonstrated considerable promise by enabling the codelivery of multiple agents directly to atherosclerotic lesions, thereby improving therapeutic efficacy and minimizing systemic toxicity. Among various nanomaterials, organic nanoparticles have recently emerged as a research hotspot in the field of AS treatment due to their excellent biocompatibility, degradability, and potential for targeted modification. This review systematically summarizes the recent advances and emerging trends in the application of organic nanoparticles for AS treatment, employing bibliometric analysis to delineate research frontiers. We employed bibliometric tools to analyze 1999 articles on organic nanocarriers for AS therapy indexed in the Web of Science Core Collection. The analysis included co-occurrence and clustering techniques to explore influential keywords and key contributors. Temporal analysis was applied to identify emerging research hotspots and track the evolution of this field. The literature reveals three major current focal areas: (1) the development of engineered biomimetic organic nanoparticles; (2) the design of multifunctional polymer-based organic nanocarriers; and (3) the innovation of organic-coated stents. This article not only provides a comprehensive overview of cutting-edge organic nanotechnologies for AS therapy, but also critically discusses the challenges in clinical translation, offering insights into future directions for the development of safe, effective, and personalized nanomedicine strategies against AS. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

31 pages, 9459 KB  
Article
Stiffness and Lightweight Enhancement in Biomimetic Design of a Grinding Machine-Tool Structure
by Shen-Yung Lin and Yen-Ting Lai
Appl. Sci. 2025, 15(17), 9449; https://doi.org/10.3390/app15179449 - 28 Aug 2025
Viewed by 273
Abstract
As global manufacturing faces rising energy costs, environmental pressures, and machining precision, the development trends of the machine tools are moving towards lightweight and high-rigidity structures. While those approaches of increasing key component geometrical size or enhancing rib design do enhance rigidity performance, [...] Read more.
As global manufacturing faces rising energy costs, environmental pressures, and machining precision, the development trends of the machine tools are moving towards lightweight and high-rigidity structures. While those approaches of increasing key component geometrical size or enhancing rib design do enhance rigidity performance, they also usually increase weight, which conflicts with the goals of achieving high performance and environmental sustainability. Therefore, how to achieve system lightweightness while maintaining or enhancing structural rigidity has become a key research challenge. This study adopts a biomimetic design approach, drawing inspiration from the natural growth features of biological structures. By integrating these natural structural features, the design aims to enhance rigidity while reducing weight. Static and modal analyses are conducted firstly by using FEM software to simulate the total deformation, natural frequency, and modal shape, respectively. The biomimetic designs are then performed on those subsystems in a grinding machine-tool, which exhibit larger deformation and weaker stiffness by incorporating the structural features of leaf veins, cacti, and bamboos. Single or multiple structural feature combinations are constituted during the biomimetic design processes for worktable, base, and column subsystems, and the natural frequencies and weight obtained from the numerical analysis were compared subsequently to identify the better bionic subsystems that replace the corresponding ones originally assembled in the grinding machine-tool finally. The results show that one of the first three mode natural frequencies of a better bionic worktable (leaf vein and cactus) is increased up to 7.07%, with a 1.12% weight reduction. A better bionic base (leaf vein) with corner trimming exhibits a 14.04% increase in natural frequency and a 2.04% weight reduction. Similarly, a better bionic column (bamboo) achieves a 5.58% increase in natural frequency and a 0.14% weight reduction. After these better bionic subsystems are substituted in the grinding machine-tool, one of the first three mode natural frequencies is increased up to 14.56%, the weight is reduced by 1.25%, and the maximum total deformation is decreased by 39.64%. The maximum total deformation for the headstock is reduced by 26.95% after the original grinding machine-tool is replaced by better bionic subsystems. The increases in the specific stiffness for these better bionic subsystems are also investigated in this study to illustrate the effectiveness of the biomimetic designs. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

Back to TopTop